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Abstract

Composite correlation �lters are used for solving a wide variety of pattern recognition problems. These

�lters are given by a combination of several training templates chosen by a designer in an ad-hoc manner.

In this work, we present a general approach for the design of composite �lters based on multi-objective

combinatorial optimization. Given a vast search space of feasible training templates, an iterative algorithm

is used to synthesize a �lter with an optimized performance in terms of several criteria. Moreover, by using

a suggested binary search procedure a �lter bank with a minimum number of �lters is constructed, for a

given trade-o� of performance metrics. Computer simulation results obtained with the proposed approach

in recognizing geometrically distorted versions of a target in cluttered and noisy scenes, are discussed and

compared in terms of recognition performance and complexity with existing state-of-the-art �lters.

Keywords: Object recognition, composite correlation �lters, multi-objective evolutionary algorithm,

combinatorial optimization.

1. Introduction

Nowadays, object recognition receives much research interest due to its high impact in real-life activities,

such as, robotics, biometrics, and target tracking [1, 2]. Object recognition consists in solving two essential

tasks: detection of a target within an observed scene, and determination of the exact position of the detected

object. Di�erent approaches can be utilized to address these tasks; that is, feature-based methods [3�6] and

template matching algorithms [7, 8]. In feature-based methods the observed scene is processed to extract

relevant features of potential targets within the scene. Next, the extracted features are processed and

analyzed to make decisions. Feature-based methods yield good results in many applications. However,

they depend on several subjective decisions which often require optimization [9, 10]. On the other hand,

correlation �ltering is a template matching processing. In this approach, the coordinates of the maximum

of the �lter output are taken as estimates of the target coordinates in the observed scene. Correlation �lters

possess a good mathematical foundation and they can be implemented by exploiting massive parallelism
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either in hybrid opto-digital correlators [11, 12] or in high-performance hardware such as graphics processing

units (GPUs) [13] or �eld programmable gate arrays (FPGAs) [14] at high rate. Additionally, these �lters

are capable to reliably recognize a target in highly cluttered and noisy environments [8, 15, 16]. Moreover,

they are able to estimate very accurately the position of the target within the scene [17]. Correlation �lters

are usually designed by a optimization of various criteria [18, 19]. The �lters can be broadly classi�ed in

two main categories: analytical and composite �lters. Analytical �lters optimize a performance criterion

using mathematical models of signals and noise [20, 21]. Composite �lters are constructed by combination of

several training templates, each of them representing an expected target view in the observed scene [21, 22].

In practice, composite �lters are e�ective for real-life degradations of targets such as rotations and scaling.

Composite �lters are synthesized by means of a supervised training process. Thus, the performance of the

�lters highly depends on a proper selection of image templates used for training [20, 23]. Commonly, the

training templates are chosen by a designer in an ad-hoc manner. Note that such a subjective procedure is not

optimal. Additionally, Kumar and Pochavsky [24] showed that the signal to noise ratio (SNR) of a composite

�lter gradually reduces when the number of training templates increases. In order to synthesize composite

�lters with improved performance in terms of several competitive metrics, a search and optimization strategy

is required to automatically choose the set of training templates.

To achieve this goal, we propose an iterative algorithm based on multi-objective combinatorial optimiza-

tion. Given a vast search space of feasible training templates, the algorithm �nds a subset of these templates

that allows the synthesis of a composite �lter with an optimized performance in terms of several objective

metrics. Additionally, by employing a suggested binary-search procedure a bank of composite �lters can

be constructed using a minimum number of �lters for a prespeci�ed trade-o� performance among various

metrics. The proposed design algorithm combines two evolutionary computation techniques. Firstly, popu-

lation management is performed by the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [25], which is

a state-of-the-art multi-objective evolutionary algorithm (MOEA). Secondly, individuals of the population

are represented as variable length strings, while genetic operators applied to individuals are managed by the

Speciation Adaptation Genetic Algorithm (SAGA) [26].

The proposed design algorithm allows the synthesis of composite �lters as a trade-o� between several

competitive criteria. With the help of the obtained Pareto fronts we show that there is a trade-o� between

the discrimination capability of the designed �lter, the tolerance of the �lter to geometrical distortions of

the target, and the signal to noise ratio of the �lter. Also, we show through computer simulations that the

composite �lters designed by the proposed algorithm yield a superior recognition performance than common

correlation �lters. The designed �lters possess also a lower computational complexity than that of common

composite �lters.

The paper is organized as follows. Section 2 presents a brief review of composite correlation �lters for

object recognition. We recall synthetic discriminant functions (SDF) [27], optimal trade-o� SDF (OTSDF)
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Figure 1: Block diagram of a basic system for pattern recognition with correlation �lters.

�lters [28], and the minimum output sum of squared error (MOSSE) �lter [29]. Section 3 explains the

proposed multi-objective approach for �lter design. Section 4 presents the results obtained with the proposed

composite �lters for object recognition and classi�cation problems. The obtained results are analyzed and

discussed in terms of objective measures and computational complexity. These results are also compared

with those obtained with existing correlation �lters. Finally, section 5 summarizes our conclusions.

2. Composite correlation �lters for robust object recognition

Object recognition by correlation �ltering consists in calculation of the cross-correlation function between

an observed image and the impulse response of a linear �lter [20]. Next, the coordinates of the maximum

of the cross-correlation are obtained. If the maximum is greater than a prespeci�ed threshold, the obtained

coordinates are taken as estimates of the target location in the observed scene; otherwise, the object is

rejected. This process is depicted in Fig. 1. A desirable feature of correlation �lters is that they can be

robust to disjoint and overlapping noise as well as to geometrical degradations of a target [30, 31]. We

review three di�erent successful approaches for the design of composite correlation �lters. The considered

approaches are as follows: synthetic discriminant functions (SDF) [22], optimal trade-o� SDF (OTSDF)

[28], and minimum output sum of squared error (MOSSE) [29] �lters.

2.1. Synthetic discriminant functions (SDF)

Let T = {ti (x, y) ; i = 1, . . . , N} be a set of N di�erent training templates, where each of them represents

a distorted version of the target t(x, y). A common composite �lter is designed to recognize the target and

all its views in T with a single linear correlation. A SDF �lter is given by a linear combination of training

images ti (x, y), as follows:

h(x, y) =

N∑

i=1

aiti(x, y), (1)

where {ai; i = 1, . . . , N} are weighting coe�cients that must be chosen to satisfy the inner-product conditions

[22],

ci = 〈ti(x, y), h(x, y)〉 . (2)
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The quantities {ci; i = 1, . . . , N} are prespeci�ed constraints imposed to the correlation output of the �lter,

at the origin for each training image. Let T be a matrix with N columns and d rows (d is the number of

pixels in each training image) where its ith column is given by ti, which is a d × 1 vector constructed by

placing elements of ti (x, y) in lexicographical order. Let a and c represent column vectors of {ai} and {ci},
respectively. Using matrix-vector notation, the impulse response of the �lter h (x, y) and constraints {ci}
can be rewritten as

hSDF = Ta, (3)

and

c = T+hSDF, (4)

where superscript "+" denotes conjugate transpose. By substitution of Eq. (3) into Eq. (4) the solution of

the system of equations is a = (T+T)
−1

c, and if the matrix (T+T) is nonsingular, the �lter solution is

hSDF = T
(
T+T

)−1
c. (5)

Now, assume that there are several distorted versions of the target {ti(x, y); i = 1, . . . , NT } and various

objects to be rejected {fi(x, y); i = 1, . . . , NF }. In other words, we have a two-class pattern recognition

problem. The goal is to design a SDF �lter capable to recognize images from the true-class set (target

class) given by T = {t1(x, y), . . . , tNT
(x, y)}, and reject patterns from the false-class (unwanted class), given

by F = {f1(x, y), . . . , fNF
(x, y)}. A two-class composite �lter can be constructed by combining all given

training images in a set U = T∪F . In order to solve the two-class problem we set the �lter's constraints in Eq.

(2) as {ci = 1; i = 1, 2, . . . , NT } for the true-class objects, and {ci = 0; i = NT + 1, NT + 2, . . . NT +NF } for
the false-class objects. In this manner the vector c is given by

c =


 1, 1, . . . , 1︸ ︷︷ ︸

NT ones
,

0, 0, . . . , 0︸ ︷︷ ︸
NF zeros



T

. (6)

A SDF �lter with equal output correlation peaks can be used either for intraclass distortion-tolerant pattern

recognition (one class recognition) or for interclass pattern recognition (two class recognition). For two-class

problems, we expect that the central correlation peak for each �lter will be close to unity for the true-class

objects and close to zero for objects of the false-class. Note that this approach can be easily extended to

multi-class problems [7].

2.2. Optimal trade-o� SDF (OTSDF) �lter

Note that a main drawback of the SDF �lter is the appearance of sidelobes in the output correlation

plane that reduce the �lter's performance. This problem can be solved by minimizing the average correlation

energy (ACE) of the output plane except at the coordinates of the correlation peak. Let t̂i and f̂i, be both

d × 1 vectors obtained by reordering elements (lexicographically) of the Fourier transforms of the training
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images ti(x, y) and fi(x, y), respectively. Let Xi and M be both d×d diagonal matrices containing elements

of the vector t̂i, and the average vector m = 1
N

∑N
i=1 t̂i, respectively. The ACE is given by

ACE =
1

dN

N∑

i=1

|vi|2 , (7)

where vi = X∗ih is the output correlation plane generated by the �lter h in response to the ith training

image. A desirable feature of a composite �lter is its ability to yield tolerance to intraclass distortions. The

average similarity measure (ASM) is a measure of the robustness of a �lter to intraclass distortions. The

ASM is given by the average squared error between the full correlation responses produced by the �lter for

true-class training images, and the output correlation plane generated by the average training image, given

by v̄ = M∗h. The ASM is given by

ASM =
1

dN

N∑

i=1

|vi − v̄|2 . (8)

The OTSDF �lter is designed to provide an optimal performance in terms of a trade-o� among various

performance criteria [28, 32]. Using matrix-vector notation, the ACE and ASM measures can be rewritten

as

ACE = h+Dh, (9)

and

ASM = h+Sh, (10)

where

D =
1

dN

N∑

i=1

XiX
∗
i , (11)

and

S =
1

dN

N∑

i=1

(Xi −M) (Xi −M)
∗
. (12)

The OTSDF �lter avoids hard constraints imposed to the correlation peak (unconstrained �lter) like the

ones used in the SDF design. Instead, the OTSDF �lter maximizes the average correlation height (ACH) of

correlation peaks for the true-class training images. The ACH is given by

ACH = m+h. (13)

The OTSDF �lter is obtained by minimizing the following function [28]:

J (h) = ω1ACE + ω2ASM− |ACH|

= ω1h
+Dh + ω2h

+Sh−
∣∣h+m

∣∣ , (14)

where ACE and ASM are functions to be minimized, ACH is a function to be maximized, and
(
ω2
1 + ω2

2 = 1
)

are trade-o� coe�cients. Note, that ACE and ASM measures are competitive objectives. The OTSDF �lter
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is obtained by [28]

hOTSDF = (ω2D + ω2S)
−1

m. (15)

2.3. Minimum sum of squared error (MOSSE) �lter

The MOSSE �lter [29] is designed to produce prespeci�ed correlation planes gi (x, y) for a given set of

available true-class training images ti (x, y). The MOSSE �lter is obtained by minimizing the following

functional:

hMOSSE = argmin
h

{
NT∑

i=1

|X∗ih− gi|2
}
, (16)

where gi is a d × 1 vector containing elements of the Fourier transform of gi (x, y). The MOSSE �lter is

given by [29]:

hMOSSE =

(
NT∑

i=1

X∗iXi

)−1(NT∑

i=1

X∗i gi

)
. (17)

3. Filter design by multi-objective combinatorial optimization

In this section, we describe the proposed approach for the synthesis of composite correlation �lters for

robust target recognition. The �lters are designed to yield tolerance to geometrical distortions of the target,

as well as to scene perturbations given by additive and disjoint noise. Conventional design schemes, such

as the OTSDF, characterize scene perturbations in terms of ASM and ACE measures. Note that both

of these measures are based on calculation of spatial averages. Thus, they only work well for stationary

noise processes. In a real-life application, the stationary assumption of noise processes may not be valid.

To overcome this problem, we use stricter criteria than ASM and ACE to quantify the e�ects of common

scene disturbances. We are also interested in optimizing the number of training images used for the �lter

synthesis. So, the metrics considered for the design of composite �lters are explained below.

Discrimination Capability (DC): The DC characterizes the ability of a �lter to distinguish between a

target and false-class objects [7]. For composite �lter design, the DC can be de�ned as

DC = MIN

{(
1− |cF |

2

∣∣ciT
∣∣2

)
; i = 1 . . . , NT

}
, (18)

where cF is the maximum cross-correlation value in the area occupied by false-class objects (maximum

sidelobe) and ciT is the maximum correlation value in the response to the ith target view (correlation peak).

DC values close to unity indicate that the �lter has a good capacity to distinguish the target from any

false-class object. Negative values of the DC indicate that the �lter is unable to recognize the target.

Maximum Absolute Error (MAE): The MAE is used to characterize the tolerance of a composite �lter

to intraclass distortions of the target. The MAE is de�ned as the maximum error between the correlation

peaks
{
ciT
}
obtained by the �lter in response to di�erent target views, and the constraints imposed by the
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designer to the correlation peaks. If the peak constraints are all equal to unity, the MAE can be expressed

by

MAE = MAX
{∣∣ciT − 1

∣∣ ; i = 1 . . . , NT

}
. (19)

Signal to Noise Ratio (SNR) [18, 24]: The SNR is a measure of the robustness of a correlation �lter to

input noise. The SNR is de�ned as the ratio between the intensity of the expected value of the correlation

peaks
{
ciT
}
to the peaks variance; i.e.,

SNR =

∣∣E
{
ciT
}∣∣2

var
{
ciT
} . (20)

For composite �lters, it has been shown [24] that the SNR is closely related to the number of training images

of the �lter. Thus, the SNR can be maximized by minimizing the number of training images of the �lter.

In a real-life application, all expected target views can be seen as a true-class set of patterns to be

recognized by the �lter. Similarly, the background and any undesired objects can be considered as a false-

class set of patterns to be rejected. In this two-class scenario, the best �lter to be designed should exhibit

a trade-o� performance among the DC, MAE, and SNR metrics. Formally, such �lter is not unique, and

the solution is composed by a set of optimal solutions called the Pareto set [33]. A particular �lter, can

be completely and uniquely determined by the set of training templates taken from the true and false

classes. Therefore, the design of optimal �lters can be posed as a combinatorial optimization problem, using

a Pareto-based multi-objective formulation. The following subsections describe the proposed methodology

and search strategies to automatically design correlation �lters.

3.1. Problem statement: Multi-objective combinatorial optimization problem

Let T be a �nite set consisting of di�erent views of the target (true-class templates), and let F be

the set of image templates that constitute the false-class1. For instance, let us assume that the true-class

templates are given by geometrically distorted versions of the target. Moreover, the false-class templates in

F can be given by known false objects to be rejected and by unknown patterns having similar structures

to those of the target. If the properties of the expected background in a real application are known, the

false class templates can be given by small fragments taken from a synthetic image with similar statistical

characteristics to those of the expected background. Suppose that the distorted versions of the target are

given by in-plane rotations within the interval of [-180, 180] degrees and that the scene image has M ×M
pixels. Then, the set T contains a total of NT = 361 templates taken with the angle step of one. Since a

fragment of the background used to construct a false-class template can be extracted at any coordinate of

the synthetic background image used for training [7], the set F contains at least NF = M ×M × 361 image

templates. Under this scenario, the total number of feasible templates is NU = NT +NF . Furthermore, to

1In general, the set F is in�nite, because the number of possible undesired patterns is in�nite. However, in practice F is a
�nite set of false patterns determined a priori.
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synthesize a SDF �lter as speci�ed in Eq. (5), a particular combination of false and true class templates

from set U = T ∪ F is required. Stated in these terms, the design of an optimal �lter can be posed as a

combinatorial optimization problem. The solution space S is given by all possible combinations formed by

elements of set U . Hence, the size of the solution space is given by

|S| =
NU∑

r=1

NU !

r! (NU − r)!
, (21)

where r is the number of templates used in a particular combination. Note that even for a relatively small

U , the solution space is extremely large, that makes exhaustive search unfeasible.

Let P = {p1,p2, . . . ,pr} de�ne a particular subset (combination) of elements from U ; i.e., P is a

composite �lter or solution to the problem, with P ∈ S and pi ∈ U . Using three performance metrics

de�ned in the preceding section, the performance of the �lter speci�ed by P is given by the objective vector

J(P) de�ned as

J (P) = [DCm (P) ,MAE (P) , SNRm (P)] , (22)

where DCm = 1−DC and SNRm = 1− 1
1+SNR , to pose all criteria as objectives to be minimized. In this

manner, the problem of designing an optimal composite �lter PO can be stated as

PO = argmin
P∈S

{J (P)} . (23)

Note that PO represents an optimal combination of training templates given in terms of the objective vector

J (P), where all criteria are competitively minimized.

The problem de�ned in Eq. (23) seems straightforward; however, it also exhibits two challenging proper-

ties. First, space S contains feasible solutions of di�erent sizes r, ranging from 1 to |U |. Second, the criteria
de�ned in J represent competitive objectives, since they cannot be minimized simultaneously. Therefore,

a proper solution strategy should explicitly contemplate a multi-objective search with a variable length

encoding. In this sense, the proposal of this work is to use a genetic algorithm with a variable length

representation, guided by a Pareto-based multi-objective selection strategy.

3.2. Variable length Evolutionary Algorithm

Evolutionary algorithms (EAs) are population based search and optimization strategies [34]. In general,

an EA is an iterative algorithm where an initial set (population) of candidate solutions (individuals) are

randomly generated and evaluated based on a given set of performance measures or objectives (�tness).

Then, some of the solutions are chosen (selection) and used to generate new candidate solutions with search

operators (crossover and mutation). Finally, the best solutions are kept (survival) for the following iteration

(generation) of this general cycle. In this process, both selection and survival are done probabilistically

with preference to those individuals that exhibit the best performance. Moreover, the search operators are

stochastic functions, that randomly modify and/or combine previously found solutions to generate new ones.
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EAs have proven to be powerful search strategies in problems with large, multimodal and highly irregular

or discontinuous search spaces, or when gradient information is not trivially computed [34].

To successfully apply an EA to the �lter design problem, the following aspects must be de�ned. First,

a search space G must be speci�ed, in which ∀P ∈ S ∃g ∈ G | y(g) = P, where y is a mapping function.

In other words, G represents an encoding scheme for solutions in S. For the present problem, G is de�ned

as the set of all possible combinations of U , such that y : G → S is a many to one mapping, for every

possible combination of size r. In particular, the proposed system employs the representation speci�ed

by the Speciation Adaptation Genetic Algorithm (SAGA) technique developed by Harvey [26]. In SAGA,

candidate solutions are represented by variable length strings g = {g1, g2, . . . , gr}, where each g represents

a combination of elements from a �nite alphabet Σ, such that there is one-to-one correspondence between

Σ and U .

The second component of an EA is to de�ne a set of search operators On,m of the form On,m : G1×· · ·×
Gn → G1 × · · · × Gm, where n represents the arity of the operator and m is the number of new solutions

it generates. For instance, the most common operators are O1,1(g) which is referred to as a mutation,

and O2,2(g1,g2) referred to as a crossover. These search operators take n feasible solutions, referred to

as parents, and produce new candidate solutions which are referred to as o�spring. In general, a search

operator On,m is de�ned in such a way to promotes two distinct outcomes. Firstly, the o�spring should

exhibit similar characteristics to those of the parents; this is known as inheritance. Secondly, the o�spring

should also exhibit (slight) variations with respect to the parents. This allows the algorithm to explore new

regions within the search space. In particular, SAGA employs the following search operators. For crossover,

a crossing point i within the �rst parent string g1 is chosen randomly. This de�nes two regions within

g1, let us call them the left region gi,L
1 = {g1, . . . , gi} and the right region gi,R

1 = {gi+1, . . . , gr}. Then,

SAGA tests each possible crossing point j from the second parent string g2, based on the longest common

sub-sequence (LCSS) metric, that measures the length of the longest non-interrupted matching sequence of

symbols between two strings of arbitrary length. In other words, the crossing point in the second parent

string j′ is chosen as follows:

j′ = arg max
j

{
LCSS(gi,L

1 ,gj,L
2 ) + LCSS(gi,R

1 ,gj,R
2 )

}
. (24)

SAGA assures that a meaningful crossover occurs between parent strings, where O2,2(g1,g2) produces two

o�spring, g′1 = gi,L
1 ,gj′,R

2 and g′2 = gj′,L
2 ,gi,R

1 , each composed by the splicing of the left and right parts of

di�erent parents. Since the crossing points in each parent string may be in a di�erent position the resultant

strings can have di�erent lengths.

The �nal component in an EA can be referred to as population management; i.e. the manner in which

candidate solutions are selected to be used as parents, and to determine which individuals survive and

are used in the following iteration. In general, such choices should be based on the corresponding objective
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vector J of each solution; however, care must be taken given the con�icting nature of the considered metrics.

3.3. Multi-objective optimization

Multi-objective optimization is substantially more complex than single criterion optimization, considered

as a separate �eld of research. The di�erence between single and multi-objective optimization resides with

how the concept of optimality is de�ned. In single objective optimization the concept of optimality is trivially

de�ned in a monodimensional space. In multi-objective optimization the optimality is based on dominance

relations among solutions being evaluated in a multidimensional space [33].

In multi-objective optimization it is necessary to consider two di�erent and complimentary spaces explic-

itly: one for decision variables and another for the objective functions. In the case of real valued functions,

these two spaces are related by the mapping ~f : Rn → Rk. The set of constraints on the objective vector

~f(x) = (f1(x), ..., fk(x)) de�nes a feasible region Ω ⊂ Rn in the decision space along with its corresponding

image Λ ⊂ Rn on the objective function space. Now, the following concepts de�ne the optimality for a

multi-objective problem.

Pareto dominance: Given k objectives and N = {1, ..., k}, an objective vector ~fu is said to dominate

another objective vector ~fv (written as ~fu � ~fv) ⇔ ∀ i ∈ N , fui ≤ fvi ∧ ∃ j ∈ N | fuj < fvj .

Pareto optimality: A solution vector x∗ ∈ Ω is optimal if ∀ x ∈ Ω it is true that ∀ i ∈ N, fi(x) =

fi(x
∗) ∨ ∃ i ∈ N | fi(x) > fi(x

∗).

Pareto-Optimal Set: For a multiobjective problem ~f(x), the set of Pareto optimal solutions is P∗ :={
x ∈ Ω @ x′ ∈ Ω s.t. ~f(x) � ~f(x′)

}
.

Pareto Front: For a multiobjective problem ~f(x) with a Pareto optimal set P∗, the Pareto Front is

de�ned as PF∗ := {u = (f1(x), ..., fk(x))|x ∈ P∗}.
For the �lter design problem, decision space is given by S and objective space is de�ned by the objective

vector J . Then, the goal of the search process would be to �nd all Pareto-optimal �lters P∗ ∈ P∗ instead of

a single global optimum PO as de�ned in Eq. (23). Moreover, the optimality is based on Pareto-dominance

relations given by the objective vector speci�ed by J .

3.3.1. MOEA: Multi-objective Evolutionary Algorithm

As stated above, when several competitive objectives are optimized concurrently, a single optimal solution

cannot exist. On the contrary, there is a set of multiple feasible solutions, and all are optimal in the Pareto

sense. Therefore, a multi-objective EA (MOEA) should ful�ll the following: (1) it must converge towards

the true Pareto Front; and (2) it must representatively sample the true Pareto Front.

Over the last years, MOEAs have proven to be powerful and robust strategies for multi-objective prob-

lems, particularly since MOEAs rely on a population based search which is well suited to search for multiple

solutions concurrently; i.e., the Pareto-optimal set. While many algorithms were proposed (see [35] for

a recent survey), most MOEAs follow the same basic design principles. Firstly, �tness assignment must
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Figure 2: Basic block diagram of proposed multi-objective algorithm.

considers Pareto dominance relations to rank individuals. Secondly, because a close to uniform sampling

of the true Pareto Front is desired, diversity of solutions within the evolutionary algorithm are encouraged,

where similarity within objective space is penalized. Thirdly, to bias the search towards the Pareto Front,

elitism is encouraged (where the best solutions of each generation are maintained) by employing some form

of population archive, storing all non-dominated solutions found during the search.

In this work, the Improved Strength Pareto Evolutionary Algorithm (SPEA2) is used to guide the

search [36]. SPEA2 is a third generation MOEA, an improved version of the second generation SPEA

[37]. SPEA2 selects solutions based on dominance and non-dominance relations, between an individual and

individuals in both the current population and the population archive. Diversity preservation is done using

a k -th nearest neighbor clustering algorithm that penalizes solutions that lie in densely populated regions

of objective space. SPEA2 uses a �xed-size archiving approach, and a truncation scheme promotes diversity

by removing individuals that have the minimum distance to their neighbors. Finally, it preserves boundary

solutions by using a carefully designed selection operator. The main drawback of SPEA2 is its diversity

preservation method, with a time complexity of O(N3) where N is the population size. Nevertheless, the

overhead is negligible for problems where �tness assignment bears a high computational cost, as is the case

for the problem posed in this work.

3.4. Multi-objective �lter design algorithm: SPEA2+SAGA

The proposed SPEA2+SAGA algorithm is shown in Fig. 2, and proceeds as follows. The �rst step is to

construct an initial population of individuals, where each is a combination of image templates taken from

set U . This population is randomly generated and each individual is coded using constant length strings.

The quality of each individual is quanti�ed in terms of J , following the procedure shown in Fig. 3. In this

�gure, the image templates speci�ed by the individual are used to construct P. Afterwards, P is used to
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Figure 3: Block diagram of the process for evaluation of quality of a potential solution.

synthesize a two-class SDF �lter. The correlation process is carried out between the �lter and several target

views (true-class samples), as well as with the synthetic image of the background (false-class). The DC,

MAE, and SNR metrics are computed from the resultant correlation planes; i.e., vector J(P). SPEA2 is

then used to rank the individuals, and select those that will be used by the SAGA operators to generate

new candidate solutions. If a subset of the chosen individuals satisfy a prespeci�ed goal, then the algorithm

�nishes; otherwise the algorithm performs another iteration. The resultant �lters can be implemented in

the processing architecture shown in Fig. 1.

3.5. Automated design of a bank of composite �lters for robust target recognition

The proposed design algorithm of Fig. 2 can generate robust �lters, but to obtain a good pattern

recognition performance on real-life applications a bank of composite �lters is often required. For the design

of a pattern recognition system two important factors should be considered. First, the pattern recognition

system should yield a good recognition performance in terms of reliability, e�ciency, and robustness. Second,

the system should possess a low computational complexity. In object recognition by correlation �lters, the

computational complexity can be characterized by the number of linear correlations needed for recognition

of a target in the scene. We count correlations because represent the most time-consuming operation among

others used in the recognition process. Using the proposed MOEA algorithm shown in Fig. 2, we can

synthesize composite �lters with a good tolerance to geometrical distortions of a target for a prescribed

range of expected intraclass distortions. In order to construct a �lter bank, a di�erent search strategy is

needed to determine the minimum number of correlation �lters. To design such a �lter bank, we propose an

iterative algorithm based on binary search [38], whose �ow-diagram is depicted in Fig. 4. Suppose that the
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Figure 4: Proposed algorithm to construct a bank of multi-objective composite �lters.

designed �lter bank should be capable to recognize a target within the interval of [−180, 180] degrees. Also,

assume that a single composite �lter synthesized with the proposed MOEA algorithm is able to recognize

the target with a tolerance of ±5 degrees and with a DC value of about 0.9. Note that to construct a �lter

bank with the DC performance of about 0.9, 36 composite �lters are required. If the DC value is reduced

to 0.8, then we need less than 36 �lters. In this case, the computational complexity of the recognition

system will be lower. To determine the minimum number of �lters in a �lter bank and at the same time

satisfy a prespeci�ed performance in terms of the DC or a trade-o� among several criteria, the binary search

algorithm shown in Fig. 4 can be used.

4. Results

In this section results obtained with composite correlation �lters designed by the proposed multi-objective

optimization algorithm are discussed in terms of e�ciency of target detection, accuracy of target localization,

and pattern classi�cation. These results are compared with those obtained with successful state-of-the-art

composite �lters, the OTSDF [28, 32] and MOSSE [29] �lters. The composite �lters are tested within the

context of target recognition and pattern classi�cation problems. Object recognition, consists of detection of

a target in an input scene and in estimating the location of the target within the scene. Pattern classi�cation

is given by detecting a target from a scene and in the assignment of the detected target to a corresponding

category. The detection performance of the tested �lters is characterized by the DC (see Eq. (18)). The

accuracy of location estimation of the target is measured in terms of location errors (LEs) [17], as follows:

LE =
[
(τx − τ̂x)

2
+ (τy − τ̂y)

2
]1/2

, (25)
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Figure 5: Test patterns used in target recognition experiments.

where (τx, τy) and (τ̂x, τ̂y) are exact and estimated coordinates, respectively, of the target within the scene.

The test patterns used for target recognition are shown in Fig. 5. The input scene is represented according

to the nonoverlapping signal model, given by

f (x, y) = t (x− τx, y − τy; ρ, φ) + b(x, y)w̄ (x− τx, y − τy; ρ, φ) + n (x, y) , (26)

where t (x− τx, y − τy; ρ, φ) denotes a target (small butter�y) embedded into the background b(x, y) at

unknown coordinates (τx, τy), and having a scale factor ρ and a orientation angle φ. The function w̄ (x, y)

is the inverse region of support of the target (see Fig. 5) given by unity outside the target area and zero

elsewhere, and n (x, y) is a zero-mean additive noise with the variance of σ2
n. All images are monochrome,

with 400× 400 pixels, a signal range of [0, 1], and 256 quantization levels. The target has the size of 72× 36

pixels, a mean value of µt = 0.26, and a standard deviation of σt = 0.13. The background image has the

mean value of µt = 0.23 and the standard deviation of σb = 0.17.

We designed �ve �lter banks of SDF �lters using the multi-objective algorithm depicted in Fig. 2. We

call these �lters multi-objective SDF (MOSDF) �lters. The designed �lter banks are composed by 30, 18,

12, 9, and 5 MOSDF �lters, respectively. It is evidently that a higher number of �lters in a bank implies

a better recognition performance at the price of a higher computational complexity of the overall system.

For comparison we also designed �ve �lter banks of OTSDF �lters and �ve �lter banks of MOSSE �lters,

without using multi-objective optimization. All of these banks were designed to recognize the target and its

distorted versions consisting of scaled versions by a factor within [0.8,1.2] and by in-plane rotation within

the range of [-180,180] degrees. Note that the training images used for the design of MOSDF �lters are

chosen by the multi-objective optimization algorithm. Instead, the training images used for the design of

OTSDF and MOSSE �lters are chosen in an ad-hoc manner. We are interested to investigate the impact

of the selection of training images to the performance of a composite �lter. The training images for both

OTSDF and MOSSE �lters were chosen in such a way that each �lter in the bank contains 180/nB images,

where nB is the number of �lters in the bank. So, a single �lter in a bank of 30 �lters will contain 6
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Figure 6: Pareto fronts obtained with the proposed multi-objective combinatorial algorithm for the design of �lter banks of:
(a)-(c) 30 �lters, (d)-(f) 18 �lters, (g)-(i) 5 �lters.

training images, whereas a �lter in a bank of 5 �lters will contain 36 images. In order to �nd the best

trade-o� among target recognition performance and computational complexity, the algorithm in Fig. 4 can

be used. The parameters for the multi-objective optimization algorithm are given as follows: 50 generations,

populations of 200 individuals, archive size of 200 individuals, and 5% of mutation. Fig. 6 shows examples

of the obtained Pareto sets for the design of MOSDF �lters. The circles indicate MOSDF �lter solutions

that yield a DC value higher than 0.85. It can be seen, that the number of solutions satisfying DC > 0.85

is higher for the �lter bank of 30 �lters than for �lter banks with less number of �lters. Furthermore, it is

evident from Fig. 6 that there is a trade-o� between the DC and the MAE as well as between the DC and

the SNR measures.
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(a) (b) (c) (d)

Figure 7: Examples of test scenes and correlation intensity planes obtained with a �lter bank of 18 MOSDF �lters, for target
recognition in additive noise of: (a) 100 dB SNR; (b) 50 dB SNR; (c) 30 dB SNR; (d) 20 dB SNR.

Next, we evaluate the detection performance of all designed �lter banks in 100 scenes for di�erent

positions and views of the target, and for various additive noise SNR values. Fig. 7 shows examples of

test scenes for this experiment. The target can be randomly located within the scene with an arbitrary

orientation and scaling inside the prescribed ranges. Fig. 7 also shows the correlation intensity plane for

each scene obtained with the �lter bank of 18 MOSDF �lters. Note that a sharp correlation peak indicates

the correct position of the target. With 95% con�dence, the results in terms of the DC obtained with

MOSDF, OTSDF, and MOSSE �lters are presented in Fig. 8. It can be seen that the proposed MOSDF

�lters yield the best results in all the cases. Furthermore, we can observe that both OTSDF and MOSSE

�lter banks having 30, 18, and 12 �lters exhibit a similar performance. However, the MOSSE �lters yield a

slightly better performance than that of the OTSDF �lters for low noise of 100 dB and 50 dB SNR, whereas

for 30 dB SNR and below the performance of the OTSDF �lters is better than that of the MOSSE �lters.

Actually, the banks of 9 and 5 MOSSE �lters are unable to detect the target (negative DC values) when the

SNR of the additive noise is 10 dB. A similar situation occurs for the �lter bank of 5 OTSDF �lters. On

the other hand, all MOSDF �lters are able to recognize the target (DC>0) for all noise levels, even when

only 5 �lters are used and when the SNR of the noise is 10 dB.

Now, we evaluate the accuracy of location estimation of the target of all designed �lter banks. With 95%

con�dence, the results obtained with MOSDF, OTSDF, and MOSSE �lters in terms of LE, are presented in

Fig. 9. It can be seen that the MOSDF, OTSDF, and MOSSE �lter banks having 30 and 18 �lters yield low

LE values for noisy conditions of 100 dB, 50 dB, and 30 dB SNR. However, the OTSDF and MOSSE banks

having 12, 9, and 5 �lters yield high LE values, whereas the banks of MOSDF �lters yield the lowest LE

values. According with the obtained results, we can say that the OTSDF �lters yield the best robustness to
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(a) (b) (c)

(d) (e)

Figure 8: DC performance with 95% con�dence obtained with MOSDF, OTSDF and MOSSE �lter banks: (a) 30 �lters, (b)
18 �lters, (c) 12 �lters, (d) 9 �lters, (e) 5 �lters.

additive noise, whereas the MOSSE �lters yield the worst performance among all tested �lters.

Next, we evaluate the performance of the designed �lter banks in terms of e�ciency of target recognition.

In order to guarantee correctly statistical results, 100 tests were carried out for di�erent positions and views

of the target, and di�erent additive noise SNR values. The target recognition systems based on MOSDF,

OTSDF, and MOSDF �lters work as follows. The input scene is �rstly correlated with all �lters of the bank

and the correlation plane with the highest DC value is chosen. Next, if the DC of the chosen plane is greater

than a threshold of 0.1 and the calculated LE of the chosen plane is less than half of the size of the target

(LE < 18), then the target is detected; otherwise, the target is rejected. Fig. 10 shows the percentage of

correctly target detections in 100 test scenes versus noise level for all considered �lters. We can see that

the proposed MOSDF �lters yield the best results. Actually, the MOSDF �lters are able to recognize the

target with e�ciency of 100% using 30, 18, 12, and 9 �lters for all noise levels, and achieve a recognition

rate of 94.2% when only 5 �lters are used and the SNR of the additive noise is 10 dB. The �lter bank of

30 OTSDF �lters yields a recognition rate of 100% in environment of 100 dB, 50 dB, 30 dB, and 20 dB
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(a) (b) (c)

(d) (e)

Figure 9: LE performance with 95% con�dence obtained with MOSDF, OTSDF and MOSSE �lter banks: (a) 30 �lters, (b) 18
�lters, (c) 12 �lters, (d) 9 �lters, (e) 5 �lters.

SNR, and achieves a recognition rate of 92% in a highly noisy environment of 10 dB SNR. Nevertheless, the

performance of the �lter banks of 18, 12, 9, and 5 OTSDF �lters is lower than that of MOSDF �lter banks

when the SNR of the additive noise decreases. The �lter banks of 30, 18, 12, and 9 MOSSE �lters yield a

good recognition performance in noisy conditions of 100 dB, 50 dB, 30 dB, and 20 dB SNR. However, the

performance of the MOSSE �lters decreases considerably when the SNR of the additive noise is 10 dB. It

can be seen that the proposed MOSDF �lters yield the best detection rates with the minimum number of

correlation �lters.

We employed the binary-search procedure shown in Fig. 4 to construct �lter banks of MOSDF, OTSDF,

and MOSSE �lters. We want to determine the minimum number of required �lters to achieve a recognition

performance satisfying DC ≥ 0.85. For the case of MOSDF �lters the minimum number of �lters satisfying

the DC condition is 9, whereas for both OTSDF and MOSSE �lters the minimum number of required �lters

is 16. Note that these results are consistent with those shown in Fig. 8. This means that the suggested

approach achieves the highest recognition performance with the lowest computational complexity.
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Figure 10: Detection e�ciency of considered correlation �lter in 100 scenes corrupted with additive noise with: (a) 100 dB
SNR, (b) 50 dB SNR, (c) 30 dB SNR, (d) 20 dB SNR, (e) 10 dB SNR.

Now, we test the classi�cation performance of the considered composite �lters using face images from

the Extended Yale Face Database B [39, 40]. This database consists of 39 sets of face images (one set for a

di�erent subject), where each set contains 64 monochrome images of 168×192 pixels. Fig. 11 shows examples

of face images of di�erent subjects of the database. We designed pattern recognition systems based on SDF,

MOSDF, OTSDF, and MOSSE �lters to detect and classify face images of ten di�erent subjects. For this

purpose, one �lter bank for each of the considered �lters were constructed. Each bank contains ten �lters

(one �lter per subject). The MOSDF �lters were designed using the suggested multi-objective algorithm

shown in Fig. 2. Note that for the design of a single �lter to recognize face images of one subject, 64 true-class

images and 64×9 false-class images are available for the training process of the �lter. In order to show the

importance of a proper selection of the training images, the SDF, OTSDF and MOSSE �lters were designed

with all available true- and false-class images. This means that each SDF or OTSDF �lter contains 64 true-

class training images, and 576 false-class images, whereas each MOSSE �lter contains 64 true-class training

images. The number of training images chosen by the optimization algorithm in the design of MOSDF �lters
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Figure 11: Examples of face images of the Extended Yale Face Database B used for pattern classi�cation.

is 44 true-class images and 268 false-class training images (in average). This represents a reduction of 31.2%

of true-class images and 53.4% of false-class images, comparing with the number of training images used for

the design of SDF, OTSDF, and MOSSE �lters. The face classi�cation systems based on MOSDF, SDF,

OTSDF and MOSSE �lters operate as follows: the input image is �rstly preprocessed using a histogram

modi�cation [41] to reduce the e�ects of inhomogeneous illumination. Afterwards, the corrected image is

processed with each �lter in the bank according with the diagram shown in Fig. 1. The correlation plane

with the highest DC value among all �lters in the bank is considered as the output plane of the bank. Next,

a support vector machines (SVM) classi�er [42], is used to decide if the input face is a target or an impostor.

The SVM classi�er utilizes as features the values of the DC and correlation peak of the output plane. The

system assigns the detected face to the corresponding category of the �lter that yields the highest DC value.

Fig. 12 shows examples of the SVM classi�er for one subject, obtained with each of the tested composite

�lters. We can see, that the proposed MOSDF �lters yield the highest interclass separation (margin) and

exhibit the better intraclass compaction. Next, we compute the confusion matrix for each �lter bank for 640

face images corrupted with additive noise of 100 dB, 50 dB, 20 dB, 10 dB, and 5 dB SNR. These matrices

show the percentage of decisions (classi�cations) made by the system versus the number of input faces per

subject. Examples of the obtained confusion matrices for MOSDF, SDF, and OTSDF �lters are presented

in Fig. 13. It can be seen, that for additive noise SNR of 100 dB the MOSDF and OTSDF �lters with

correctly classi�cation rates of 98.4% and 100%, respectively, yield the best results. It is interesting to note

by comparing the performance of the basic SDF �lter (Fig. 13(b)) with the performance of the MOSDF

�lter (Fig. 13(a)), that the MOSDF �lters yield signi�cantly lower classi�cation errors, by performing a

better selection of the training images during the �lter design. This e�ect is more evident when comparing

the classi�cation results for low SNR values of additive noise (compare Fig. 13(e) with Fig. 13(f), and Fig.

13(i) with Fig. 13(j)). One can observe that the OTSDF �lters yield a slightly better performance than that

obtained with the MOSDF �lters when the e�ect of additive noise is negligible (100 dB SNR). However,

when the SNR of noise decreases the performance of the OTSDF �lters is signi�cantly lower than that of

the MOSDF �lters. This can be seen by comparing Fig. 13(e) with Fig. 13(g), and Fig. 13(i) with Fig.
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Figure 12: Examples of SVM classi�er for 640 face images. (a) MOSDF, (b) SDF, (c) OTSDF, (d) MOSSE.

13(k). An interesting behavior of OTSDF �lters is that for additive noise levels of 100 dB, 50 dB, and 20

dB SNR, the �lters only yield rejection errors (see Fig. 13(c) and (g)). The MOSSE �lters exhibit the worst

classi�cation performance among all tested �lters. Actually, the MOSSE �lters only perform well when the

e�ect of additive noise is negligible.

Finally, Fig. 14 summarizes the classi�cation performance of the tested �lters given in terms of rates

of positive classi�cations, false positive errors, and rejections. We can see from Fig. 14(a) that all tested

�lters perform well when the additive noise is negligible. However, from 20 dB SNR and below the rate

of correct classi�cations of OTSDF and MOSSE �lters decreases considerably, while the proposed MOSDF

�lters maintains high performance rates. The OTSDF �lters yield low rates of misclassi�cation errors for

additive noise levels of 100 dB, 50 dB, and 20 dB SNR at the price of high rate of rejection errors. Finally,

we can conclude that the proposed approach for the design of composite correlation �lters is e�ective for

pattern recognition.

4.1. Conclusions

A new optimization algorithm for the design of composite correlation �lters for distortion invariant

target recognition was presented. The algorithm combines a multi-objective evolutionary strategy (SPEA2)

in conjunction with a variable length crossover and coding technique (SAGA) to synthesize a �lter bank

of SDF �lters with an optimized performance in terms of DC, MAE and SNR metrics. A �lter bank of

optimized �lters can be designed by means of the suggested binary-search-based algorithm. This algorithm

allows the construction of a �lter bank by maximizing the pattern recognition performance while minimizing

the computational complexity of the overall system. Given a vast search space of feasible true- and false-class

templates, the proposed algorithm �nds a subset of these templates that allows the synthesis of composite

�lters with an optimized performance in terms of a trade-o� among several con�icting criteria. The obtained

results showed that the proposed multi-objective composite �lters yield a better recognition performance

in terms of the DC and LE measures than that obtained with OTSDF and MOSSE �lters. The composite
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Figure 13: Confusion matrices of MOSDF, SDF, and OTSDF �lters in face classi�cation. First row ((a)-(d)): MOSDF, SDF,
and OTSDF �lters in environment of additive noise with 100 dB SNR. Second row ((e)-(h)): MOSDF, SDF, and OTSDF �lters
in environment of additive noise with 20 dB SNR. Third row ((i)-(l)): MOSDF, SDF, and OTSDF �lters in environment of
additive noise with 5 dB SNR.
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Figure 14: Performance of MOSDF, SDF, OTSDF, and MOSSE �lters in face classi�cation. (a) percentages of correctly
classi�cations, (b) percentages of misclassi�cation errors (no decision), (c) percentages of rejection errors.

�lters synthesized with the proposed approach have exhibited a robust behavior in highly noisy conditions

for target recognition and classi�cation problems.
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