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INTRODUCTION

In a stochastic medium, the material properties at a
given spatial location are known only statistically [1]. The
most common approach to solving particle transport prob-
lems involving binary stochastic media is to use the atomic
mix (AM) approximation [1] in which the transport problem
is solved using ensemble-averaged (homogenized) material
properties. A common deterministic model developed for
solving particle transport problems in binary stochastic me-
dia is the Levermore-Pomraning (LP) model [1, 2]. Zimmer-
man and Adams [3] proposed a Monte Carlo algorithm that
solves the LP equations, and this algorithm has been demon-
strated using one-dimensional planar geometry benchmark
studies to generally be more accurate than the atomic mix
approximation [3, 4].

Brantley and Martos [5] generated using the Mercury
Monte Carlo particle transport code [6] three-dimensional
binary stochastic medium benchmark results for a particle
transport problem with varying spherical inclusion mean
chord lengths and three different radius distributions. That
work was an initial effort toward generating 3D benchmark
results relevant to particle transport through a stochastic
medium composed of inclusions of varying size and shape
such as may be representative of turbulent media, for exam-
ple.

In this work, we extend previous one-dimensional
studies [3, 4] by investigating the accuracy of a multi-
dimensional Monte Carlo Levermore-Pomraning algorithm
for stochastic medium problems in which the shape of the
inclusions is not explicitly known and the size of the inclu-
sions is characterized only by a mean chord length. To ac-
complish this research, we implemented in Mercury a multi-
dimensional extension of the one-dimensional Levermore-
Pomraning binary stochastic medium algorithm [3, 4]. Dif-
ferent than related Monte Carlo chord length sampling
work [7, 8] aimed at high temperature gas-cooled reactor ap-
plications in which the shape of the inclusions are known to
be spherical TRISO fuel particles, we do not explicitly treat
the inclusions as spheres in our Monte Carlo LP algorithm.
In addition to being significantly simpler to implement, this
approach is more appropriate for modeling transport through
stochastic media in which the shape of the inclusions is not
explicitly known. We investigate the accuracy of this multi-
dimensional Monte Carlo LP algorithm using the spherical
inclusion benchmark results of Ref. [5].

BINARY STOCHASTIC MEDIUM PROBLEM
SUITE

We consider the following time-independent monoen-
ergetic particle transport problem with isotropic scattering
in a three-dimensional cubic spatial domain D defined by

0 ≤ x, y, z ≤ L with outer boundary ∂D:
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Here we have used standard neutronics notation [9]: ψ is
the angular flux of particles [#/cm2-s-steradian] at a position
x = (x, y, z) traveling in direction Ω; σt

(
x
)

is the macro-
scopic total cross section [cm−1] at position x; and σs

(
x
)

is
the macroscopic scattering cross section [cm−1] at position
x. An isotropic angular flux with unity incoming current is
incident on the left edge of the domain at z = 0, where n is
the unit outer normal to ∂D at a position x on the boundary.
A vacuum boundary condition is imposed on the right edge
of the domain at z = L. The boundaries on all other trans-
verse edges of the cubic domain are reflecting. The transport
problem is depicted schematically in Fig. 1. To generate
benchmark results, we assume that the binary stochastic
medium is composed of optically thick spherical inclusions
with uniform material properties distributed in an optically
thin background matrix material also with uniform mate-
rial properties. The benchmark ensemble-averaged fiducial
quantities of interest are the reflection and transmission rates
as well as the absorption rates in the sphere and background
matrix materials.

Reflection Transmission

L = 10

ψ

Fig. 1: Transport problem configuration.

We investigate a suite of binary stochastic medium
transport problems characterized by the material parameters
given in Table I [5]. Here material zero is the optically thin
background matrix material, material one is the optically



thick inclusion material, and Λi is the mean chord length
for material i. Both materials are assumed to have a scat-
tering ratio of c = σs/σt = 0.9. These material parameters
are variations of parameters originally used by Adams et
al. [10] in the generation of one-dimensional benchmark
transport solutions and provide a connection with related
one-dimensional work [4].

The different case numbers in our benchmark suite
represent variations of the spherical inclusion mean chord
length. The mean chord length for any non-reentrant body
is given by Λ = 4V/A, where V is the volume of the body
and A is the surface area of the body. For a sphere of radius
r, Λsphere = 4r/3. Different distributions of sphere radii
characterized by a mean radius R will have different mean
chord length values. The benchmark results against which
we compare in this work were generated using an exponen-
tial sphere radius distribution [5]. The radius probability
distribution function p (r) for an exponential distribution
along with the relationship between the sphere mean chord
length Λ1 and the sphere mean radius R are given by [11]

p (r) =
1
R
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−
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)
, 0 ≤ r ≤

L
6
, R =

1
4

Λ1 . (2)

The benchmark results were generated by sampling 100 in-
dependent material realizations for each sphere mean chord
length case and each sphere volume fraction value. For
the exponential radius distribution, we heuristically lim-
ited the maximum sampled sphere radius to be 1/6 of the
domain edge length L to avoid problems placing multiple
large spheres in the problem domain. For each sphere mean
chord length case (1, 2, and 3), six different sphere volume
fractions f1 (0.05, 0.10, 0.15, 0.20, 0.25, and 0.30) were
considered, where the sphere volume fraction f1 is defined
as the total volume of all spherical inclusions divided by
the volume of the problem domain. If the sphere volume
fraction f1 and the sphere mean chord length Λ1 are known,
the mean chord length in the background matrix material
can be computed for an infinite medium (ignoring boundary
effects) as [1, 11]

Λ0 = (1/ f1 − 1) Λ1 . (3)

Each Monte Carlo simulation for an independent material
realization used 2 × 106 particle histories, and the resulting
standard deviation of the ensemble-averaged mean for each
tally considered was computed to be less than 2% for all
cases. Consistent with previous one-dimensional work [4,
10], we assume a domain size of L = 10.

MONTE CARLO LEVERMORE-POMRANING AL-
GORITHM

A detailed description of the Monte Carlo Levermore-
Pomraning algorithm for one-dimensional planar geometries
is given in Ref. [4]. The extension to multidimensional
geometries is relatively straightforward.

Much of the standard Monte Carlo particle transport
algorithm using the atomic mix approximation is unaltered
by the introduction of algorithms to model transport through
a stochastic medium. A Monte Carlo particle must maintain
an additional identifier describing the material in which the

particle is currently located. This material identifier must be
appropriately sampled (in proportion to the material volume
fraction) when a particle is created from an external source
or enters the problem from an external boundary. A particle
history begins with sampling the source particle characteris-
tics appropriately, including sampling the material identifier
for the particle. In addition to standard events sampled dur-
ing a Monte Carlo transport algorithm, a new event, the
distance to material interface, di, is introduced for Monte
Carlo transport algorithms in stochastic media. We assume
that the material chord lengths are distributed according to
spatially homogeneous Markovian statistics [1], in which
case the chord length values for material i, λi, follow an
exponential distribution given by

fi (λi) =
1
Λi

exp
(
−
λi

Λi

)
, (4)

where Λi is the mean chord length for material i. (Olson et
al. [11] demonstrate that the chord lengths in the background
matrix are approximately exponential for the case of non-
overlapping spherical inclusions when the sphere volume
fraction is less than 10%.) A distance to material interface
is sampled by sampling a material chord length from the
exponential distribution given by Eq. (4), i.e. di = −Λi ln(ξ),
where ξ is a random number. This sampling of a distance
to material interface essentially models the material cou-
pling term in the LP model. Next, distances to the other
required standard Monte Carlo events are either sampled or
computed. The distance to collision, dc, is sampled using
the macroscopic total cross section corresponding to the
material in which the particle exists. The distance to cell
boundary, db, is computed in the standard fashion. If the
distance to material interface event is selected, the Monte
Carlo particle is moved to the material interface location
and the material identifier changed to the opposite mate-
rial. Following a collision, the particle is maintained in the
same material. The Monte Carlo LP algorithm resamples
the distance to material interface on each particle track.

NUMERICAL RESULTS

As an initial test of our Monte Carlo LP implementa-
tion, we simulated the binary stochastic medium particle
transport benchmark suite of Adams et al. [10]. This one-
dimensional planar geometry benchmark suite consists of
three material mean chord length values and three material
scattering ratio values (nine total combinations). For the
nine cases simulated with a domain width of L = 10 cm
and 109 Monte Carlo particles, the ensemble-averaged re-
flection and transmission values from the present Monte
Carlo LP simulations agree with previous Monte Carlo LP
results [4] to four or five decimal places (typically to within
two standard deviations, where the maximum relative stan-
dard deviation is 0.09%). These Monte Carlo LP results
also agree with the deterministic LP results in Ref. [10]. As
an additional check of our implementation, we verified for
one of the cases in our present work that the Monte Carlo
LP results correctly limit to the atomic mix results in the
limit of small sphere mean chord length.

We simulated the binary stochastic medium benchmark
problem with Monte Carlo using both the AM approxima-



TABLE I: Material parameters for stochastic medium transport problems

Case σ0
t Λ∗0 σ0

t Λ0 σ1
t Λ1 σ1

t Λ1 c
1 99/40 0.25 11/40 2.5
2 10/99 99/20 0.5 100/11 11/20 5.0 0.9
3 99/10 1.0 11/10 10.0

∗ For 10% sphere volume fraction; see Eq. (3).
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Fig. 2: Reflection rate
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Fig. 3: Transmission rate

tion and the LP approximation. We compare the reflection
and transmission rates computed using these algorithms
with the benchmark results [5]. The AM approximation
produces identical results for Cases 1, 2, and 3, because the
homogenized cross sections depend only on the material
cross sections and volume fractions and are independent of
the spherical inclusion mean chord length. Within a single
material property case, the different material volume frac-
tions produce different results when using the AM approxi-

mation. The benchmark and LP reflection and transmission
rates are shown in Figs. 2 and 3, respectively. Our simu-
lations used 108 Monte Carlo particles, producing typical
relative standard deviations of a fraction of 1%. However,
the AM transmission rate relative standard deviations were
approximately 2%, 5%, and 19% for the three largest sphere
volume fractions.

The AM approximation produces reflection rate val-
ues of approximately 0.48 for all sphere volume fractions,



overpredicting the reflection rate by approximately 20-41%
compared to the benchmark result. The AM approximation
severely underpredicts the transmission rate by approxi-
mately one order of magnitude for smaller sphere volume
fractions and increasing to three orders of magnitude low for
larger sphere volume fractions. Pomraning [1] has argued
that the atomic mix approximation always underestimates
the transmission through a source-free random mixture, and
our numerical results support that claim.

Comparing Figs. 2(a) and 2(b), the LP approximation
underpredicts the reflection rate compared to the benchmark
result by approximately 7-20%, with Case 1 (smallest in-
clusion mean chord length) the most accurate and Case 3
(largest inclusion mean chord length) the least accurate. The
LP approximation qualitatively captures the trends evident
in the reflection rate as a function of the sphere volume frac-
tion. Comparing Figs. 3(a) and 3(b), the LP approximation
generally overpredicts the transmission rate compared to
the benchmark result except for the highest sphere volume
fractions. The transmission rate discrepancies observed for
Case 1 range from -33% to +33%, for Case 2 from -25% to
+11%, and for Case 3 from -15% to +2%. For the stochas-
tic medium problems examined, the LP approximation is
significantly more accurate than the AM approximation. In
addition, the LP approximation qualitatively captures trends
in the solution that are not captured by the AM approxi-
mation. Although not shown due to space limitations, we
find that the LP approximation overpredicts the spherical
inclusion absorption rate by 4-20% and underpredicts the
matrix absorption rate by 1-27%. In general, the magnitude
of these discrepancies is similar to those observed in 1D
studies with 10 cm spatial domains [4].

CONCLUSIONS

We have examined the accuracy of a multi-dimensional
Monte Carlo Levermore-Pomraning algorithm for stochastic
medium transport problems in which the shape of inclusions
may not be known and the size of inclusions is characterized
by a mean chord length value. As an initial investigation of
the accuracy of this method, we modeled a suite of bench-
mark stochastic medium transport problems in which the in-
clusion variation was restricted to spherical inclusions with
radii described by an exponential distribution. We found
that the LP approximation produced consistently more accu-
rate results than the AM approximation. The discrepancies
between the LP approximation and the benchmark results
were up to 20% for the reflection rate and up to 33% for the
transmission rate, however. Given these discrepancies, the
development of stochastic medium algorithms that are more
accurate than the LP approximation would appear to be a
fruitful area of future research.
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