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ABSTRACT

In this article, we studied these strong product graphs involving Pm�Cn, Cm�Cn, Km�Pn,
Km�Cn, Km�Kn, K1,m−1�Pn and K1,m−1�Cn. We have found the decycling numbers
of those graphs based on a sandwich principle.
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1 Introduction

The problem of eliminating all cycles in a graph by removing a set of vertices goes back to the
work of Kirchhoff in [1] on spanning trees. The problem of determining decycling numbers has
long been known to be NP-complete, as shown in [2]. Therefore, many results on exact values
of decycling numbers have been obtained only for some special families of graphs, such as
cubes and grids in [3] and [4]. The exact value of decycling numbers of cartesian product of
two cycles has been obtained in [5]. And in [6], the exact value of decycling numbers of strong
product of two paths has been obtained. It has also been shown in [6] that there exist a sharp
lower bound and a sharp upper bound for the decycling number of a strong product graph
G1 �G2. Various other results can be found in [7].
In this article, we are focused on the decycling numbers of the strong product graphs. The
outline of this paper is as follows: We first describe the problem and introduce already-known
theorems and lemmas in Section 2. Some new notations and new lemmas are then given in
Section 3. Finally, we propose our main results that contains seven crucial theorems in Section
4.



2 The problem and past results

The graphs considered here are finite, simple, undirected and denoted by G = (V (G), E(G)).
Let G1 = (V1, E1), G2 = (V2, E2) be two graphs. A strong product of two graphs G1 with
G2 is thus defined as G1 � G2 = (V,E) where V = {(ui, vj) | ∀ ui ∈ V1, vj ∈ V2}, E =

{((u1, v1), (u2, v2)) | ∀ (u1, v1), (u2, v2) ∈ V, (u1, u2) ∈ E1 when v1 = v2 or (v1, v2) ∈ E2 when u1 =

u2 or (u1, u2) ∈ E1 and (v1, v2) ∈ E2}. If S ⊆ V (G) and G− S is acyclic, then S is a decycling
set of G. A decycling set of the smallest size is a minimum decycling set and denoted by ϕ-set.
The size of a ϕ-set of G is the decycling number of G and denoted by ϕ(G). Please refer to [8]
for the corresponding definitions and notations.
Theorem 2.1 [4]. If G and H are homeomorphic graphs, then ϕ(G) = ϕ(H).
Lemma 2.2 [6]. If G1 ⊆ G, G2 ⊆ G and V (G1) ∩ V (G2) = ∅, then ϕ(G) ≥ ϕ(G1) + ϕ(G2).
Lemma 2.3 [6]. ϕ(G1 �G2) ≥ max{|G1| · ϕ(G2), |G2| · ϕ(G1)}.
Lemma 2.4 [6]. Suppose G1 = (V1, E1), G2 = (V2, E2). For each V ′

1 ⊆ V1, V ′
2 ⊆ V2,

ϕ(G1 �G2) ≥ max{ϕ(G1|V ′
1
�G2) + ϕ(G1|V1−V ′

1
�G2), ϕ(G1 �G2|V ′

2
) + ϕ(G1 �G2|V2−V ′

2
)}.

Lemma 2.5 [6]. ϕ(G1 � G2) ≤ min{|G1| · |G2| − α(G1) · (|G2| − ϕ(G2)), |G1| · |G2| − α(G2) ·
(|G1| − ϕ(G1))}, where α(G) denotes the independence number of graph G.
Lemma 2.6 [6]. ϕ(P2 � Pn) = 2 ·

⌊
n
2

⌋
.
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Figure 2.1. A ϕ-set for P2 � P7.

Lemma 2.7 [6]. The ϕ-set of P2 � P2k+1 is { x1,2, x2,2, x1,4, x2,4, · · · , x1,2k, x2,2k } (see Figure
2.1 for the case k = 3).
Theorem 2.8 [6]. ϕ(Pm � Pn) = min{m ·

⌊
n
2

⌋
, n ·

⌊
m
2

⌋
}.

3 Notations and Preliminaries

In order to prove the following new results, we introduce some useful notations as follows. Let
the vertex sets of G1 and G2 be {u1, u2, · · · , u|G1|} and {v1, v2, · · · , v|G2|} respectively. Denote
xi,j = (ui, vj) and R(i) = {xi,j | j = 1, 2, · · · , |G2|} for i = 1, 2, · · · , |G1| and C(j) = {xi,j | i =
1, 2, · · · , |G1|} for j = 1, 2, · · · , |G2|. R(i) is called the i-th row and C(j) is called the j-th
column of G1 � G2. If S is a vertex subset of G1 � G2, we denote the vertices of S in the i-th
row of G1 �G2 by S(R(i)) and the vertices of S in the j-th column of G1 �G2 by S(C(j)), and
by extension, for k ≤ l, denote the set S(R(k)) ∪ S(R(k + 1)) ∪ · · · ∪ S(R(l)) by S(R(k, l)) and
the set S(C(k)) ∪ S(C(k + 1)) ∪ · · · ∪ S(C(l)) by S(C(k, l)).
In the following Pn, Cn, K1, n−1 and Kn denotes a path, circuit, star and complete graph on
n vertices respectively. Especially, in the following we denote a vertex in a decycling set by a
bigger black dot “ • ”. For our purpose we need the following statement.
Lemma 3.1. ϕ(P2 � Cn) = 2 ·

⌈
n
2

⌉
.



Proof. We first prove that there is no ϕ-set of P2�Cn containing at most one vertex from each
column of P2 � Cn. If S ⊆ P2 � Cn and |S(C(j))| ≤ 1 for j = 1, 2, · · · , n, then P2 � Cn − S

has a subgraph isomorphic to Cn. Therefore, there is no ϕ-set of P2 � Cn containing at most
one vertex for each column of P2 � Cn. That is, there always exists a column C(j) (1 ≤ j ≤ n)

of P2 � Cn so that |S(C(j))| = 2. Without loss of generality, we assume that |S(C(1))| = 2.
Then, by Lemma 2.6, |S| = |S(C(1))| + |S(C(2, n))| ≥ 2 + ϕ(P2 � Pn−1) = 2 + 2 ·

⌊
n−1
2

⌋
=

2 + 2 ·
⌈
n−2
2

⌉
= 2 ·

⌈
n
2

⌉
. On the other hand, there are decycling sets of this size, such as

{x1,1, x2,1, x1,3, x2,3, · · · , x1,2k−1, x2,2k−1} where k =
⌈
n
2

⌉
. So the lemma follows (see Figure 3.1

for the case P2 � C6). �
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Figure 3.1. A ϕ-set for P2 � C6.

Lemma 3.2. The ϕ-set of P2 � C2k is {x1,1, x2,1, x1,3, x2,3, · · · , x1,2k−1, x2,2k−1} or
{x1,2, x2,2, x1,4, x2,4, · · · , x1,2k, x2,2k}.
Proof. By the proof of Lemma 3.1, for any ϕ-set S of P2�C2k, there exists a column C(j) (1 ≤
j ≤ 2k) of P2�C2k so that |S(C(j))| = 2. Without loss of generality, we assume that |S(C(1))| =
2. Then P2�C2k−S(C(1)) is a copy of P2�P2k−1. By Lemma 2.7, the ϕ-set of P2�C2k−S(C(1))

is {x1,3, x2,3, · · · , x1,2k−1, x2,2k−1}. Hence S = {x1,1, x2,1, x1,3, x2,3, · · · , x1,2k−1, x2,2k−1}.
By symmetry, {x1,2, x2,2, x1,4, x2,4, · · · , x1,2k, x2,2k} is the other ϕ-set of P2 � C2k, which proves
the lemma (see Figure 3.1 for a ϕ-set of P2 � C6). �
Lemma 3.3. ϕ(Km � P2) = 2 ·m− 2.
Proof. From the definition of the strong product of two graphs, we can conclude that Km � P2

is isomorphic to K2m. Thus ϕ(Km � P2) = ϕ(K2m) = 2 ·m− 2. �

4 Main results

In this section, we present our seven new theorems.
Theorem 4.1. ϕ(Pm � Cn) = min{m ·

⌈
n
2

⌉
, n ·

⌊
m
2

⌋
+

⌈
m
2

⌉
}.

Proof. Applying Lemma 2.5, ϕ(Pm � Cn) ≤ min{m · n −
⌈
m
2

⌉
· (n − 1), m · n −

⌊
n
2

⌋
· m} =

min{n ·
⌊
m
2

⌋
+

⌈
m
2

⌉
, m ·

⌈
n
2

⌉
} = min{m ·

⌈
n
2

⌉
, n ·

⌊
m
2

⌋
+

⌈
m
2

⌉
}. So in the rest of the proof, we

only have to prove that ϕ(Pm � Cn) ≥ min{m ·
⌈
n
2

⌉
, n ·

⌊
m
2

⌋
+

⌈
m
2

⌉
}. Consider the following

four cases.
Case 1. m = 2k.
Since m = 2k, hence min{m ·

⌈
n
2

⌉
, n ·

⌊
m
2

⌋
+

⌈
m
2

⌉
} = m ·

⌈
n
2

⌉
. So it suffices to prove that

ϕ(Pm � Cn) ≥ m ·
⌈
n
2

⌉
. We use induction on m. When m = 2, by Lemma 3.1, the inequality

holds. Now we assume that for m = 2(k − 1), the inequality holds. Let m = 2k. By Lemma 2.4
and the induction hypothesis, ϕ(Pm�Cn) ≥ ϕ(P2�Cn)+ϕ(Pm−2�Cn) = 2·

⌈
n
2

⌉
+(m−2)·

⌈
n
2

⌉
=

m ·
⌈
n
2

⌉
.

Case 2. m = 2k + 1, n = 2s+ 1.



Since m = 2k + 1, n = 2s + 1, hence min{m ·
⌈
n
2

⌉
, n ·

⌊
m
2

⌋
+

⌈
m
2

⌉
} = n ·

⌊
m
2

⌋
+

⌈
m
2

⌉
. So we

only have to prove that ϕ(Pm � Cn) ≥ n ·
⌊
m
2

⌋
+

⌈
m
2

⌉
. We use induction on m. When m = 1,

the inequality obviously holds. Now we assume that for m = 2(k − 1) + 1, the inequality holds.
Let m = 2k + 1. By Lemma 2.4 and the induction hypothesis, ϕ(Pm � Cn) ≥ ϕ(P2 � Cn) +

ϕ(Pm−2 �Cn) ≥ 2 ·
⌈
n
2

⌉
+ n ·

⌊
m−2
2

⌋
+
⌈
m−2
2

⌉
= n+1+ n ·

⌊
m
2

⌋
− n+

⌈
m
2

⌉
− 1 = n ·

⌊
m
2

⌋
+
⌈
m
2

⌉
.

Case 3. m = 2k + 1, n = 2s (k < s).
Since m = 2k+1, n = 2s (k < s), hence min{m ·

⌈
n
2

⌉
, n ·

⌊
m
2

⌋
+
⌈
m
2

⌉
} = n ·

⌊
m
2

⌋
+
⌈
m
2

⌉
. So it

suffices to prove that ϕ(Pm �Cn) ≥ n ·
⌊
m
2

⌋
+
⌈
m
2

⌉
. let S be any ϕ-set of Pm �Cn. It is obvious

that for any i (1 ≤ i ≤ m − 1), |S(R(i))| ≥ 1 and |S(R(i, i + 1))| ≥ ϕ(P2 � Cn) = n. Now if for
any i (1 ≤ i ≤ m−1), |S(R(i, i+1))| ≥ ϕ(P2�Cn)+1 = n+1, then we have |S| = |S(R(1))|+
|S(R(2, 3))|+|S(R(4, 5))|+· · ·+|S(R(2k, 2k+1))| ≥ 1+k·(n+1) = 1+

⌊
m
2

⌋
·(n+1) = n·

⌊
m
2

⌋
+
⌈
m
2

⌉
.

Otherwise, there exists some i (1 ≤ i ≤ m − 1) so that |S(R(i, i + 1))| = ϕ(P2 � Cn) = n.
According to Lemma 3.2, we know that |S(R(i))| = |S(R(i+ 1))| = n

2 . When i is odd, by Case
1, |S| = |S(R(1, i − 1))| + |S(R(i))| + |S(R(i + 1,m))| ≥ ϕ(Pi−1 � Cn) +

n
2 + ϕ(Pm−i � Cn) ≥

(i− 1) ·
⌈
n
2

⌉
+

⌈
n
2

⌉
+ (m− i) ·

⌈
n
2

⌉
= m ·

⌈
n
2

⌉
≥ n ·

⌊
m
2

⌋
+

⌈
m
2

⌉
. When i is even, again by Case

1, |S| = |S(R(1, i))| + |S(R(i + 1))| + |S(R(i + 2,m))| ≥ ϕ(Pi � Cn) +
n
2 + ϕ(Pm−i−1 � Cn) ≥

i ·
⌈
n
2

⌉
+

⌈
n
2

⌉
+ (m− i− 1) ·

⌈
n
2

⌉
= m ·

⌈
n
2

⌉
≥ n ·

⌊
m
2

⌋
+

⌈
m
2

⌉
.

Case 4. m = 2k + 1, n = 2s (k ≥ s).
Since m = 2k + 1, n = 2s (k ≥ s), hence min{m ·

⌈
n
2

⌉
, n ·

⌊
m
2

⌋
+

⌈
m
2

⌉
} = m ·

⌈
n
2

⌉
. So we

only have to prove that ϕ(Pm � Cn) ≥ m ·
⌈
n
2

⌉
. Let S be any ϕ-set of Pm � Cn. It is obvious

that for any i (1 ≤ i ≤ m − 1), |S(R(i))| ≥ 1 and |S(R(i, i + 1))| ≥ ϕ(P2 � Cn) = n. Now
if for any i (1 ≤ i ≤ m − 1), |S(R(i, i + 1))| ≥ ϕ(P2 � Cn) + 1 = n + 1, then we can get
that |S| = |S(R(1))| + |S(R(2, 3))| + |S(R(4, 5))| + · · · + |S(R(2k, 2k + 1))| ≥ 1 + k · (n + 1) =

1 +
⌊
m
2

⌋
· (n + 1) = n ·

⌊
m
2

⌋
+

⌈
m
2

⌉
≥ m ·

⌈
n
2

⌉
. Otherwise, there exists some i (1 ≤ i ≤ m − 1)

so that |S(R(i, i + 1))| = ϕ(P2 � Cn) = n. According to Lemma 3.2, we know that |S(R(i))| =
|S(R(i+1))| = n

2 . When i is odd, by Case 1, |S| = |S(R(1, i−1))|+|S(R(i))|+|S(R(i+1,m))| ≥
ϕ(Pi−1�Cn)+

n
2+ϕ(Pm−i�Cn) ≥ (i−1)·

⌈
n
2

⌉
+
⌈
n
2

⌉
+(m−i)·

⌈
n
2

⌉
= m·

⌈
n
2

⌉
. When i is even, again

by Case 1, |S| = |S(R(1, i))|+|S(R(i+1))|+|S(R(i+2,m))| ≥ ϕ(Pi�Cn)+
n
2+ϕ(Pm−i−1�Cn) ≥

i ·
⌈
n
2

⌉
+

⌈
n
2

⌉
+ (m− i− 1) ·

⌈
n
2

⌉
= m ·

⌈
n
2

⌉
. This completes the proof of Theorem 4.1. �

Theorem 4.2. When m or n is even, ϕ(Cm�Cn) = min{m ·
⌈
n
2

⌉
+
⌊
n
2

⌋
, n ·

⌈
m
2

⌉
+
⌊
m
2

⌋
}; when

m and n are both odd and m ≤ n, n ·
⌈
m
2

⌉
≤ ϕ(Cm � Cn) ≤ n ·

⌈
m
2

⌉
+ 1.

Proof. When m or n is even. Applying Lemma 2.5, ϕ(Cm�Cn) ≤ min{m ·n−
⌊
m
2

⌋
·(n−1), m ·

n−
⌊
n
2

⌋
·(m−1)} = min{n·

⌈
m
2

⌉
+
⌊
m
2

⌋
, m·

⌈
n
2

⌉
+
⌊
n
2

⌋
} = min{m·

⌈
n
2

⌉
+
⌊
n
2

⌋
, n·

⌈
m
2

⌉
+
⌊
m
2

⌋
}. So in

the rest of the proof, we only have to prove that ϕ(Cm�Cn) ≥ min{m·
⌈
n
2

⌉
+
⌊
n
2

⌋
, n·

⌈
m
2

⌉
+
⌊
m
2

⌋
}.

Since ϕ(Cm � Cn) = ϕ(Cn � Cm), without loss of generality, we can assume that m ≤ n. So it
suffices to prove the following three cases.
Case 1. m = 2k, n = 2s+ 1 (k ≤ s).
Since m = 2k, n = 2s+1 (k ≤ s), hence min{m ·

⌈
n
2

⌉
+
⌊
n
2

⌋
, n ·

⌈
m
2

⌉
+
⌊
m
2

⌋
} = n ·

⌈
m
2

⌉
+
⌊
m
2

⌋
.

So we only have to prove that ϕ(Cm�Cn) ≥ n ·
⌈
m
2

⌉
+
⌊
m
2

⌋
. Since ϕ(P2�Cn) = 2 ·

⌈
n
2

⌉
= n+1,

hence ϕ(Cm �Cn) ≥ ϕ(Pm �Cn) ≥ k · ϕ(P2 �Cn) = k · (n+ 1) = m
2 · (n+ 1) = n ·

⌈
m
2

⌉
+
⌊
m
2

⌋
.

Case 2. m = 2k + 1, n = 2s (k < s).
Since m = 2k+1, n = 2s (k < s), hence min{m ·

⌈
n
2

⌉
+
⌊
n
2

⌋
, n ·

⌈
m
2

⌉
+
⌊
m
2

⌋
} = m ·

⌈
n
2

⌉
+
⌊
n
2

⌋
.



So it suffices to prove that ϕ(Cm �Cn) ≥ m ·
⌈
n
2

⌉
+
⌊
n
2

⌋
. Since ϕ(Cm � P2) = 2 ·

⌈
m
2

⌉
= m+ 1,

hence ϕ(Cm �Cn) ≥ ϕ(Cm �Pn) ≥ s · ϕ(Cm �P2) = s · (m+1) = n
2 · (m+1) = m ·

⌈
n
2

⌉
+
⌊
n
2

⌋
.

Case 3. m = 2k, n = 2s (k ≤ s).
Since m = 2k, n = 2s (k ≤ s), hence min{m ·

⌈
n
2

⌉
+

⌊
n
2

⌋
, n ·

⌈
m
2

⌉
+

⌊
m
2

⌋
} = n ·

⌈
m
2

⌉
+

⌊
m
2

⌋
.

So it suffices to prove that ϕ(Cm � Cn) ≥ n ·
⌈
m
2

⌉
+

⌊
m
2

⌋
. Let S be any ϕ-set of Cm � Cn. By

Lemma 3.1, we know that for any i (1 ≤ i ≤ m when i = m, i + 1 = 1), |S(R(i, i + 1))| ≥
ϕ(P2�Cn) = n. Now if for any i, |S(R(i, i+1))| ≥ ϕ(P2�Cn)+1 = n+1, then we can get that
|S| = |S(R(1, 2))|+|S(R(3, 4))|+· · ·+|S(R(2k−1, 2k))| ≥ k·(n+1) = m

2 ·(n+1) = n·
⌈
m
2

⌉
+
⌊
m
2

⌋
.

Otherwise, there exists some i so that |S(R(i, i + 1))| = ϕ(P2 � Cn) = n. Without loss of
generality, we assume that |S(R(1, 2))| = ϕ(P2 � Cn) = n. By Lemma 3.2 and symmetry,
S(R(1, 2)) = {x1,1, x2,1, x1,3, x2,3, · · · , x1,n−1, x2,n−1}. Hence {x1,1, x2,1} ⊂ S(C(1, 2)). Again
by Lemma 3.2, we conclude that |S(C(1, 2))| ≥ m+ 1. Using the same method, we know that
|S(C(3, 4))| = · · · = |S(C(n − 1, n))| ≥ m + 1. Hence |S| = |S(C(1, 2))| + |S(C(3, 4))| + · · · +
|S(C(n− 1, n))| ≥ s · (m+ 1) = n

2 · (m+ 1) = m ·
⌈
n
2

⌉
+

⌊
n
2

⌋
≥ n ·

⌈
m
2

⌉
+

⌊
m
2

⌋
.

When m and n are both odd and m ≤ n. Let S be any ϕ-set of Cm � Cn. By Lemma
3.1, we know that for any j (1 ≤ j ≤ n when j = n, j + 1 = 1), |S(C(j, j + 1))| ≥
ϕ(Cm � P2) = 2 ·

⌈
m
2

⌉
. Hence, there exists some j (1 ≤ j ≤ n) so that |S(C(j))| ≥

⌈
m
2

⌉
.

Without loss of generality, we assume that |S(C(1))| ≥
⌈
m
2

⌉
. Then again by Lemma 3.1,

|S| = |S(C(1))|+ |S(C(2, 3))|+ · · ·+ |S(C(n− 1, n))| ≥
⌈
m
2

⌉
+ n−1

2 · 2 ·
⌈
m
2

⌉
= n ·

⌈
m
2

⌉
. Next we

construct a decycling set S′ of Cm � Cn as follow:
S′ = S′(C(1)) ∪ S′(C(2)) ∪ · · · ∪ S′(C(n)) ,
S′(C(1)) = {x1,1, x⌈m

2 ⌉,1, x⌈m
2 ⌉+1,1, · · · , xm−1,1, xm,1} ,

S′(C(i)) = {xf(1+i·⌊m
2 ⌋),i, xf(2+i·⌊m

2 ⌋),i, · · · , xf(⌊m
2 ⌋+i·⌊m

2 ⌋),i, xf(⌈m
2 ⌉+i·⌊m

2 ⌋),i} (2 ≤ i ≤ m) ,

where f(x) =

mod (x,m) m - x,

m m | x.

S′(C(i)) = {x⌈m
2 ⌉,i, x⌈m

2 ⌉+1,i, · · · , xm−1,i, xm,i} (m+ 1 ≤ i ≤ n and mod (i, 2) = 0) ,
S′(C(i)) = {x1,i, x2,i, · · · , x⌊m

2 ⌋,i, x⌈m
2 ⌉,i} (m+ 1 ≤ i ≤ n and mod (i, 2) = 1).

On one hand, since every column of Cm � Cn contains
⌈
m
2

⌉
vertices of S′ except of the first

column, which contains
⌈
m
2

⌉
+ 1 vertices of S′, we infer that |S′| = n ·

⌈
m
2

⌉
+ 1. On the other

hand,it is easy to find that Cm � Cn − S′ is a tree. Hence ϕ(Cm � Cn) ≤ n ·
⌈
m
2

⌉
+ 1. So

n ·
⌈
m
2

⌉
≤ ϕ(Cm � Cn) ≤ n ·

⌈
m
2

⌉
+ 1. This completes the proof of Theorem 4.2. �

Theorem 4.3. ϕ(Km � Pn) = m · n− 2 ·
⌈
n
2

⌉
.

Proof. Applying Lemma 2.5, ϕ(Km � Pn) ≤ min{m · n− n, m · n−
⌈
n
2

⌉
· 2} = m · n− 2 ·

⌈
n
2

⌉
.

So in the rest of the proof, we only have to prove that ϕ(Km � Pn) ≥ m · n − 2 ·
⌈
n
2

⌉
. We use

induction on n. When n = 1, ϕ(Km �Pn) = ϕ(Km) = m− 2, the inequality holds. When n = 2,
by Lemma 3.3, the inequality holds. Now we assume that for n = s(s ≥ 2), the inequality holds.
Let n = s + 2. By Lemma 2.4 and the induction hypothesis, ϕ(Km � Pn) = ϕ(Km � Ps+2) ≥
ϕ(Km � Ps) + ϕ(Km � P2) ≥ m · s− 2 ·

⌈
s
2

⌉
+ 2 ·m− 2 = m(s+ 2)− 2 ·

⌈
s+2
2

⌉
= m · n− 2 ·

⌈
n
2

⌉
.

So for any n, the inequality holds. Hence this theorem has been proved. �
Theorem 4.4. ϕ(Km � Cn) = m · n− 2 ·

⌊
n
2

⌋
.

Proof. Applying Lemma 2.5, ϕ(Km�Cn) ≤ min{m ·n−(n−1), m ·n−
⌊
n
2

⌋
·2} = m ·n−2 ·

⌊
n
2

⌋
.



So in the rest of the proof, we only have to prove that ϕ(Km � Cn) ≥ m · n− 2 ·
⌊
n
2

⌋
. Consider

the following two cases.
Case 1. n = 2s.
Since n = 2s, hence m · n− 2 ·

⌊
n
2

⌋
= 2 ·m · s− 2 · s = (m− 1) · n. So we only have to prove

that ϕ(Km�Cn) ≥ (m− 1) ·n. By Lemma 2.2 and Theorem 4.3, ϕ(Km�Cn) ≥ ϕ(Km�Pn) =

m · n− 2 ·
⌈
n
2

⌉
= m · n− n = (m− 1) · n.

Case 2. n = 2s+ 1.
Since n = 2s + 1, hence m · n − 2 ·

⌊
n
2

⌋
= m · n − (n − 1) = m · n − n + 1. So it suffices to

prove that ϕ(Km � Cn) ≥ m · n − n + 1. Let S be any ϕ-set of Km � Cn. We can conclude
that there exist some column C(j) (1 ≤ j ≤ n) of Km � Cn, so that |S(C(j))| = m. Otherwise,
for any column of Km � Cn, there exist at least one vertex in graph Km � Cn − S. Then
Km � Cn − S has a subgraph isomorphic to Cn, which contradicts the fact that S is a ϕ-set of
Km � Cn. So without loss of generality, we assume that |S(C(1))| = m. Furthermore, for any
i (2 ≤ i ≥ n−1), by Lemma 3.3, we can conclude that |S(C(i, i+1))| ≥ ϕ(Km�P2) = 2 ·m−2.
So |S| = |S(C(1))|+|S(C(2, 3))|+· · ·+|S(C(2s, 2s+1))| ≥ m+s·(2·m−2) = m+2·s·m−2·s =
m+ (n− 1) ·m− (n− 1) = m · n− n+ 1. Hence this proves the theorem. �
Theorem 4.5. ϕ(Km �Kn) = m · n− 2.
Proof. From the definition of the strong product of two graphs, we can conclude that Km�Kn

is isomorphic to Kmn. Thus ϕ(Km �Kn) = ϕ(Kmn) = m · n− 2. �
Theorem 4.6. When m ≥ 3, ϕ(K1,m−1 � Pn) = n.
Proof. When m ≥ 3, we can conclude that K1, m−1 � Pn ⊇ P3 � Pn. By Lemma 2.2 and
Theorem 2.8, ϕ(K1,m−1 � Pn) ≥ ϕ(P3 � Pn) = min{3 ·

⌊
n
2

⌋
, n ·

⌊
3
2

⌋
} = n. On the other

hand, from the definition of strong product of two graphs, we know that for ∀j ∈ 1, 2, · · · , n, the
induced subgraph (K1,m−1�Pn)|C(j) is a copy of K1,m−1. If we denotes the vertex of maximum
degree in (K1,m−1�Pn)|C(j) by x1,j , then vertex set S = {x1,1, x1,2, · · · , x1,n} is a decycling set
of K1,m−1 � Pn where |S| = n. �
Theorem 4.7. When m, n ≥ 3, ϕ(K1,m−1 � Cn) = n+m− 1.
Proof. When m, n ≥ 3, we denote K1,m−1 = {u1, u2, · · · , um} where u1 is the vertex of
maximum degree in K1,m−1, denote Cn = v1v2 · · · vnv1 and denote (ui, vj) in K1,m−1 � Cn by
xi,j . We first prove that ϕ(K1,m−1 � Cn) ≥ n+m− 1. Now let S be any ϕ-set of K1,m−1 � Cn.
So it suffices to prove that |S| ≥ n + m − 1. Here we only have to prove the following three
cases.
Case 1. |S(R(1))| = n.
Since |S(R(1))| = n, hence for any i (2 ≤ i ≤ m), |S(R(i))| ≥ 1. Otherwise, there exists
some i (2 ≤ i ≤ m), N(R(i)) = 0. Then circuit Cn = xi,1xi,2 · · ·xi,nxi,1 is a subgraph of
K1,m−1�Cn−S, contradicting the fact that S is a ϕ-set of K1,m−1�Cn. Hence |S| = |S(R(1))|+
|S(R(2))|+ · · ·+ |S(R(m))| ≥ n+ (m− 1) · 1 = n+m− 1.
Case 2. |S(R(1))| = n− 1.
Since |S(R(1))| = n − 1, there exists some j (1 ≤ j ≤ n) so that x1,j /∈ S. By symmetry,
we can assume that x1,1 /∈ S. Then for any i (2 ≤ i ≤ m), K1,m−1 � Cn|{x1,1,xi,1,xi,2,··· ,xi,n}

is homeomorphic to K4. Hence for any i (2 ≤ i ≤ m), |S(R(i))| ≥ 2. So, for m ≥ 3, |S| =
|S(R(1))|+ |S(R(2))|+ · · ·+ |S(R(m))| ≥ (n−1)+(m−1) ·2 = n+m−1+(m−2) ≥ n+m−1.



Case 3. |S(R(1))| = n− k (2 ≤ k ≤ n).
By Lemma 3.1, ϕ(P2�Cn) = 2 ·

⌈
n
2

⌉
. Since |S(R(1))| = n−k, for any i (2 ≤ i ≤ m), |S(R(i))| ≥

2 ·
⌈
n
2

⌉
−(n−k) ≥ n−(n−k) = k. Because m ≥ 3 and 2 ≤ k ≤ n, (m−2)(k−1)−1 ≥ 0. Hence

|S| = |S(R(1))|+|S(R(2))|+· · ·+|S(R(m))| ≥ (n−k)+(m−1)·k = n+m−1+(m−2)(k−1)−1 ≥
n+m− 1.
So ϕ(K1,m−1�Cn) ≥ n+m−1. On the other hand, S = {x1,1, x1,2, · · · , x1,n}∪{x2,1, x3,1, · · · , xm,1}
is a decycling set of K1,m−1 � Cn where |S| = n+m− 1. �
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