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Abstract

Staggered-grid Lagrangian hydrodynamics algorithms frequently make use
of subzonal discretization of state variables for the purposes of improved
numerical accuracy, generality to unstructured meshes, and exact conser-
vation of mass, momentum, and energy. Coupling hydrodynamics to ad-
ditional physics, such as heat conduction and radiation transport, further
benefits from subzonal discretizations. For Arbitrary Lagrangian-Eulerian
(ALE) methods using a geometric overlay, it is difficult to remap subzonal
variables in an accurate and efficient manner due to the number of subzone-
subzone intersections that must be computed. This becomes prohibitive
in the case of 3D, unstructured, polyhedral meshes. A new procedure is
outlined in this paper to avoid direct subzonal remapping. The new algo-
rithm reconstructs the spatial profile of a subzonal variable using remapped
zonal and nodal representations of the data. The reconstruction procedure is
cast as an under-constrained optimization problem. Enforcing conservation
at each zone and node on the remapped mesh provides the set of equality
constraints; the objective function corresponds to a quadratic variation per
subzone between the values to be reconstructed and a set of target refer-
ence values. Numerical results for various pure-remapping and hydrodynam-
ics tests are provided. Ideas for extending the algorithm to staggered-grid
radiation-hydrodynamics are discussed as well as ideas for generalizing the
algorithm to include inequality constraints.
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1. Background

In the following sections, we introduce the problem of remapping subzonal
quantities in the context of staggered-mesh discretizations. We define the
subzonal spatial discretization of interest to our method, highlight specific
algorithms which employ this discretization, and describe the constraints and
accuracy requirements of these algorithms.

Subzonal Discretization

Our main application in this paper is the use of a geometric overlay based
remap with the spatially-staggered, Lagrangian-frame algorithm for hydro-
dynamics outlined in [2]. The Lagrangian hydrodynamic discretization of [2]
derives a number of important properties–for instance, conservation, gener-
ality to unstructured grids, and improved accuracy–from the discretization
of state variables on subzonal mesh elements. The main result and exam-
ples in this paper are the efficient reconstruction of such subzonal properties
(in particular the mass) based on remapping the aggregate zonal and nodal
properties. This approach is applicable so long as the primary physics dis-
cretization takes place on the zonal and/or nodal volumes, as is the case
for the staggered Lagrangian hydrodynamic discretization we study here.
These ideas can be generalized to other types of discretizations that employ
subzonal quantities as well, such as flux-limited diffusion (FLD) radiation-
hydrodynamics calculations on unstructured grids [20, 21, 22].

First, some notation concerning mesh subzones. Each zone is subdivided
into subzonal elements, which we often refer to as corners and index by c.
Each corner is a polyhedron in 3D or a quadrilateral in 2D, corresponding to
a unique neighboring zone-node pair (zc, nc) on the Lagrangian mesh. The
vertices of corner c consist of the centroid of zone zc, the position of node nc,
and the centers of each of the faces of zc that touch nc. Figure 1 illustrates
the corner discretization in 2D and 3D. (Similarly, a corner can be thought of
as the intersection of zone element zc on the primary mesh and node element
nc on the corresponding dual mesh.) Element volumes around zones Vz and
nodes Vn are defined by sums of neighboring corner volumes Vc:

Vz =
∑
c(z)

Vc and Vn =
∑
c(n)

Vc. (1)
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Here c(z) denotes the set of corners inside zone z, and c(n) denotes the set
of corner touching node n. The union of each corner element in c(n) defines
the mesh element associated with node n.
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c
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c

Figure 1: Corner subvolumes (c, in red) of a 2D (left) and 3D (right) zone.

Subzonal Densities and Compatible Hydrodynamics

We consider subzonal discretizations in the context of conservative hy-
drodynamics. We assume spatially-staggered variables: kinematic variables
of velocity and kinetic energy at nodes; thermodynamic variables of internal
energy at zone centers.

The compatible formalism for Lagrangian hydrodynamics is based on a
consistent discretization of the fluid momentum and energy evolution equa-
tions [2]. Consistency is achieved through a subzonal discretization of the
underlying fluid mass density. The zonal and nodal representations of density
that define discrete energy and momenta respectively are coarsened repre-
sentations of the subzonal density on their respective element volumes:

mz =
∑
c(z)

mc and mn =
∑
c(n)

mc, (2)

where mz, mn, and mc denote discrete masses centered at zone z, node n,
and corner c respectively. The corresponding densities satisfy

ρα = mα/Vα, α = z, n, c. (3)
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Problem Statement
The existence of discrete state variables at zones, nodes, and subzones

presents us with a considerable challenge in the context of Arbitrary Lagrangian-
Eulerian (ALE) methods: in order to remap state variables from one mesh
to another in a conservative fashion, accurate subzonal information must be
maintained. The problem may be interpreted in terms of both flux-based and
overlay-based remaps. Owen and Shashkov describe a flux-based strategy in
[14] that computes consistent subzonal fluxes around nodes to preserve mass
and momentum conservation. Subzonal fluxes are computed in a manner
that reduces the local variation with respect to an optimal reference flux.
However, the flux based algorithm of [14] implicitly assumes the topology of
the mesh is not changing, only the geometry. For a geometric overlay-based
remap we would like to relax this assumption and allow the target and donor
mesh topologies to be unrelated. This paper builds on the ideas in [14] in
the context of generic overlay-based remapping.

In an overlay remap, state variables are mapped from one spatial partition
(donor mesh) to a second partition (target mesh) based on geometrical inter-
sections between donor and target elements. For cell-centered discretizations,
all state variables are collocated to zone centers; only zone-zone intersections
need to be computed in the overlay. The computational complexity increases
for staggered discretizations due to the fact that variables are centered at
both zones and nodes. Zone-zone intersections are computed to remap quan-
tities such as internal energy; node-node (i.e. dual mesh) intersections are
computed to remap quantities such as momentum and kinetic energy.

Intersection operations can impose steep memory requirements and be-
come computationally expensive, particularly if (i) mesh elements increase
in complexity, as with unstructured, polygonal meshes (for instance, ReALE
[10]); (ii) additional physics is coupled into the problem, thus increasing the
number remapped variables; or (iii) the problem increases in dimensionality.

When state variables are discretized at mesh subzones, their information
is lost during a geometric overlay if mesh intersections are limited to zones
and nodes only. For compatible hydrodynamics, this means losing the very
conservation property provided by the discretization in the first place. For
staggered radiation-hydrodynamics, this means losing intrazonal tempera-
ture variation and reducing the accuracy of fluid-radiation energy coupling
terms.

We recognize two general strategies for maintaining subzonal state infor-
mation: (i) remap subzonal information directly from donor mesh to target
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mesh or (ii) attempt to reconstruct subzonal data using information at neigh-
boring zones and nodes. This paper describes a new algorithm for strategy
(ii). We first summarize the state-of-the-art for strategy (i).

An accurate and efficient implementation of strategy (i) is described in
[11] and successfully applied to staggered ReALE hydrodynamics calculations
in [10]. The algorithm is efficient in the sense that geometric intersections are
only computed between subzones. All variables are collocated to neighboring
subzones to accomplish this. The collocation process, referred to as “gath-
ering,” computes subzonal values for all zonal and nodal quantities. After
the remap, the gather stage is reversed in a process referred to as “scatter-
ing,” and consistent zonal and nodal discretizations are recovered from their
remapped state on subzones. The gather-remap-scatter process is designed to
be conservative, reversible, and second-order accurate. The authors employ
a local repair procedure based on [12] to ensure the remap is also monotonic.

Remapping subzones to subzones is an intuitive strategy, but it unfortu-
nately does not solve the problem of computational complexity. The number
of element intersections scales with the total number of elements in both
donor and target meshes. For the simple case of quad zones in 2D, the num-
ber of subzone-subzone intersections is still twice the sum of both zone-zone
and node-node intersections in pure element count. For arbitrary polyhedral
zones in 3D, the number of subzones becomes much greater than the sum
of zones and nodes together. Fortunately, the fact that the hydrodynamic
equations are differenced on the nodal and zonal volumes suggests that by
carefully remapping the nodal and zonal quantities and conservatively recon-
structing the subzonal properties from this information should be adequate
to maintain the overall accuracy of the hydrodynamic method.

We propose just such an alternative strategy here. Described in detail in
the following section, this strategy involves reconstructing subzonal informa-
tion based solely on zonal and nodal information. Our approach takes the
form of a constrained optimization problem in which discrete conservation
conditions serve as linear constraints on the subzonal field of interest. The
reconstruction method generalizes to any subzonal quantity that is conserved
by volume.

2. Reconstruction Algorithm

This section describes the algorithm for reconstructing subzonal infor-
mation from discrete data at zones and nodes. In the case of staggered
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compatible hydrodynamics, the quantity we reconstruct is subzonal density
using remapped masses at zones and nodes. In general, the algorithm applies
to any subzonal quantity that is conserved by volume.

The initial conditions of the algorithm are the post-remap zonal masses
{mz}Nz

z=1, nodal masses {mn}Nn
n=1, as well as the subzonal volumes {Vc}Nc

c=1 of
the post-remap mesh. Subzonal mass densities ρc are unknown but assumed
to be related to their local nodal and zonal masses.

We wish to solve for the set of corner densities satisfying the following
conditions:

(i) The sum of sub-zone corner masses recovers the zonal mass.

(ii) The sum of nodal corner masses recovers the nodal mass.

(iii) Each corner density is as close as possible to a convenient reference
state.

We interpret the statements above as a constrained optimization problem.
Statements (i) and (ii) are linear constraints on the set of possible corner
density values. Statement (iii) defines the optimality of the desired corner
density field.

Using (1), (2), and (3), constraints (i) and (ii) are written in terms of
local corner information:

(i) : mz =
∑
c(z)

mc =
∑
c(z)

Vcρc = ρz
∑
c(z)

Vc =⇒
∑
c(z)

Vc(ρc−ρz) = 0. (4)

and

(ii) : mn =
∑
c(n)

mc =
∑
c(n)

Vcρc = ρn
∑
c(n)

Vc =⇒
∑
c(n)

Vc(ρc − ρn) = 0.

(5)
For statement (iii), we define a positive relative variation per corner element
(ρc/µc − 1)2, where µc denotes some optimal reference state. (We will re-
turn to possible forms of µc shortly.) Summing over corners defines a global
optimization functional

(iii) :
1

2

∑
c

( ρc
µc
− 1
)2
. (6)
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In summary, we cast (i)–(iii) as the following constrained optimization prob-
lem:

Given: ρz, ρn, Vc

Minimize:
1

2

∑
c

( ρc − µc
µc

)2
Subject to:


∑

c(z) Vc(ρc − ρz) = 0, ∀z∑
c(n) Vc(ρc − ρn) = 0, ∀n

(7)

We solve (7) by the technique of Lagrange multipliers. Define multipliers
λz and λn corresponding to each zone constraint (4) and node constraint (5)
respectively and define the global Lagrangian functional

L(ρc, λz, λn) =
1

2

∑
c

( ρc − µc
µc

)2
+
∑
z

λz
∑
c(z)

Vc(ρc−ρz)+
∑
n

λn
∑
c(n)

Vc(ρc−ρn).

(8)
The gradient of L is

∂L

∂ρc
=

ρc − µc
µ2
c

+ Vcλzc + Vcλnc

∂L

∂λz
=

∑
c(z) Vc(ρc − ρz)

∂L

∂λn
=

∑
c(n) Vc(ρc − ρn)

(9)

where, again, zc is the unique zone containing corner c, and nc is the unique
node touching corner c. Setting ∂L/∂ρc = 0 gives an expression for ρc in
terms of a perturbation on its reference value:

ρc = µc

(
1− µcVc(λzc + λnc)

)
. (10)

Setting ∂L/∂λn = 0 and substituting (10) gives an expression for λn in terms
of values of λz at zones neighboring node n:

λn = −
∑

c(n)(µcVc)
2λzc +

∑
c(n)(ρn − µc)Vc∑

c(n)(µcVc)
2

= −
∑

c(n)wcλzc + ∆mn

Wn

.

(11)
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For convenience, we define corner weights based on the square of the reference
mass

wc = (µcVc)
2 (12)

as well as zone and node weights

Wz =
∑
c(z)

wc and Wn =
∑
c(n)

wc. (13)

We also define zonal and nodal mass differences relative to the reference state:

∆mz = mz −
∑

c(z) µcVc =
∑

c(z)(ρz − µc)Vc

∆mn = mn −
∑

c(n) µcVc =
∑

c(n)(ρn − µc)Vc
(14)

Finally, setting ∂L/∂λz = 0 and substituting (10) and (11), gives a linear
expression for each zonal Lagrange multiplier λz:

Wzλz −
∑
n(z)

wc(z,n)
Wn

∑
c(n)

wcλnc =
∑
n(z)

wc(z,n)
Wn

∆mn − ∆mz, (15)

where the notation c(z, n) denotes the unique corner inside zone z and touch-
ing node n.

The unknowns in (15) are the Nz zonal Lagrange multipliers λz. We write
(15) as a linear system of the form

(Wz + A)λ = b.

Here λ is the vector of Lagrange multipliers {λz}Nz
n=1, b is a length Nz vec-

tor of known quantities, Wz is an Nz × Nz diagonal matrix consisting of
zone weights (13), and A is a sparse Nz × Nz matrix. The i-th entry of b
corresponds to zone zi:

bzi =
∑
n(zi)

wc(zi,n)
Wn

∆mn − ∆mzi . (16)

The (i, j)-th entry of A corresponds to zone pair (zi, zj):

Ai,j = −
∑

n(zi,zj)

wc(zi,n)wc(zj ,n)

Wn

, (17)
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Figure 2: An example of the stencil of zones that share at least one node with with the
shaded 2D polygonal zone.

where n(zi, zj) is the set of nodes shared by both zones zi and zj. Matrix
A is sparse in the sense that, if zi and zj do not share any nodes, Ai,j = 0.
Alternatively, one can interpret the individual rows of matrix A using the
topology of the mesh: the nonzero entries for row i correspond to the mesh
stencil around zi of all zones which share at least one node with zi (see fig. 2).

It is instructive to write matrices Wz and A as products of geometrical
sub-matrices based on the mesh connectivity. The sub-matrices are weighted
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by corner volume for notational convenience. Define

Ψcz =

 Vc , corner c is contained in zone z

0 , o.w.
(18)

Ψcn =

 Vc , corner c touches node n

0 , o.w.
(19)

where Ψcz is size Nc × Nz, and Ψcn is size Nc × Nn. Similarly, let Wz =
diag({Wz}z), Wn = diag({Wn}n), and Mc = diag({µc}c) denote diagonal
matrices of zone weights, node weights, and reference values respectively.
Then,

Wz = ΨT
czM

2
cΨcz and Wn = ΨT

cnM
2
cΨcn (20)

by construction and similarly

A = −ΨT
czM

2
cΨcnW

−1
n ΨT

cnM
2
cΨcz. (21)

Finally, define

Ψ = Wz + A = ΨT
cnMc

(
Ic −McΨczW

−1
z ΨT

czMc

)
McΨcn. (22)

The matrix form of (15) is given by the system

Ψλ = b. (23)

The wrinkle involved with solving linear system (23) is that Ψ is a singular
matrix. In general, the constrained minimization problem (7) is underdeter-
mined: because Nc ≥ Nz + Nn in general, the combined constraints (4) and
(5) are fewer than the total number of unknowns. Consequently, a unique set
of constrained corner densities which minimized (6) does not exist. Singular
value decomposition (SVD) of Ψ provides one well-known method of finding
a best-fit solution to (23).

We begin by decomposing Ψ into components

Ψ = UwVT , (24)

such that w is a diagonal matrix containing the Nz singular values of Ψ, and
U and V are square unitary matrices. The pseudoinverse of Ψ is

Ψ+ = Vw′UT , (25)
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where w′ is the diagonal matrix w with all nonzero elements replaced by
their reciprocal. The solution to (23) is then

λ = Ψ+b. (26)

Nodal Lagrange multipliers can then be computed from λ = {λz}Nz
z=1 using

(11), with final corner densities computed from (10).

Remark: Solving (23) does not necessarily require computing an SVD. In
particular, the zero eigenvalue of Ψ is of multiplicity one (see appendix A).
A preconditioned iterative solver will converge to the minimizing solution
given an initial guess outside the null space of Ψ. This is the solution ap-
proach utilized throughout this paper. We use the parallel preconditioner
package Hypre to solve the linear system [6].

Remark: Penalty methods provide an alternative formulation to that of La-
grange multipliers for the purpose of constrained optimization. Additional
functions may be incorporated into the full variation functional (6) to penal-
ize unsatisfactory states, such as negative or non-monotonic states. Unfor-
tunately, penalty methods do not satisfy equality constraints exactly, only
in an iterative limit. This is undesirable for our purposes given our strict
consistency conditions between zonal and nodal representations of mass to
satisfy conservation.

Remark: Incorporating inequality constraints into the method of Lagrange
multipliers is possible through the formalism of Karush-Kuhn-Tucker and
complementary slackness [7, 8]. Inequality constraints may be used to enforce
positivity in the resulting corner density solution or, stronger still, mono-
tonicity with respect to neighboring zonal and nodal density values. See
appendix C for a thorough discussion of these ideas as well as generalization
of the above algorithm to incorporate inequality constraints.

3. Reference State

The reference state in (6) defines the optimal state for a given corner den-
sity. Intuitively, the reference state should depend on the density field local
to each corner. For corner c, we make the following simplifying assumptions:

• µc is a function of local zone density ρzc and local node density ρnc .
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• µc is bounded by the two local densities.

We consider six choices for µc in this article:

(i) Zone Density: ρzc

(ii) Node Density: ρnc

(iii) Arithmetic Average:
ρzc + ρnc

2

(iv) Harmonic Average:
2ρzcρnc

ρzc + ρnc

(v) Local Maximum: max(ρzc , ρnc)

(vi) Local Minimum: min(ρzc , ρnc)

(27)

Numerical tests comparing reference states for a variety of pure remap-
ping problems are included in section 6.

Remark: The choice of reference state may be generalized beyond what is
considered in this article. For instance, a different reference state may be
chosen per-subzone based on local smoothness of the zonal and nodal density
fields. In regions near large discontinuities, reference values that compute
strictly positive densities are desirable; in smooth regions, the local zone
value may be desirable. Note also that (i)–(iv) may be combined into two
general forms of the arithmetic and harmonic average,

µc = αcρzc + (1− αc)ρnc and µc =
ρzcρnc

αcρnc + (1− αc)ρzc
, (28)

respectively, where αc ∈ [0, 1] smoothly tracks the contributions of zone and
node densities in the reference state per-subzone. Analysis of (28) is a topic
of future work.

4. Repairing Subzonal Values

For certain choices of reference state, the algorithm may minimize the
objective function (6) but compute subzonal values that are negative. Recon-
structed values may also be non-monotonic, i.e. straying outside the bounds
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set by their local zonal and nodal values. This is most likely to occur in
regions with large discrepancies between zonal and nodal values, for instance
when remapping a density field having steep discontinuities.

The reason for this is the extra degrees of freedom in the problem. The
number of zonal and nodal constraints is less than the total number of sub-
zones. Only the value of the reference state in each subzone may be used to
drive the reconstructed values to ones that preserve positivity, monotonicity,
etc.

We consider a simple local repair procedure to correct negative recon-
structed values. Subzonal mass is redistributed within each zone in a manner
that preserves zone mass exactly (4). The compromise involved in forcing
positivity is a small error in node mass conservation (5).

The local repair process acts on zones containing at least one negative
subzonal density. For zone z having remapped mass mz, let C− denote the
set of subzones having negative reconstructed densities. Here C− is a strict
subset of c(z) since the remap itself ensures mz > 0. We proceed:

1. Sum the total negative subzonal mass within the zone:

M− =
∑
c∈C−
|ρcVc|.

2. Replace all negative subzonal densities with a small positive constant
value ε chosen to be smaller than the minimum density globally:

ρc ←− ε ∀c ∈ C−.

The amount of mass added to the zone by this replacement is

Mε =
∑
c∈C−

εVc.

For all numerical tests, we use ε = 10−10.

3. Scale the remaining positive subzonal densities by the constant ratio

ρc ←−
(
mz −Mε

mz +M−

)
ρc, ∀c ∈ c(z), c /∈ C−.

This is equivalent to subtracting a fraction of the total mass change
M− + Mε in the zone from each positive subzone mass. The fraction
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per subzone is the ratio of its initial mass to total positive zone mass
mc/(mz +M−). This ensures all subzone masses are positive and con-
straint (4) is respected.

In the context of hydrodynamics, the ultimate consequence of redistribut-
ing subzonal mass within a zone is an error in momentum conservation. The
size of this error scales with the total negative mass M− and affects the
discrete momentum values at each node around a corrected zone. Note that
because some subzones gain mass and others lose it during the correction, the
net affect on global momentum conservation has no definite sign. Further-
more, if velocity is constant, the correction will produce zero net momentum
error.

Remark: Negative reconstructed values typically occur in the presence of
steep discontinuities. They are rarely encountered in the context of hydro-
dynamic calculations because discontinuities—shocks, material fronts, etc.—
tend to spread across more than a single zone due to numerical diffusion.

Remark: The small conservation error introduced by local repair is not sig-
nificant for the types of problems we have considered. For the sake of com-
pleteness, we include two additional procedures for enforcing positivity that
are fully conservative:

(i) Appendix B describes a global extension of the above local procedure.
The global linear system in section 2 is modified by additional equality
constraints imposed on subzones and solved a second time to remove
negative values. The resulting reconstruction is positive and fully con-
servative.

(ii) Appendix C generalizes the constrained optimization problem to in-
clude inequality constraints. The method is fully conservative. In-
equality constraints may also be chosen to enforce not only positivity
but also monotonicity in the reconstructed subzonal field.

These algorithms are understandably more expensive than local repair. There
is no free lunch for the staggered overlay problem: a full subzonal overlay
can be conservative, positive, and monotonic [11] but is very expensive; con-
servative reconstruction is cheaper, but more work must be done to ensure
positivity and monotonicity as well.
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5. Subzonal Pressures

The subzonal reconstruction algorithm is well-optimized for use with the
corner-based staggered compatible hydrodynamics algorithm of [2]. The dis-
cretization is sensitive to the total zonal and nodal masses but not to the
individual subzonal values. As a result, the hydro algorithm performs well
even if non-monotonicities creep into the reconstructed subzonal density field.
The most important property to meet is that the subzonal corner masses sum
to the correct remapped zonal and nodal values, which our algorithm ensures
by construction.

The same cannot be said about subzonal densities used to compute sub-
zonal pressures that serve as hourglass controls, as in [2]. Subzonal pressures
computed from oscillatory subzonal mass densities can introduce numerical
instabilities in the Lagrangian mesh. To avoid this complication, we use the
anti-hourglassing filter of [3] instead of subzonal pressures to remove spurious
grid motion.

Remark: Reconstruction does not forbid us from taking advantage of sub-
zonal pressures to improve mesh motion. Similar to [14], we could use a
separate and distinctly simpler definition of corner mass density solely for
computing subzonal pressures. This separate subzonal density would not
contribute to the momentum equation and therefore would not have to meet
the same stringent conservation properties as the reconstructed values. The
idea in [14] may be extended to an overlay remap by considering the change
in mass inside a zone before and after an overlay:

mr
c,p =


V r
c

V r
z

∆mz , if zone mass increases

mr
z

mz

mc,p , if zone mass decreases

where mc,p indicates the subzonal pressure corner mass, ∆mz = mr
z −mz is

the change in mass in zone z, and the superscript r indicates a post-remap
quantity. This definition will reproduce the remapped zonal mass from sum-
ming mr

c,p in the zone, but not the remapped nodal masses. Such nodal
reproduction is not necessary in the hourglass control and is therefore a per-
fectly acceptable compromise. The ability to use the subzonal corner pressure
hourglass control will become important when we consider hydrodynamic ex-
amples on arbitrary polygonal grids. The kinematic filters of [3], which are
specialized for quadrilaterals, are not appropriate for such calculations.
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6. Numerical Results

The numerical results in this section result from applying the corner re-
construction algorithms described in this paper to data remapped using an
existing geometrical overlay package named Overlink [5]. Overlink uses linear
reconstruction with gradient limiting to achieve second-order accuracy and
monotonicity in the overlay – arbitrary polyhedral intersections are computed
using fast decomposition into tetrahedra. The full details of the algorithm
are presented in [5]. For our purpose Overlink is a nice example of an existing
geometric overlay remapping package intended for use with staggered data
that we wish to generalize for use with subzonal corner data.

6.1. Null Problem

We begin by considering the null problem of overlaying a specified density
field onto the same mesh. This is an exact operation using Overlink, thereby
allowing us to test the accuracy of different choices of reference density in
reconstructing an underlying subzonal density field. We consider two analytic
density distributions—linear and discontinuous—and test the reconstruction
algorithm on various discretizations of these distributions.

In each test, we compute convergence of the reconstructed subzonal den-
sity values to their initial discrete values under L1 norm. We compute the
L1 norm using the formula

L1 =
1

M

M∑
i=1

|ai − bi|, (29)

where {ai}i and {bi}i are arbitrary sequences of length M . In each example,
reconstruction is computed onN×N square meshes forN ∈ {8, 16, 32, 64, 128}.

Test 1: Linear Density Field

First is a linear density distribution. The continuous field is given by

ρ(x) = ρ0 +∇ρ · x. (30)

The field is discretized on each subzone c by evaluating (30) at subzone center
xc. Discrete zonal and nodal values are initialized by summing over subzones.
In all subsequent tests, we use ρ0 = 10 and ∇ρ = (1, 3).

Figure 3 contains convergence curves for each of the six reference states.
Dashed lines of slope 1, 2, and 3 illustrate the convergence rates of the
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various references. The results match expectations: the local minimum and
maximum references are discontinuous functions of the local zonal and nodal
values for each subzone; these references may only converge at first order.
The zone density, node density, and harmonic average references are smooth
functions and converge at second order. The harmonic average reference has
smaller absolute error because the reference densities in each subzone are
closer to the analytic distribution than the discrete zonal and nodal densities.
The arithmetic average reference converges at third order. This is because
the reconstruction only commits an error inside subzones on the boundary
of the problem—a set having codimension 1. The reference density at all
interior subzones is equal to the analytic distribution.

Figure 3: Null problem, linear field: L1 convergence in subzonal density. Reference slopes
1, 2, and 3.
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Test 2: Linear Density Field, Anti-Correlated Subzonal Field

We use the same continuous linear density field (30). Discrete zone den-
sities ρz are initialized by evaluating (30) at each zone center xz. A subzonal
density distribution is chosen to have the opposite variation of the analytic
field:

ρsubz(x) = ρz − f∇ρ · (x− xz), x ∈ {zonez}. (31)

The density at each subzone c ∈ c(z) is (31) evaluated at subzone center xc.
The scale factor f generalizes the subzonal density distribution. If f = 0,
the subzonal density is flat; if f = −1, we recover the density distribution
in Test 1; and if f > 0, the subzones are anti-correlated with the interzonal
variation. Note that (4) is satisfied provided each zone position is equal to the
average of its subzone positions. Figure 4 illustrates this density distribution
on the zones, nodes, and subzones of an 8× 8 square mesh. We use f = 1 to
illustrate the subzonal field.

Figure 4: Initial discrete densities in zones (left), at nodes (center), and in subzones (right)
for a linear field with anti- correlated subzonal variation.

Figure 5 contains convergence curves for two choices of scale factor f : a
constant factor and a variable factor.

Left is the constant scale factor f = 1. Dashed black lines have refer-
ence slopes 1, 2, and 3. In this example, as N increases, the relative varia-
tion within each zone decreases; that is, the subzonal density field becomes
smoother under mesh refinement. The relative errors and convergence rates
of each reference match that in Test 1. This test is again advantageous for the
arithmetic average reference since it is exact in all interior subzones. Unlike
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Test 1, the zone density reference has lower absolute error than node density.
This is because the discrete node densities are farther from the analytic pro-
file at the boundary than the discrete zone densities when their values are
initialized using (31).

The right plot contains a more challenging test for the reconstruction
algorithm: a variable scale factor is chosen to increase with mesh resolution.
The scale factor is as large as possible without having negative values in the
initial discrete subzonal density field:

fmax =
4ρ0N

|ρx|+ |ρy|
.

The resulting subzonal field is discontinuous across zones despite the fact
that the coarsened zonal and nodal fields are smooth. The dashed black
line has slope 1. All references converge at first order, as expected for the
discontinuous nature of the subzonal field. The zone density reference has
minimal absolute error by nearly an order of magnitude. This is again due
to the zone values being closer to the analytic profile at boundary subzones
and thus committing a smaller error there. The steeper subzonal slope only
exacerbates this effect.

Figure 5: Null problem, linear field: L1 convergence in subzonal density. Scale factor
f = 1 with reference slopes 1, 2, and 3 (left). Maximum scale factor fmax with reference
slope 1 (right).
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Test 3: Discontinuous Density Field, Zero Subzonal Variation

We consider a discontinuous density profile. Let r point in the direction
perpendicular to a linear discontinuity passing through point c and sepa-
rating high and low density values ρH and ρL. The initial density profile
is

ρ(x) =

{
ρH , r · (x− c) < 0

ρL , r · (x− c) ≥ 0
. (32)

We first initialize the discrete density profile so there is no subzonal variation.
The discrete zone density ρz is computed by evaluating (32) at zone center xz.
The discrete density in each subzone is equal to its associated zone density:
ρc = ρzc . For all subsequent examples, we set r = (4/3, 1), c = (1/2, 1/2),
and ρH = 1. We vary ρL to test the robustness of each reference to large
density jumps.

Figure 6 contains convergence curves for the L1 error in subzonal density
for two choices of ρL: 10−1 and 10−6. The black dashed lines have reference
slope of 1. The error curve for zone density is not provided because the recon-
structed subzonal densities match their initial values to machine precision.
This is to be expected for this particular test: the zone density reference
automatically satisfies mass conservation constraints at all zones and nodes.
Here, and in subsequent plots, solid markers indicate reconstructed densities
that maintain positivity; ‘X’ markers indicate negative reconstructed values
that have been repaired according to the nonconservative local procedure. It
is worth mentioning that local repair produces an error in a very small set of
subzones and is not a significant contribution to the global L1 error.

The node density and local maximum references fail to preserve positivity
for both density jumps and carry the largest absolute errors. The arithmetic
average reference maintains positivity for smaller density jump but fails when
the discontinuity is more extreme. The local minimum and harmonic aver-
age references are robust to computing negative states (even in an extreme
case of ρL = 10−12, not included.) The harmonic average outperforms the
local minimum in all cases due to it being a smooth function. First order
convergence is established for smaller density jumps. For the larger jump,
the harmonic average and local minimum do not converge: errors are only
committed at subzones along the discontinuity. The size of these errors and
the number of subzones scale with the mesh resolution. Regardless, the er-
rors are several orders of magnitude smaller than those committed by the
other reference states.
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Figure 6: Null problem, discontinuous field: L1 convergence in subzonal density for density
jump of 10 (left) and 106 (right). No variation in the initial subzonal density. Positive
reconstructions have solid markers, repaired negative reconstructions have X.

Test 4: Discontinuous Density Field

We also consider the discontinuous density profile (32) in this example.
The discrete profile is initialized at the subzonal level: ρc is computed by
evaluating (32) at subzone center xc. Discrete zonal and nodal densities are
initialized by summing over local subzones. The overall effect is a transition
region in the zonal and nodal density profiles: zone and node elements inter-
sected by the discontinuity have an intermediate density value between ρL
and ρR.

Figure 7 contains convergence curves for each reference state, again com-
paring for density jumps of 10 and 106. The density reference is no longer
an exact solution, and we have included it here. Results are to be expected,
with first-order convergence established for each reference state. Positivity of
the reconstruction matches the results in Test 3: only the harmonic average
and local minimum references reconstruct positive subzonal densities when
the discontinuity is extreme.

6.2. Reconstructing a Linear Density Distribution

We next test how the reconstruction performs when remapping onto a
target mesh with different topology and geometry. We begin with the linear
density distribution (30), again with ρ0 = 10 and ∇ρ = (1, 3), on a square
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Figure 7: Null problem, discontinuous field: L1 convergence in subzonal density for density
jump of 10 (left) and 106 (right). Positive reconstructions have solid markers, repaired
negative reconstructions have X.

N × N mesh. The subzonal variation follows the same distribution as the
global density (i.e. equation (31) with f = −1).

We consider two target meshes: an unstructured mesh of arbitrary poly-
gons and a structured mesh of high-aspect-ratio quads. The unstructured
mesh consists of a random Voronoi tessellation having N2 number of zones.
The structured mesh consists of a rN ×bN

r
c lattice of rectangles, with r > 1.

For all subsequent tests, we use N ∈ {8, 16, 32, 64, 128} and r = 4. Figure 8
illustrates the zonal density on the initial mesh as well as its remapped values
on the unstructured Voronoi mesh and high-aspect quad mesh.

Figure 9 gives L1 convergence results for the reconstructed subzone den-
sities relative to their analytic values from (30). For the Voronoi mesh (left),
all reference values demonstrate first-order convergence. Arithmetic and har-
monic averages are identical and outperform the other references on an ar-
bitrary polygonal grid. In the high-aspect quad case (right), all smooth
references converge at second order and non-smooth references (local mini-
mum and maximum) at first order. The regularity of the high-aspect quad
zones allows for second-order convergence in the reconstructed subzonal den-
sities; second-order convergence on a polygonal mesh can be achieved pro-
vided greater regularity and mesh quality–for instance, a centroidal Voronoi
tessellation composed of regular hexagons.
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Figure 8: Initial linear zonal density (left) and remapped zonal density on unstructured
polygons (center) and high- aspect-ratio quads (right).

Figure 9: Reconstruct linear density field: L1 convergence in subzonal density. Unstruc-
tured polygonal target mesh with reference slope 1 (left) and high-aspect-ratio target mesh
with reference slopes 1 and 2 (right).

6.3. Reconstructing a Density Discontinuity

We repeat the above test for a density discontinuity of size 10. We ini-
tialize the density fields in the same manner as Test 4 for the null problem
tests. Here ρL = 10−1.

We again map onto an unstructured random Voronoi tessellation and a
structured grid of high-aspect quads. Figure 10 illustrates this in zone den-
sity. Figure 11 gives convergence results for each reference state. Again,
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solid markers indicate positive reconstructed densities, and ‘X’ markers indi-
cate locally repaired negative densities. Because of the modest density jump
and relative grid regularity, all references produce positive reconstructions
for the high-aspect quad case. Only the zone density and local maximum
references compute negative subzonal densities for the random Voronoi case.
This is due to significant grid irregularity: the existence of small edges in the
Voronoi mesh leads to disparate subzonal volumes. Negative reconstructed
values tend to occur in or near zones having small edges. Improving the
quality of the grid, for instance by deleting or expanding small edges in the
mesh, reduces negative reconstructions.

Figure 10: Initial discontinuous zonal density (left) and remapped zonal density on un-
structured polygons (center) and high-aspect-ratio quads (right).

We also measure how well monotonicity is preserved in the reconstructed
subzonal density field. For each test, we compute the ratio

rmono = min
c
ρc

/
max
c
ρc. (33)

If the reconstruction is monotone, rmono will be 0.1 for this problem. Ratio
values are provided in table 1 and table 2 for the unstructured Voronoi and
high-aspect quad target meshes respectively. Empty entries correspond to
cases of negative reconstructed densities. In all instances, the reconstructed
values are non-monotonic, with more extreme ratio values occurring for the
unstructured Voronoi target mesh. It is worth reiterating that the monotonic-
ity being measured here is in the subzonal densities: the directly remapped
zonal and nodal densities maintain monotonicity exactly. Although the sub-
zonal densities do not respect the monotonicity limits of their coarsened nodal
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Figure 11: Reconstruct discontinuous density field: L1 convergence in subzonal density.
Unstructured polygonal target mesh (left) and high-aspect-ratio target mesh (right), each
with reference slopes of 1. Positive reconstructions have solid markers, repaired negative
reconstructions have X.

and zonal values, they do rigorously reproduce the remapped zonal and nodal
mass densities due to the constraints imposed. This is adequate in the con-
text of the staggered hydrodynamic method towards which reconstruction is
applied; it is the compromise we accept in order to allow the significant com-
putational savings compared with directly remapping subzonal quantities.

From the data collected, the zone density, node density, and local max-
imum reference states appear unsatisfactory due to both the size of mono-
tonicity errors and their tendency to compute negative values. The local
minimum reference is most robust to computing negative states; however, it
is a discontinuous function of local data and has poor convergence properties
for smooth fields as a result. The arithmetic and harmonic averages have
similar convergence properties, but the latter is more robust to computing
negative states. The remaining tests use the harmonic average reference for
this reason. Additional reference comparisons are included to aid discussion,
but the harmonic average is our choice moving forward.

6.4. Cyclic Remap Tests

This is a remapping test based on the work of [9] and used in [14] to test
flux-based ALE remap strategies. The initial mesh configuration consists of a
lattice of quads. Mesh nodes are iteratively moved according to the following
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N Zone Node Arith. Avg. Harm. Avg. Local Min Local Max

8 0.0266 0.0436 0.0566 0.0667 0.0455

16 0.0027 0.0716 0.0583 0.0671 0.0560 0.0453

32 0.0331 0.0198 0.0281 0.0295 0.0176

64 0.0354 0.0350 0.0425 0.0222

128 0.0129 0.0260 0.0359 0.0342

Table 1: Reconstruct discontinuous density field: monotonicity metric convergence for
unstructured polygonal target mesh. (Monotone reconstruction has metric value 0.1.)
Missing entries indicate cases that failed due to negative reconstructed densities.

N Zone Node Arith. Avg. Harm. Avg. Local Min Local Max

8 0.0547 0.0149 0.0646 0.0665 0.0782 0.0565

16 0.0530 0.0141 0.0651 0.0663 0.0782 0.0572

32 0.0524 0.0142 0.0654 0.0663 0.0782 0.0575

64 0.0522 0.0143 0.0655 0.0664 0.0783 0.0577

128 0.0522 0.0143 0.0656 0.0664 0.0783 0.0578

Table 2: Reconstruct discontinuous density field: monotonicity metric convergence for
high-aspect quad target mesh. (Monotone reconstruction has metric value 0.1.)

periodic displacement:

xk(x0, y0, τ) = x0 + F (τ) sin(2πτx0) sin(2πτy0)

yk(x0, y0, τ) = y0 + F (τ) sin(2πτx0) sin(2πτy0)

F (τ) =

{
0.2τ , τ ∈ [0, 0.5]

0.2(1− τ) , τ ∈ [0.5, 1]
(34)

τ = k/kmax

Here k is the remap iteration, (x0, y0) is the initial position of each node,
(xk, yk) is the k-th position, and τ is the pseudo-time period of the dis-
placement. Mesh nodes return to their original positions after kmax total
iterations.
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Initial background density and velocity fields are iteratively overlaid onto
the new displaced mesh. We consider two initial fields: one smooth and one
discontinuous.

Smooth Fields

We consider smooth profiles for density and velocity

ρ(x, y) = ρback + ρamp sin(2πx) sin(2πy)

u(x, y) =
x√

x2 + y2
Vamp sin(2πx) sin(2πy)

v(x, y) =
y√

x2 + y2
Vamp sin(2πx) sin(2πy)

(35)

Figure 12 illustrates these profiles for ρback = ρamp = 1 and velocity amplitude
Vamp = 1.

Figure 12: Surface plot of the initial smooth density field (left) and vector plot of the
initial smooth velocity field (right).

Differences in accuracy among the various reference states is negligible
due to the smoothness of the underlying profiles. Figure 13 reports L1 con-
vergence results for the remapped zonal density, nodal density, and radial
velocity for the harmonic average reference state only. Results correspond to
an N ×N square mesh with N ∈ {32, 64, 128, 256, 512}. The overlay remap
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package is formally second-order accurate. Our reported convergence rates
converge the order of accuracy of the overlay: 2.04, 1.97, and 2.12 for zonal
density, nodal density, and radial velocity respectively.

Figure 13: Cyclic remap, smooth fields: L1 convergence in remapped zonal density, nodal
density, and radial velocity with linear fit.

Discontinuous Fields

We consider two discontinuous regions of the mesh: a high-density cylin-
drical shell, having ρshell = 1 and unit, outward-pointing velocity ushell = x̂r
and a low-density background having ρbackground = 1/J and zero velocity.
Here xr = x− (0.5, 0.5) defines a radial position and J > 1 defines a jump in

28



density. The shell has inner and outer radii rinner = 0.25 and router = 0.45,
centered on the unit square. Figure 14 gives the initial zonal density and
nodal velocity magnitude.

Figure 14: Initial zonal density (left) and velocity magnitude (right) for the discontinuous
cyclic remap test.

Figure 15 gives the nodal velocity field at the time of maximum distortion
(τ = 1/2) and at the final time (τ = 1) in which the mesh returns to its initial
configuration. Velocity is an important quantity to consider when judging
the accuracy of a remap for a staggered discretization. Velocity itself is
not a conserved quantity; it is remapped instead through the node-centered
momentum density pn = ρnun. The post-remap velocity is recovered by
ũn = p̃n/ρ̃n. If the post-remap subzonal densities do not satisfy (5) precisely,
as they are constrained to do in the reconstruction procedure, then linear
momentum will not be conserved.

Figure 16 gives the pseudo-time history of total momentum for density
jumps of J = 10 and J = 1000. We compare the ability of the various
reference states to respect an initial state having zero total momentum. Dis-
continuous jumps in total momentum correspond to negative reconstructed
subzonal densities. By applying local repair to negative states, we violate
nodal mass conservation, thus creating a small error in momentum. When
the density discontinuity is small, most reference states (with the obvious ex-

29



Figure 15: Cyclic remap, discontinuous fields: velocity magnitude (top row) and subzonal
density (bottom row). Fields at maximum mesh distortion (τ = 1/2, left column) and
after distortion is reversed (τ = 1, right column). Subzonal density reconstruction with
harmonic average reference was applied to make these plots.

ception of nodal density) compute only positive reconstructed values and re-
spect momentum conservation to floating point precision. When the density
discontinuity is increased, more reference states produce negative subzonal
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densities (with the exception of the harmonic average and local minimum).
For J = 1000, the nodal density reference ultimately fails: repeated con-
servation errors eventually produce an ill-conditioned linear system, and the
linear solver’s preconditioner diverges. It should also be pointed out that even
though the zone density reference computes a negative subzonal density state
at maximum displacement, the total conservation error in momentum is only
10−6 when local repair is applied. Nonetheless, the harmonic average and lo-
cal minimum succeed in avoiding negative reconstructed densities, do not
consequently require repair, and maintain conservation to machine accuracy
in all cases. Clearly these two references are preferable for robustness and
positivity, though as noted in the previous examples the harmonic average
reference is more accurate than the local minimum and therefore should be
preferred overall.

Figure 16: Cyclic remap, discontinuous fields: total momentum as a function of pseudo-
time τ for initial density jumps of J = 10 (left) and J = 103 (right).

Figure 17 compares the time history of the ratio of minimum to maximum
subzonal density for the two initial density discontinuities and for each ref-
erence state. This quantity will be constant in pseudo-time for a monotone
remap and reconstruction. We have not imposed a monotonicity constraint
on the reconstructed densities, so the monotonicity violations do not come
as a surprise. (See appendix C for a discussion on monotonicity constraints.)
Note that a similar ratio for zonal and nodal density does remain constant.
This reassures us that the geometric overlay itself is monotone; all violations
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seen in the reconstructed subzonal densities result from the fact the new al-
gorithm does not have monotonicity constraints. If desired, the addition of a
repair procedure [12] or additional inequality constraints (appendix C) could
be used to mitigate monotonicity violations in the reconstructed values.

Figure 17: Cyclic remap, discontinuous fields: monotonicity ratio as a function of pseudo-
time τ for initial density jumps J = 10 (left) and J = 103 (right). (Monotone reconstruc-
tion has constant value 1/J .)

Figure 18 gives L1 convergence results for zonal density, nodal density,
and radial velocity. The existence of discontinuities in density and velocity
imply that the maximum possible convergence rate is one. We report rates
of 0.66, 0.54, and 0.55 for zonal density, nodal density, and radial velocity
respectively. This is consistent with results in [14] for a comparable flux-
based ALE procedure.

6.5. Sedov-Taylor Blast Wave

We now consider a hydrodynamic test involving a Lagrangian update
followed by a overlay remap. We analyze the Sedov-Taylor blast wave [15,
16, 17]; this models the shock expansion of an initially pressureless, constant-
density gas due to a high-energy point source. Exact similarity solutions exist
in planar (1D), cylindrical (2D), and spherical (3D) geometries. We initialize
the blast wave with a unit energy density spike in the center of a zero-pressure
ideal gas having γ = 1.4 and unit initial density. This yields a peak shock
density of 6. Each simulation is advanced until the analytic solution predicts
the shock position to be at a radial distance of 0.4.
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Figure 18: Cyclic remap, discontinuous fields: L1 convergence in remapped zonal density,
nodal density, and radial velocity with linear fit.

We compute numerical solutions on two separate grids: a regular N ×N
square grid and a radially-symmetric unstructured grid of arbitrary polygons.
Solution variables are updated using the staggered, compatible Lagrangian
hydro discretization [2]. Mesh nodes move due to the Lagrangian-frame fluid
velocity. At the end of each hydro step, we perform an ALE-based remap:
all node positions are relaxed using one iteration of the Winslow-Crowley-
based elliptic mesh smoothing algorithm described in [1]. Updated solution
variables are then overlaid onto the relaxed mesh to complete the simulation
cycle.

The test setup is intended to verify the convergence properties of the new
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reconstruction algorithm by applying it at every cycle of a simplified ALE cal-
culation. The ALE strategy itself—relaxing every mesh node mesh at every
cycle and overlaying the solution—is not intended to be more numerically-
accurate. In fact, a purely-Lagrangian solution maintains a steeper shock
profile, achieves a higher peak shock density, and keeps mesh resolution closer
to the shock front in each Sedov example. By comparison, our remap step
regularizes the mesh at the shock front and introduces additional numerical
diffusion during the overlay. Our goal is to establish numerical convergence
to the analytic solution and compare results to [14], in which identical Sedov
tests were performed using a conservative flux-based ALE remap.

2D Blast Wave on a Regular Grid

As an example of the necessity for a subzonal remap treatment that re-
spects both the zonal and nodal remapped masses, we first compare the re-
sults of a flattened reconstruction to the new reconstruction algorithm with
harmonic average reference state. Nodal density before and after a remap
are inconsistent for the flattened reconstruction, and linear momentum is
consequently not conserved. The effect is most apparent in pressure. Fig-
ure 19 compares the computed final pressure profile on a 128 × 128 square
grid using the two reconstruction strategies. In the flattened reconstruction
example, the shock front lags the analytic location, and the post-shock state
is incorrect. The new reconstruction algorithm conserves linear momentum
to round-off and correctly captures the analytic shock front.

Figures 20 and 21 compare the zone density contours and radial profiles
for the flattened and reconstructed calculations respectively. The solution
using reconstruction captures the shock front more accurately and maintains
a steeper peak density. Numerical diffusion at the shock front is to be ex-
pected and is due to our relaxing the mesh and overlaying the solution at
every cycle. Our reasons for doing so are discussed above.

Figure 22 contains the reconstructed subzonal density and radial pro-
file for this problem. The reconstructed density matches the same solution
profile as fig. 21. However, monotonicity errors are apparent throughout
the solution. Distribution of corner density within a zone is not constant;
in some places, it is even misaligned with the interzonal density variation,
with overshoots and undershoots visible across zone faces. The lack of strict
monotonicity manifests as increased scatter in the radial plot. The Lagrange
hydro is not sensitive to this effect since the coarsened zonal and nodal rep-
resentations of density are each monotone. We have overlaid their values in
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Figure 19: Sedov problem on 128 × 128 square mesh. Final pressure profile for flattened
reconstruction of the subzonal densities (left) and a variation-diminishing reconstruction
with harmonic average reference (right).

fig. 22 to better illustrate this.
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Figure 20: Sedov problem on 128× 128 square mesh. Zonal density using flattened recon-
struction.

Figure 23 compares convergence rates for flattened subzonal densities and
reconstructed values using harmonic average reference. L1 error is evaluated
between the computed density, radial velocity, and pressure and their analytic
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Figure 21: Sedov problem on 128 × 128 square mesh. Zonal density using variation-
diminishing reconstruction with harmonic average reference.

values at the same spatial locations. Results were computed on an N × N
square mesh for N ∈ {32, 64, 128, 256, 512}. Conservation errors cause the
flattened reconstruction to diverge under mesh refinement, as expected for
a shock-dominated test problem such as this. The presence of a strong,
symmetric shock front and a relatively-stagnant post-shock state makes the
Sedov blast wave a notoriously difficult problem to demonstrate optimal first-
order convergence in most hydro schemes. We report converge rates of 0.72,
0.78, and 0.83 in density, radial velocity, and pressure respectively. Results
are consistent with those obtained in [14] using the same Lagrangian hydro
solver.

2D Blast Wave on an Unstructured Polygonal Grid

We repeat the above calculation on a grid composed of arbitrary polygons.
We employ the same Voronoi gridding strategy as [14]: the initial mesh
consists of a Voronoi tessellation constructed from regularly-spaced rings of
generating points. For Nr radial rings, we have a radial grid spacing of 1/Nr

between rings. Generating points are distributed on each ring so that the
circumferential spacing matches the radial grid spacing as best as possible.
We consider meshes corresponding to Nr ∈ {16, 32, 64}.

Figures 24 and 25 compare the zone density contours and radial pro-
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Figure 22: Sedov problem on 128×128 square mesh. Reconstructed subzonal density with
harmonic average reference. Corresponding nodal and zonal densities are overlaid.

files for the flattened and reconstructed calculations respectively. Again, the
reconstructed solution attains a steeper peak density and more-accurately
captures the shock front. The effect is more exaggerated on an unstructured
polygonal grid compared to the structured quad results. The reconstructed
subzonal densities are illustrated in fig. 26. As before, the coarsened den-
sity fields are overlaid onto the radial plot to illustrate that zonal and nodal
density remain monotone.

Figure 27 compares convergence rates for the flattened and variation-
diminishing reconstruction. As with the structured mesh calculation, the
flattened solution diverges under mesh refinement due to conservation errors.
We report convergence rates of 0.58, 0.82, and 0.64 for density, radial velocity,
and pressure respectively for the reconstructed solution. Results are again
comparable to those in [14]
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Figure 23: Sedov problem on a structured quad mesh. Plotted are L1 convergence in zone
density, radial velocity, and pressure comparing a flattened reconstruction to a variation-
diminishing reconstruction with harmonic average reference.

7. Future Work: Generalization to Subzonal Temperatures

The mathematical framework outlined in section 2 may be used to re-
construct any subzonal variable, provided it can be expressed as a conserved
quantity per unit volume. In the case of spatially-staggered diffusion radi-
ation transport, it is often advantageous to have a subzonal description of
the material temperature to improve the accuracy of radiation-hydrodynamic
coupling terms (i.e. energy exchange through thermal emission and absorp-
tion) [18, 19]. The goal of subzonal reconstruction in this instance is the
preservation of subzonal temperature variation through an overlay remap
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Figure 24: Sedov problem on radial Voronoi mesh with Nr = 64. Zonal density using
flattened reconstruction.
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Figure 25: Sedov problem on radial Voronoi mesh with Nr = 64. Zonal density using
variation-diminishing reconstruction with harmonic average reference.

while maintaining thermal energy conservation.
We define a thermal energy at each subzone εc = VcCVcTc using the sub-
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Figure 26: Sedov problem on radial Voronoi mesh with Nr = 64. Reconstructed subzonal
density with harmonic average reference. Corresponding nodal and zonal densities are
overlaid.

zonal temperature Tc and specific heat capacity per unit volume CVc . Zonal
and nodal representations of ε are defined by summing around local subzones,
then passed through the overlay remap. The reconstruction algorithm that
solves (23) proceeds as before, with mass m replaced by thermal energy ε. A
reference temperature τc in each subzone defines the cost function (6) in the
constrained optimization.

Subzonal temperature reconstruction is future work due to its strict mono-
tonicity requirements. The staggered compatible hydro algorithm [2] used in
this paper is not sensitive to non-monotonicities in the subzonal density field.
The same cannot be said for subzonal temperatures in staggered radiation-
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Figure 27: Sedov problem on a radial Voronoi mesh. Plotted are L1 convergence in zone
density, radial velocity, and pressure comparing a flattened reconstruction to a variation-
diminishing reconstruction with harmonic average reference.

hydrodynamics; oscillations in the subzonal temperature field can trigger
spurious emission/absorption sources and possibly disrupt states of thermo-
dynamic equilibrium.

Future experiments involving subzonal temperature reconstruction will
include corrective measures to return monotonicity to the reconstructed val-
ues, as in [12], or direct enforcement of inequality constraints during the
constrained optimization procedures, as outlined in appendix C.
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8. Conclusions

We have introduced a new framework for reconstructing subzonal quan-
tities within a staggered discretization following an overlay-based remap.
Examples focus on reconstructing subzonal density to enforce compatibility
between zonal and nodal representations of mass. The driving principle of
this derivation is maintaining conservation of linear momentum in staggered
Lagrangian hydrodynamics. An extension of the framework for reconstruct-
ing subzonal temperatures is discussed, with specific application to FLD
radiation transport on unstructured grids.

Numerical results are very favorable. In pure remapping tests, we demon-
strate the capability of the algorithm to reconstruct smooth and discontin-
uous fields on both structured and unstructured meshes. In hydrodynamics
tests, we demonstrate improved shock capturing due to exact momentum
conservation. Convergence in L1 with respect to mesh resolution is estab-
lished and meets expectations.

It is possible for the reconstruction algorithm as posed to compute neg-
ative subzonal values, which are invalid for mass densities. Test cases with
arbitrarily large density discontinuities were shown to produce such negative
densities for certain choices of the reference density. The harmonic average
outperformed all other references in pure remapping tests due to its robust-
ness to negative reconstructions and its established second-order convergence
for smooth fields.

A local procedure has been presented for repairing negative reconstructed
states if and when they occur. Local repair is not strictly conservative at
nodes; however, the errors are small, carry no definite sign, and do not im-
pact momentum conservation if velocity is constant. We further note that
hydrodynamics tests are less likely to require repair than pure remapping
problems. The steep discontinuities that trigger negative reconstructions in
pure remapping tests are less present in hydrodynamics problems due to
numerical diffusion.

Future work will involve extending the algorithm to reconstructing sub-
zonal temperatures and applying it to a series of FLD radiation-hydrodynamics
problems. Doing so will require incorporating inequality constraints into the
constrained optimization procedure to better control monotonicity during
reconstruction. The compatible hydro algorithm [2] used in this article is
not sensitive to oscillations in the subzonal mass density field; staggered-grid
radiation-hydrodynamics will certainly be sensitive to oscillations in subzonal

42



temperature. Formulation of a monotonicity-preserving optimization process
as a fixed-point quadratic programming problem is presented in appendix C
and will be pursued in future installments of this work.
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A. Analysis of the Singular Matrix

Consider the linear system (23). The matrix Ψ may be written

Ψ = ΨT
cn

(
I−Ψcz(Ψ

T
czΨcz)

−1ΨT
cz

)
Ψcn. (A.1)

Without loss of generality, we have replaced the diagonal matrix of positive
reference values Mc with the identity matrix. We wish to explore the null
space of Ψ through its sub-matrices. Let

P = Ψcz(Ψ
T
czΨcz)

−1ΨT
cz. (A.2)

It is easy to check that the matrix P is a projector (i.e. P2 = P). The form
of (A.2) implies that P is an orthogonal projector onto the range of matrix
Ψcz. In addition,

Q = I−P (A.3)

is a projector orthogonal to P: the range of Q is the null space of P and vice
versa.

Because each corner c corresponds to a unique zone z and a unique node
n, each row of Ψcz and Ψcn has exactly one nonzero element, implying the
two matrices are full-rank. Therefore, the null space of

Ψ = ΨT
cnQΨcn

is equal in size to the null space of Q. It remains to find the null space of Q.
Let x ∈ null(Ψ), then there exists some w ∈ range(Ψcn) such that w =

Ψcnx and Qw = 0. We note

(i) Q and P are orthogonal: w ∈ null(Q) =⇒ w ∈ range(P).

(ii) P projects onto the range of Ψcz.

Using (i) and (ii), there must exist y ∈ range(Ψcz) such that w = Ψczy.
Finally, for x to be in the null space of Ψ, there must exist y such that

Ψczy = Ψcnx. (A.4)

We wish to show that the space spanned by x satisfying (A.4) is of di-
mension 1. We propose this space consists of the set of constant vectors.
Geometrically, this is plausible: the action of Ψcn takes node-centered data
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and projects it to its corners (weighted by corner volume). Similarly for Ψcz.
Each corner has a unique zone and a unique node. If node-centered data x
and zone-centered data y satisfy (A.4), the data must be constant.

Proof: Suppose not. Then there exists some non-constant node-centered data
x and zone- centered data y satisfying (A.4). The i-th elements of (Ψcnx)
and (Ψczy) correspond to corner ci:

(Ψcnx)i = Vcixnci
and (Ψczx)i = Vciyzci .

For (A.4) to hold, xnc = yzc at every corner c. In other words, the values yz
for zones around node n must be equal to xn, and the values xn for nodes
around zone z must be equal to yz. For this to hold, both xn and yz must
take on the same value at every node and zone respectively. Therefore, only
constant data may satisfy x ∈ null(Ψ) and (A.4).

B. Global Repair of Negative Reconstructed Densities

We generalize the optimization problem in section 2 to include additional
constraints at subzones. More precisely, we augment (7) with equality con-
straints at a subset of subzones:

Given: ρz, ρn, Vc

Minimize:
1

2

∑
c

( ρc − µc
µc

)2

Subject to:



∑
c(z)

Vc(ρc − ρz), ∀z∑
c(n)

Vc(ρc − ρn), ∀n

ρc = εc ∀c ∈ C

(B.1)

Where εc is the constrained value of ρc, and C may be any subset of subzones.
The system remains under-constrained provided Nz +Nn + |C| < Nc.

We interpret the solution to (B.1) in terms of a repair procedure to correct
unsatisfactory values in the solution to (7) (i.e. negatives, non-monotonicities).

Let ρ
(0)
c denote the solution to the original reconstruction problem under some
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arbitrary reference state. We solve (B.1) to obtain the correction ρ
(1)
c , where

the reference state is given by the previous solution ρ
(0)
c . (The advantage of

choosing the previous solution as the reference state ensures that the refer-
ence automatically satisfies conservation.)

The set C consists of a collection of subzones sharing some undesirable
property we wish to repair. For positivity constraints, one may consider the
subset

C = C(0)− = {c : ρ(0)c ≤ 0}. (B.2)

For a stricter constraint such as monotonicity, one may consider

C = C(0)mono =
{
c : ρ(0)c /∈

[
min(ρzc , ρnc) , max(ρzc , ρnc)

]}
. (B.3)

For the purposes of this paper, we limit our focus to (B.2) and consider
monotonicity constraints to be a source of future work.

Finally, we have freedom to choose the set of constrained subzonal values
{εc}C. For positivity constraints, we select a local positive value for each
subzone. One option is to use

εc = αmin(ρzc , ρnc), (B.4)

where 0 < α ≤ 1. Note that as α approaches 1, the positivity constraint
becomes stricter.

The method of Lagrange multipliers solves (B.1). The Lagrangian is

L(ρc, λz, λn, λc) =
1

2

∑
c

(
ρc − µc
µc

)2

+
∑
z

λz
∑
c(z)

Vc(ρc − ρz)

+
∑
n

λn
∑
c(n)

Vc(ρc − ρn)

+
∑
c

λcχcVc(ρc − εc)

, (B.5)

where λc denotes the Lagrange multipliers for the subzonal constraints and
χc is an indicator function that is 1 for c ∈ C and 0 otherwise. Formulas (11)
and (15) for the nodal and zonal Lagrange multipliers hold, with wc, ∆mz,
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and ∆mn replaced by

wc = (µcVc)
2(1− χc)

∆mz = mz −
∑
c(z)

(
(1− χc)µc + χcεc

)
Vc

∆mn = mn −
∑
c(n)

(
(1− χc)µc + χcεc

)
Vc

. (B.6)

The linear system (23) is modified

Ψ = ΨT
cnMc(Ic −Xc)

(
Ic −McΨczW

−1
z ΨT

czMc

)
(Ic −Xc)McΨcn, (B.7)

where Xc = diag(χc). The updated subzonal densities are

ρc = (1− χc)µc + χcεc − Vcµ2
c(1− χc) (λzc + λnc) . (B.8)

Remark: For problems with steep discontinuities, it is possible that a single
global repair step is insufficient to remove all negative subzonal states. When
this occurs, an iterative repair may be performed. Given state ρ

(i)
c , we solve

(B.1) for new subzonal densities ρc = ρ
(i+1)
c using reference µc = ρ

(i)
c and

subzone subset
C = C(i)− = {c : ρ(j)c ≤ 0, ∀j ≤ i}. (B.9)

We define C(i)− such that, once a subzone is constrained, it is constrained for
all iterations to ensure convergence of the iterative repair.

C. Optimization with Equality and Inequality Constraints: Quadratic
Programming Formulation

The optimization problem (7) may be expressed as a quadratic program-
ming (QP) problem:

minimize: f(x) =
1

2
xTQx + cTx

subject to: Ax = b and Cx ≥ d

(C.1)
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where Q is a symmetric, positive-definite matrix, c is a constant vector,
and A and C are full-rank matrices comprising the equality and inequality
constraints respectively on the target variable x.

We follow the Karush-Kuhn-Tucker formalism [7, 8] for optimization with
mixed constraints. We define Lagrange multipliers λ and γ corresponding
to the equality and inequality constraints respectively. An extra variable s
enforces the inequality constraints through complementary slackness.

We solve for fixed points of the Lagrangian

L(x;λ, γ, s) =
1

2
xTQx + cTx + λT (Ax− b) + γT (Cx− s− d). (C.2)

satisfying complementarity condition

γisi = 0, γi ≥ 0, si ≥ 0 (C.3)

for each inequality constraint i. Solving for the fixed points of (C.2) corre-
sponds to solving the following coupled systems:

c +Qx− ATλ− CTγ = 0 (C.4a)

Ax− b = 0 (C.4b)

Cx− s− d = 0 (C.4c)

SΓ1e = 0 (C.4d)

s, γ ≥ 0 (C.4e)

where S = diag(s), Γ = diag(γ), and 1e denotes a vector of ones.
For the problem of subzonal reconstruction, we have convenient forms for

the coefficients of (C.4). The target variable is the relative variation with
respect to reference µ per subzone:

xc =
ρc − µc
µc

, c = 1, ..., Nc (C.5)

The objective function simplifies to

Q = Ic and c = 0.

Zonal (4) and nodal (5) equality constraints are written compactly

λ =

[
λz

λn

]
, A =

[
ΨT
czMc

ΨT
cnMc

]
, b =

[
mz −ΨT

czµ

mn −ΨT
cnµ

]
, (C.6)
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where λ is length Nz +Nn.
The inequality constraints may be used to enforce bounds on the re-

constructed variables. Enforcing one-sided bounds for {ρc}c of the form
ρc ≥ ρminc corresponds to Nc inequality constraints of the form

C = Ic, d = M−1
c (ρmin − µ). (C.7)

Likewise, two-sided bounds of the form ρminc ≤ ρc ≤ ρmaxc corresponds to 2Nc

inequality constraints of the form

γ =

[
γmin

γmax

]
, C =

[
Ic

−Ic

]
, d =

[
M−1

c (ρmin − µ)

−M−1
c (ρmax − µ)

]
. (C.8)

Enforcing (C.7) is useful for eliminating negative subzonal reconstruction
values. Enforcing the stricter constraints in (C.8) may be used to preserve
monotonicity locally.

An iterative interior-point method may be used to solve (C.1). Given

initial state v(i) for v ∈ {x, λ, γ, s} satisfying γ
(i)
i > 0 and s

(i)
i > 0, we solve

for step lengths ∆v such that v + ∆v solves (C.4a)– (C.4c) and satisfies
(C.4e): 

Q −AT −CT 0

A 0 0 0

C 0 0 −I

0 0 S Γ




∆x

∆λ

∆γ

∆s

 = −


rvar

req

rineq

rslack

 . (C.9)

Using current data v(i), the residuals are computed

rvar = Qx(i) + c− ATλ(i) − CTγ(i) (C.10a)

req = Ax(i) − b (C.10b)

rineq = Cx(i) − s(i) − d (C.10c)

rslack = S(i)Γ(i)
1e (C.10d)

corresponding to fixed points of the Lagrangian in the solution variable,
equality multipliers, inequality multipliers, and slackness condition respec-
tively. Step lengths are limited by positive factor α(i) such that complemen-
tarity holds:

0 < α(i) ≤ max
α

{
γ(i) + α∆γ(i) > 0 , s(i) + α∆s(i) > 0

}
(C.11)
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The state update is then v(i+1) = v(i) + α(i)∆v(i). Iteration continues until
the residual vector falls below a given tolerance.

Remark: The system (C.9) must be solved each iteration with new coeffi-
cients and residuals. This is the most computationally intensive part of the
fixed-point method. Efficient versions, such as [4, 13], incorporate multiple
sub-steps by applying higher-order corrections to the minimization path. The
coefficient matrix remains fixed during the entire step; it is typically factored
and applied to a different residual for each sub-step. Significant savings in
numbers of iterations to convergence have been demonstrated.

Remark: System (C.9) may be factored to produce a single linear system of
size Nz for the zonal equality Lagrange multiplier step lengths. The factored
system consists of an Nz × Nz sparse matrix identical in structure to (23)
described in section 2. The step lengths of the remaining state variables are
obtained through simple linear transformations.
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