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The latest BOUT++ studies show an emerging understanding of dynamics of ELM crashes and

the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A

series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM

energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal

collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but

increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes

narrower and the peak growth shifts to lower n. Nonlinear BOUT++ simulations show a two-stage

process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii)

inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields

an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal

plasma density plays a major role in determining the ELM energy loss through its effect on the edge

bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1)

linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low

collisionality with decreasing density; and (2) nonlinearly from turbulence spreading dynamics at

high collisionality into avalanche-like dynamics at low collisionality.
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The phenomena of nonlocal transport, such as avalanches or turbulence spreading, are well-

known in diverse systems. Examples include, but are not limited to: piles of granular matter,

discrete energy dissipating events in earthquakes and solar flares, and turbulent overshoot and pen-

etration in fluid turbulence. Nonlocal dynamics of turbulence, transport and zonal flows are often

observed in plasma turbulence simulations and experiments, such as Edge Localized Modes (ELMs)

in tokamaks. ELMs are a common characteristic feature of the tokamak H-mode plasma regime,

where the high frequency ELM instability repeats periodically throughout the high confinement

mode (H-mode) phase of the discharge.1 The instability causes quasi-periodic relaxations of the

edge pedestal, resulting in a series of hot plasma eruptions on a fast MHD timescale and leading

to large energy fluxes to the plasma facing components (PFCs), which will suffer from excessive

ablation, fast erosion or melting. The concern about the survival of PFCs in ITER has sparked

intense interest in ELM dynamics and in the parameter scaling of ELM energy loss. Numerous

experiments in divertor tokamaks have shown a decrease in the relative Type I ELM energy loss

with increasing pedestal density (collisionality) over a decade ago.2 There are attempts to provide

an explanation for the dependence of ELM energy loss on collisionality.3 However, there is as yet no

common accepted explanation of the observed scaling neither from analytical theory nor numerical

simulations.4
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Figure 1: (Color online) (a) The radial equilibrium pressure profiles (dashed curve) and current

(solid curve) for a density scan starting from an equilibrium (cbm18 dens6). (b) The radial profiles

of corresponding magnetic shear s for the density scan.

Here we report on the latest BOUT++ linear and nonlinear simulations to address the important

open question which physical mechanisms and parameters determine the ELM size, i.e., the ELM

induced energy losses. The results illustrate the consistent collisionality scaling of ELM energy

losses with experiments. At present, peeling-ballooning (P-B) theory is the leading candidate for
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predicting the onset of a type-I ELM in multiple fusion devices. The theory indicates that a type-I

ELM instability is triggered when an edge ideal MHD mode is destabilized as the pedestal pressure

gradient exceeds its linear marginal stability limit.5 Nonlinear BOUT++ simulations of the P-B

modes show a two-stage and multi-mode process of ELM crash evolution consisting of an initial

burst of pressure blob and void creation; and then inward void propagation. For initial burst, we

derived a new nonlinear criterion for the occurrence of fast relaxation (crash) events at the edge

of H-mode plasmas.6 We show that for an ELM burst to occur, the coherence time of the relative

phase between potential and pressure perturbations must be long enough to allow growth to large

amplitude. This phase coherence time is determined by both linear and nonlinear dynamics. After

initial burst, the inward void propagation stirs the top of pedestal plasma and yields an increasing

ELM size with decreasing collisionality after a series of micro-bursts, giving even larger additional

relative pedestal energy loss, which is in reasonable agreement with multi-tokamak experimental

data.

A number of various sophisticated nonlinear two-fluid and Gyro-Landau-Fluid physics models

have been developed in BOUT++ framework to simulate ELMs in the shaped plasma geometry with

x-point.7–10 Here the simulations are carried out using a simple three-field two-fluid model described

in [11]. The simulation model consists of a minimum set of nonlinear equations for perturbations

of the magnetic flux A‖, electric potential φ, and pressure P , which can be extracted from a

complete set of BOUT two-fluids equations12 with an additional effect of hyper-resistivity. The

non-ideal physics effects include diamagnetic drift, ExB drift, resistivity, and anomalous electron

viscosity. Beyond the ELM energy losses, more sophisticated plasma models are obviously required

to understand experimental observations and gain insight into possible new dynamics of particle

losses and the ELM energy loss for different species.7,13

To study the physics of nonlinear P-B mode dynamics, we choose circular cross-section toroidal

equilibrium (cbm18 dens6) near the marginal P-B instability threshold, which has been simulated

for H-mode plasmas with steep pressure gradient at the edge.11 Major parameters are a minor

radius a = 1.2m, major radius R0 = 3.4m, toroidal field on axis B0 = 2T , the pedestal pressure 2/3

of the axis pressure, and a pedestal pressure half width 7% of the poloidal flux. In previous study,11

edge density n0 = 1×1019m−3 is treated as a constant in space-time across simulation domain. Here

in order to study the impact of bootstrap current on the P-B modes via magnetic equilibrium, we

carefully partition the pressure between density and temperature as their gradients independently
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go into the bootstrap current drive. For given density profile, we back out the temperature from

the pressure profile, assuming that electron and ion temperature are equal Te = Ti. As it turns

out, this is a crucial step in getting the consistent collisionality scaling of ELM energy losses with

the world multi-tokamak database, which is missing in previous work.3,7,8

We examine seven cases with increasing central density n0 = 1, 3, 5, 7, 9, 12, 20×1019m−3, ne0(ψ) =

n0(P0(ψ)/P0(0))0.3, and Te0(ψ) = P0/2ne0(ψ). For each density n0, the magnetic equilibrium is

reproduced with the TEQ equilibrium module in CORSICA code,14 while keeping the plasma cross-

sectional shape, total stored energy, total plasma current, pressure, the radial location of the top of

the pedestal density and temperature, the ratio of the density gradient scale length to the tempera-

ture scale length profiles fixed. The neoclassical collisionality ν∗ at peak gradient position increases

by a factor of 3262 from 0.0019 to 6.197. The edge current is calculated from the Sauter boot-

strap current model.15 The radial profiles of pressure and current are shown in Fig. 1(a) over the

range of normalized poloidal flux ψn (0.1 < ψn < 1.4). For the same pressure profile, but different

partitions between density and temperature, pedestal bootstrap currents changes dramatically. As

the pedestal density (collisionality) decreases by a factor of 20, increasing peak pedestal bootstrap

currents about 50% reduce the pedestal magnetic shear about a factor of 2, as shown in Fig. 1(b).

With this approach, we are able to obtain a realistic evaluation of the ELM energy loss scaling with

increasing pedestal density because all cases should have the same relative distance to the stability

boundary in a (j‖−α) diagram or the same maximum growth rates of the peeling-ballooning (P-B)

modes.

The radial simulation domain is ψn=[0.1, 1.4]. The definition of the plasma edge is somewhat

arbitrary since here there is no “real” scrape-off-layer, and so ψn = 1 is defined as the point

where the equilibrium plasma pressure gradient and parallel current fall to zero. In the present

simplified model, both equilibrium flow and turbulent zonal flow have been assumed to be zero:

V0 = VE0 + V∇Pi = 0 and 〈δv〉ζ = 〈vE〉ζ + 〈v∇Pi〉ζ = 0 by setting 〈$〉ζ = 0. Therefore, both

equilibrium and turbulent E × B flow are tied to diamagnetic flow. This implies that the Er well

collapse results from the loss of pedestal pressure during the collapse phase of the ELM. In addition,

we use typical pedestal Lundquist number S = 108 and the hyper-Lundquist number SH = 1015.

For linear low-n ideal MHD modes, good agreement has been found between BOUT++ and GATO

results.16

For various densities n0 with pressure profile fixed, the linear simulations in Fig. 2 show that
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as the edge density (collisionality) varies, the maximum growth rates of the peeling-ballooning

(P-B) modes are almost the same, but the shape of the growth rate spectrum γ(n) changes rather

dramatically. As the pedestal collisionality decreases, the growth rate of the P-B mode decreases

for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum

γ(n) becomes narrower and the peak growth shifts to lower n as shown in Fig. 2(a). The reason is

that the bootstrap current plays a complex dual role in the pedestal. On the one hand, increasing

currents drive peeling instabilities at low n, while at the same time the increasing pedestal current

increases the local magnetic shear, which stabilizes high-n ballooning modes.16 For the fixed pres-

sure profile, the ion diamagnetic drift is inversely proportional to density, when density decreases,

the ion diamagnetic stabilization dominates over the magnetic shear stabilization. Fig. 2(b) shows

the comparison of the ion diamagnetic stabilization (square) vs. magnetic shear stabilization (dia-

mond) of the instability growth rate over toroidal mode spectrum for n0 = 1× 1019m−3. In short,

the maximum growth rates of the peeling-ballooning (P-B) modes are determined by the pressure

gradient, but the shape of the growth rate spectrum γ(n) is determined by density via ion diamag-

netic stabilization and bootstrap current. The consistent features of linear P-B modes are found in

both shifted circular geometry and DIII-D x-point divertor geometry.
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Figure 2: (a) Toroidal mode spectrum of the instability growth rate calculated by BOUT++ for

the density scan. The growth rates are normalized to the Alfvén frequency ωA. (b) Toroidal mode

spectrum of the instability growth rate for comparison of the ion diamagnetic stabilization (square)

vs. magnetic shear stabilization (diamond).

The nonlinear simulations are initialized with a set of small random pressure fluctuations. The

fastest growing modes dominate the initial phase of the calculation, in which the P-B modes grow

at their respective exponential rates. After this initial linear growing phase, the P-B modes trigger
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magnetic reconnection, which drives the collapse of the pedestal pressure and creates pressure

blobs and voids, and then follows by the slow inward avalanches and/or turbulence spreading,

depending on collisionality. For the case with low density n0 = 3 × 1019m−3, Fig. 3(a) shows

the profile evolution of the flux-averaged pressure perturbation 〈δP 〉ζ,θ at the outer mid-plane for

several different time slices, which are normalized separately to their respective absolute maximum.

The respective normalized maximum are 〈δP 〉maxζ,θ = (0.29, 5.04, 4.35, 4.51, 4.62, 4.93) × 10−3 for

t = (120, 200, 400, 600, 900, 1300)τA, respectively. Here τA ' 0.34µs for all cases. The dashed

curve is the rms-value of linear pressure perturbation at outside midplane, which has a shape of

Gaussian pulse peaking at the largest equilibrium pressure gradient location. It is clearly shown

that the pedestal pressure collapses deeply inside the pedestal plasmas. The flux-averaged pressure

perturbation 〈δP 〉ζ,θ after the initial crash has a shape of the first derivative of a Gaussian pulse

with zero crossing at the largest equilibrium pressure gradient position (defining the outer radial

pivot point), positive side representing pressure blobs and negative side representing the voids for

the lowest toroidal and poloidal mode numbers (n = m = 0), which greatly flattens the total

pressure profile (〈P 〉ζ,θ = P0 + 〈δP 〉ζ,θ), with the pedestal pressure collapsing and the SOL pressure

increasing. The radial extent of the initial collapse at t = 120τA is comparable to the width of linear

P-B modes. After the initial crash, the overall shape of the flux-averaged pressure perturbation

〈δP 〉ζ,θ is preserved near the pivot point and even their respective absolute maximum remains

with some fluctuations. However, inner edge of the first derivative of a Gaussian pulse (voids)

propagates inward and outer edge of that (blobs) propagates outward until the perturbation reaches

the boundaries. For the case with low density n0 = 3 × 1019m−3, the inward propagation is due

to local unstable P-B modes moving inward as the local steepening pressure profile moves inward

following a series of micro-collapses, which leads to a fast avalanche dynamics. For higher density,

the inward propagation is due to transport of turbulence energy from unstable peak gradient region

into stable region on the top of pedestal as local P-B modes remain stable there during the inward-

propagating phase.

We demonstrate that two important factors determine the size of ELMs: (1) linear growth

rate and (2) nonlinear growth time. The linear growth rate is determined by linear models of

plasma physics and magnetic equilibrium configurations. While the growth time of linear drives

is determined by nonlinear process via phase evolution, either background turbulence and/or the

spectrum of linear unstable modes.. The phase coherence time (PCT, τnc ) is the length of time



7

duration of the relative phase between pressure and potential perturbation of nth toroidal Fourier

component for linear growth.6 In linear theory, since there is no mode interaction, an unstable

mode has infinitely long PCT, i.e., τnc → ∞. In nonlinear theory and simulations, the growth of

any unstable mode will be interrupted by nonlinear process via phase scattering. Therefore the

mode amplitude depends on wave-wave interaction. For a given time at t = 1000τA during the

inward propagation phase, Fig. 3(b) shows the flux-averaged pressure perturbation 〈δP 〉ζ,θ(t) for

several different densities at the outer mid-plane, which are normalized separately to their respective

absolute maximum. The respective normalized maximum are 〈δP 〉maxζ,θ = (4.8, 4.4, 4.1) × 10−3 for

n0 = (3, 7, 12) × 1019m−3, respectively. The lower density leads to larger initial crash. As shown

in Fig. 2, as the edge density (collisionality) varies, the maximum growth rates of the peeling-

ballooning (P-B) modes are almost the same with linear drives fixed, but the shape of the growth

rate spectrum γ(n) changes rather dramatically. As the pedestal collisionality decreases, the growth

rate of the P-B mode decreases for high n but increases for low n (1 < n < 5), and the width of

the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. For the

same background turbulence, the narrow mode spectrum leads to weak nonlinear phase scattering,

which in turn leads to Long PCT. Therefore for low density, the most unstable mode will be able

to grow to large amplitude, which leads to an large ELM.

The rms-profiles of linear pressure perturbation at outside midplane are also shown as shape of

Gaussian pulse peaking at the largest equilibrium pressure gradient position and their widths are

comparable separately to those of their respective width of linear P-B modes. This indicates that

the ELM affected region is wider than both the steep gradient region and the linear eigenmode

width. These simulation results lead to an important conclusion that the reduction of ELM energy

loss with increasing density (or collisionality) is not accompanied by a reduction of the volume

affected by the ELMs but by a decrease of the perturbation to the pressure caused by the ELM in

an approximately constant volume. This is in agreement with experimental observations.2,4,17

To investigate the ELM energy loss scaling with density, the difference between the pre-ELM and

post-ELM pressure profiles can be integrated to determine the ELM energy lost at an ELM. We de-

fine an ELM size or ELM loss fraction as ∆ELM = ∆WPED/WPED=

〈
∫ ψout

ψin
dψ

∮
Jdθdζ (P0 − 〈P 〉ζ)〉t/

∫ ψout

ψin
dψ

∮
Jdθdζ, the ratio of the ELM energy loss (∆WPED) to

the pedestal stored energy Wped, the ELM size can be calculated from each nonlinear simulation.

Here P0 is the pre-ELM pedestal pressure, P is the pedestal pressure during an ELM event and
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Figure 3: (a) Profile evolution of surface-averaged pressure perturbation 〈δP 〉ζ,θ at different times

during an ELM event and inward propagation for n0 = 3×1019m−3; (b) Profile of surface-averaged

pressure perturbation 〈δP 〉ζ,θ at t = 1000τA for different density n0 = 3, 7, 9 × 1019m−3. Here

τA ' 0.34µs for all cases.

symbol 〈〉ζ means the average over bi-normal periodic coordinate. The lower integral limit is the

pedestal inner radial boundary ψin, while the upper limit is the pivot point ψout (the radial position

of the peak pressure gradient), J is the Jacobian.

Figure 4(a) shows the time history of the ELM energy loss fraction ∆ELM for the density scan

(solid curve). It is clearly shown three stages of an ELM event: (1) a linear growing phase from

t ' 0 to 100τA; (2) a fast crash phase from t ' 100τA to 200τA to 500τA, depending on the density,

and (3) following by a slow inward propagation phase until the perturbation eventually reaches

the boundaries. The energy lost at an ELM inward propagation phase can be two to three times

larger than its initial fast crash phase. The lower density (low collisionality) leads to fast inward-

propagating ELM, which reach inner boundary sooner and lead to a sharply increased energy loss,

as shown in Fig. 4(a) for n0 = 3× 1019m−3 at t ' 1200τA and for n0 = 5× 1019m−3 at t ' 2500τA.

On this transport time scale, it is expected that heating flux from core finally balances the ELM

energy loss and the ELM is terminated. The pedestal profiles rebuild, so long as the heating power

is maintained. Therefore, the exact ELM energy loss fraction also depends on heating power and/or

level of gas fueling, which will determine the pressure affected depth and the beginning of of the

recovery phase. In order to investigate possible inward-propagating mechanisms without additional

complication of introducing sources, the dashed lines are introduced for linear extrapolation of the

ELM energy loss (∆WPED) for these cases as if the system were infinite large to remove boundary

effects. It is shown that ELM energy loss fraction increases during inward propagation and decreases
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with increasing density during both the crash phase and late in inward-propagating phase.

To compare these scaling trends with experimental data, we pick up the the ELM energy loss

fraction at the late ELM inward-propagating phase, such as t ' 4500τA = 1.5ms (indicated by

vertical dashed line). The data are plotted in Fig. 4(b) with the trends from the world multi-

tokamak experimental data overlaid.2 Although BOUT++ simulations have been performed using

a set of circular cross-section toroidal equilibria, the ELM size reduction with increasing pedestal

plasma collisionality is in reasonable agreement for a large range of Type-I ELMy H-mode plas-

mas in tokamaks, such as ASDEX Upgrade, DIII-D, JT-60U and JET including various plasma

triangularities, ratios of PINPUT /PL−H and pellet triggered ELMs. It is clearly shown that the

pedestal plasma density plays a major role in determining the ELM energy loss through its effect

on the edge bootstrap current and ion diamagnetic stabilization. Other parameters such as the

plasma shape, pedestal heights and widths, edge flow shear, heating level and feedback of evolving

bootstrap currents after pedestal collapses, etc, possibly play additional role in determining the

ELM energy loss, and are likely needed for comparisons with particular experiments.
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Figure 4: (a) The time history of the plasma ELM loss fraction (∆Wped/Wped) (solid curve) for

the density scan; (b) The relative ELM energy loss scaling vs. collisionality is plotted with multi-

tokamak experimental data2 overlaid with BOUT++ simulation results (red bullet),

In conclusion, the simple three-field two-fluid model is found good enough to simulate pedestal

collapse and the ELM energy loss scaling with density. The pedestal plasma density plays a major

role in determining the ELM energy loss scaling through its effect on the edge bootstrap current
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and ion diamagnetic stabilization. The bootstrap current plays dual roles on the P-B modes via

magnetic equilibrium to increase the local magnetic shear and to increase peeling drive. The critical

trend emerges as a transition from ballooning-dominated states at high collisionality to peeling-

dominated states at low collisionality with decreasing density.

After the initial linear exponential growing phase, the P-B modes trigger magnetic reconnection,

which drives the collapse of the pedestal pressure and creates pressure blobs and voids. The inward

void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing

density (collisionality). As the edge density (collisionality) decreases, the unstable mode spectrum

shifts to lower n, initial bursts increase in intensity, and nonlocal transport undergoes a dynamic

transition from turbulence spreading at high collisionality into avalanches at low collisionality. This

leads to larger relative pedestal energy loss during an ELM evolution. The inward-propagating rate

due to turbulent transport increases as the edge density decreases, giving even larger additional

relative pedestal energy loss. The relative ELM energy loss scaling vs. collisionality is in reasonable

agreement with multi-tokamak experimental data.
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