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Fig. 1. Row of HMX grain unit cell geometry used in shock initiation simulations. Shock loading is 
realized with the aluminum flyer impacting the aluminum target plate. Steady-state detonation simulations 
also employ a unit cell representation but the pressure gauges are removed and the plates are replaced by a 
high-pressure boundary condition to achieve transition to detonation. Figure not shown to scale.  
 
Results & Discussion 
 
Shock Initiation Response of HMX Powder 
 

Figure 2 shows the in situ pressure gauge 
measurements2 at 0, 3, and 6 mm positions for a 
~1.24 g/cc (ϕHMX~0.65) HMX powder impacted by 
an aluminum flyer plate at 477 m/s corresponding 
to a 1.3 GPa input pressure. Modeling predictions 
are shown for the baseline case of ϕHMX=0.65, 
rHMX=2.5µm (spherical grains), and n=0. While the 
time-of-arrival (TOA) predictions and peak 
pressures slightly deviate from data for the 3 mm 
gauge, these results are promising. Early predicted 
TOA at the 3 mm gauge may result from relatively 
fast chemical kinetics or an unreacted EOS that is 
relatively stiff.  

 
 

 
Fig. 2. In situ pressure gauge measurements2 at 0, 
3, and 6 mm positions (three black curves) for 
~1.24 g/cc HMX powder impacted at 1.3 GPa. 
Modeling predictions are shown for the baseline 
case of ϕHMX=0.65 and n=0 (three cyan curves).  
 

Figure 3 shows the reaction evolution in our 
mesoscale simulations after transition to 
detonation for the baseline case (ϕHMX=0.65, n=0, 
rHMX=2.5µm, spherical grains). In contrast to more 
conventional shock initiation in high density 
heterogeneous explosives, where burning initiates 
at inner hot spots from pore collapse and 
progresses outwards, our simulations suggest a 
different mode. For our study on low density 
powder explosives, the product gases are observed 
to jet into the outer pore regions, engulfing HMX 
grains in gas, and burning progresses from the 
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outside in. From our calculations, we estimate the 
distance between the reaction front and the point 
of nearly complete reaction to be ~10 unit cell 
lengths.  
 
 

 
Fig. 3. Reaction evolution in HMX grain unit cell 
calculations in baseline case. Pressure (Mbar) is 
shown at the top and mass fraction reacted is 
shown at the bottom. 
 

We conduct a perturbation study to probe the 
effects of slight model parameter variations from 
baseline values for a constant input pressure of 1.3 
GPa. Figure 4 shows the in situ pressure gauge 
predictions for increases in kinetics and porosity, 
as well as switching to a Cheetah-based product 
EOS. Shock sensitivity increases significantly with 
increased kinetic model parameter (n=0.1 from 
baseline 0.0) and porosity  (ϕHMX=0.60 from 
baseline 0.65) but using the Cheetah EOS had less 
impact. For increases in porosity and kinetics, 
TOA predictions at the 3 mm and 6 mm gauges are 
much earlier than the experiments. Also, the peak 
pressure predictions for the 3 mm gauge is 
consistent with a detonation, implying a run 
distance of less than 3 mm.  
 

 
Fig. 4. Model predictions of in situ pressure gauge 
response for increases in kinetics (n=0.1) (blue 
curves) and porosity (ϕHMX=0.60) (green curves), 
as well as switching to a Cheetah-based product 
EOS (cyan curves). Experimental results2 are 
shown for comparison (black curves). 
 

We conduct an additional study probing 
changes to the HMX grain shape for a constant 
volume fraction (ϕHMX=0.65) and input pressure 
(1.3 GPa). Figure 5 shows the in situ pressure 
gauge predictions for ellipsoidal HMX grains with 
major axis oriented parallel (prolate spheroid, or 
“cigars”) and perpendicular (oblate spheroid, or 
“discs”) to the simulation axis-of-symmetry. The 
simulation axis-of-symmetry, itself, is parallel to 
the shock direction. The ratio of the major axis to 
the minor axis is 3:1 and the minor axis size is 
equal to the baseline spherical grain radius 
(rHMX=2.5µm). Shock sensitivity increased 
significantly with the cigar grains but decreased 
with the disc grains. For the cigar grains, TOA 
prediction at the 3 mm gauge is much earlier than 
the experiments. Also, peak pressure prediction for 
the 3 mm gauge is consistent with a detonation, 
implying a run distance of less than 3 mm. In 
contrast, the reaction in the disc grains is not 
observed to transition to a detonation by 3 mm.  

Increases in shock sensitivity with the cigar 
grains is unexpected since recent calculations27 for 
elliptical pores suggest that peak hotspot 
temperatures are higher when the shock direction 
is perpendicular to the ellipse major axis rather 
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than parallel to it. However, our study employs 2D 
axisymmetric calculations with repeating elliptical 
grains (1000s of grains), whereas the other 
calculations are for single isolated pores under 2D 
plane strain conditions. These different approaches 
must be reconciled with the experiments being 
simulated.  

 

 
 
Fig. 5. Model predictions of in situ pressure gauge 
response for ellipsoidal HMX grains with major 
axis oriented parallel to the shock direction 
(“cigars”, cyan curves) and perpendicular to the 
shock direction (“discs”, blue curves). 
Experimental results2 are shown for comparison 
(black curves). 
 
Steady-State Detonation of HMX Powder 
 

It is important for these mesoscale modeling 
approaches to not only capture the shock initiation 
response but also the subsequent steady-state 
detonation phase of low density materials. 
Detonation theory contends that the product EOS, 
initial density, and chemical energy released define 
the detonation velocity (Vdet) at the macroscale in 
explosives. We perform simulations studying the 
influence of solid HMX fraction (ϕHMX) on the Vdet 
for two different product EOS. Experimental Vdet 
measurements of HMX powder over a range of 
densities20 are used to benchmark model 
predictions. 

Figure 6 shows Vdet predictions in HMX 
powder as a function of ϕHMX for the baseline 

experimental-based and Cheetah-based product 
EOS. For all cases, Vdet predictions increase with 
increasing ϕHMX, similar to experimental data, but 
there is a notable change in slope at ϕHMX > 0.45-
0.55.  For ϕHMX = 0.5-0.65, Vdet predictions for the 
baseline and the Cheetah-based product EOS are 
consistently lower than data. This suggests that the 
detonation may not have reached steady-state 
conditions in these higher ϕHMX simulations. The 
relatively higher Vdet predictions for the Cheetah-
based product EOS are expected since its 
associated CJ detonation velocity at crystal density 
is slightly higher than that for the experimentally-
based product EOS.  

In contrast, Vdet predictions are consistent with 
experimental data for ϕHMX = 0.35-0.4. Based on 
earlier results in this study, we expect that the 
shock initiation occurs more rapidly at lower 
densities, culminating to a steady-state detonation 
in the simulation. Overall, these results suggest 
that simulation domains must be sufficiently long 
to ensure steady-state detonation conditions are 
achieved over the range of densities studied. 

 
 
Fig. 6. Vdet predictions in HMX powder as a 
function of ϕHMX for baseline experimentally-based 
product EOS (red boxes) and Cheetah-based 
product EOS (blue diamonds). Experimental 
measurements20 of steady-state detonation on 
HMX powder is shown for comparison (black 
boxes and fitted line). 
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Conclusions 

 
Preliminary experimental benchmarking of 

our mesoscale simulations is promising. 
Simulations capture detailed in situ pressure gauge 
response during shock initiation and Vdet(ϕHMX) 
trends during detonation for low density material 
using simplified material models and a unit cell 
(row) representation of HMX grains. Perturbation 
studies demonstrate the strong influence of 
porosity, kinetics, and cigar-shaped grains on 
shock sensitivity.  

Mesoscale simulations demonstrate better 
agreement with steady-state detonation data at 
lower densities (ϕHMX = 0.35-0.4), where materials 
initiate more rapidly, than at higher densities 
(ϕHMX ≥ 0.45). These results suggest that 
simulation domains must be sufficiently long to 
ensure steady-state detonation conditions are 
achieved over the range of densities studied.  

Further experimental validation of mesoscale 
modeling approaches is necessary before we can 
confidently use predictions. In the near-term, 
modeling must be validated to shock initiation 
experiments over a wider range of HMX powder 
densities and input shock pressures than those 
considered in this study. These studies should 
investigate the effect of using a variable HMX 
grain size distribution, different unreacted EOS, 
and a temperature-dependent heat capacity. In the 
long-term, we need temporally- and spatially-
resolved temperature, deformation, and pressure 
data for single and multiple pores subjected to a 
range of shock pressures to compare to closely-
coupled simulations. Considering the 
heterogeneity of energetic materials, the relevant 
length-scales of hotspots and the time-scales of 
pore collapse, this is most certainly a daunting 
experimental challenge. 

There are several near-term benefits to these 
studies. The ability to predict in situ pressure 
gauge response is valuable because it can be 
directly used to parameterize existing reactive flow 
models, such as Ignition & Growth (I&G)28; in 
turn, the I&G model can be used for system-scale 
hazard assessments. Also, our emerging 
understanding of microstructure-shock response, 
including porosity and grain shape effects, can be 
used to guide the design of new energetic material 

microstructures and novel additive manufacturing 
techniques.  

Our longer-term goal is to use mesoscale 
modeling as the basis for developing advanced 
continuum-scale models that incorporate basic 
structure-property information and hot spot 
mechanisms. Since future model parameters will 
be more closely coupled to experimental 
characterization data, calibration is more 
straightforward and less non-unique. Such models 
will enable tailoring of explosive type and 
microstructure for specific applications in order to 
optimize both performance and safety. Future 
models will also enable sensitivity studies to 
identify the most important parameters and 
propagate associated uncertainties, based on small-
scale experiments, to system-scale for 
quantification of margins and uncertainties. 
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