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Summation by Parts Finite Difference
Approximations for Seismic and
Seismo-Acoustic Computations

Bjorn Sjogreen and N. Anders Petersson

Abstract We develop stable finite difference approximations for atirpHysics
problem that couples elastic wave propagation in one dortiacoustic wave
propagation in another domain. The approximation consistée finite difference
schemes in each domain together with discrete interfacdittons that couple the
two schemes. The finite difference approximations use suionay-parts (SBP)
operators, that lead to stability of the coupled problenrtiermore, we develop a
new way to enforce boundary conditions for SBP discretiretiof first order prob-
lems. The new method, which uses ghost points to enforceathiedary conditions,
is a flexible alternative to the more established projectiod SAT methods.

1 Introduction

Near surface seismic events emit both elastic waves tray#lithe earth and acous-
tic waves propagating in the atmosphere. Acoustic wavesatsmoccur because
of other events, such as bolides or vulcanic eruptions.tielasd acoustic waves
are recorded by seismographs and by infrasound instruna¢niarious locations
around the world. A coupled seismo-acoustic modeling ciédipais of relevance to
many applications in order to analyze and understand sejisants and infrasound
recordings.

We will here model seismic wave propagation by the elastivemaguation.
Acoustic infrasound will be described by the linearized éfuidquations of com-
pressible gas dynamics. The elastic and acoustic domansoapled by interface
conditions that enforce continuity of normal stresses anabomal velocities. We
will here develop finite difference discretizations, basadhe summation-by-parts
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(SBP) principle, of the elastic equations, the acoustiaéqguos, and the interface
conditions, that make the coupled seismo-acoustic probtabie.

In [2], we made use of ghost points to enforce physical bogndanditions on
SBP discretizations of the elastic wave equation in secoddrdormulation. For
first order hyperbolic PDEs, boundary conditions in the SBRtext have tradition-
ally been imposed by either projection or penalty term (SAV® will here develop
ghost point enforced boundary conditions also for SBP diszations of problems
in first order formulation.

2 SBP operators

Let D be a standard summation by parts finite difference operataagproximat-

ing a first derivativeD can be represented as a réaby N matrix acting on grid
functionsu = (up, Uy, Us,..., Uy). The grid functions are defined on a domain
0 < x < 1, with uniformly distributed grid pointx; = (j —1)h, j =1,2,...,N,
whereh = 1/(N — 1) is the grid spacing. When ghost points are present they are
located at the points= 0 andj = N+ 1. The standard SBP identity,

(u,Dv)p = —(Du, V) — UrV1 + UNWN, 1)

is assumed to hold in a scalar product

N
(UVh=h% wuy;, (2)
=1

wherew; are positive weights. We extend the difference opertty handle ghost
points by adding an operator to the first and last roviDofThe resulting operator,
D, can be represented as a rectangular matrix Witbws andN + 2 columns,

_ 1( BT
D=(0D0)+¢| 0 . 3)
-5

BT = (Bo, B, -+, B, O, -+, 0) 4)
6T:(0,"-,07d,d71,---7&)) (5)

At the first grid point,(Du); is replaced byDu); + £BTd, where we denote
U= (UO; Uz, Uz, ...,UN, uN+l)T-

Similarly, at the last grid point, the difference approxiioa is (Du)n — %6T a.

Lemma 1. The difference operatcﬁ satisfies the SBP-like identity

(u,D¥)h = —(Du, V) — Uz (V1 — w1 BTY) + un (v — and T T). (6)
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Proof. The definition ofD gives
B7=Dv-+ rer(BT0) — ren(877). 7)
wheree; = (1,0,...,0)" andey = (0,...,0,1)". It therefore follows from (1),
(u,D%)p = — (DU, V)p — UgVy + UNVN 4 U BTV — unand TV,
which leads to (6).

To illustrate the usage of (6), we consider the initial bcanyd/alue problem

u+aXjux=0, 0<x<1, t>0, (8)
u0,t) =g(t), t>0, 9)

wherea(x) is a real-valued function. We assura@) > 0 anda(1) > 0. We can
write (8) as
1

1 1
U= —Ea(x)ux— > (au), + S

Multiplying this equation byu and integrating over & x < 1 gives the estimate
1d

> Jul|? = %(u, axu) + % [a(0)u(0,t)® —a(1)u(1,t)?]

1 2, 1 2
< saful*+5a(0g(®)%,  (10)

wherea = |ay|«. (U,V) and||u|| denote the standatd scalar product and norm.
Letvj(t) be the semi-discrete approximatiorugk;, t). We discretize (8) in space
by mixing the standard and extended SBP operators,

dv 1 ~. 1 1
5= _EaDV_ED(aV)+§D(a)V' (11)

To derive an energy estimate, we form the scalar productémstwand (11),
(«M)n = —5(4@DT)n — 5(« D(@v))n+ 5 (v D(@V)n
We setw = avin the first term on the right hand side. The SBP property (6¢gi
(W,DV), = — (DW, V), — Wy (V1 — ar BT 9) +wiy (W — S ).
Therefore,

(V,Vt)h = = (v, D(a)V)h+ % [arvi (v — w1 BTY) — anvin(Wn — and T 0)]

NI =

We can write
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To WL N2 W T
va(v —@BTY) = (vi— 5 BT9) — ZL(BT?,

and the estimate for the semi-discrete problem becomes

1d|v[[Z 1 N2 w? o
L8 3 % (- 9979 Firo]
- % [(VN - %aﬂv)z - %2(5\7)2] . (12

The boundary data at= 0 (inflow) can be enforced by choosing the ghost point
valuevg such that

v 2BTI=g(t). (13)
At x =1 (outflow), we choose the ghost point valgg 1 such that
5" =0, (14)

which is an extrapolation formula. With the boundary coiudlis (13) and (14), we
arrive the estimate

1djvip _1 2, &1 0
- < =0hl|v —o(t
57 dt =2 hl[VIIa+ 29() ;
wherean = max; |D(a);|. This estimate corresponds to (10) for (8).

If, for example, we use a diagonal norm SBP operator thatiéder accurate
in the interior of the domain, and 3rd order near the boundagysolution can not
be expected to be more than 4th order accurate. It is thenmabke to choose

B0 = K (Vo — 4vy + 6v2 — 4vz+Va), (15)
6T\7: K(VN+1_4VN +6VN71_4VN72+VN*3)a (16)

wherek is a tunable parameter. With this choit877 = ¢(h®), i.e.,Dv has a 3rd
order truncation error near the boundary. Furthermore) {{tiposes the Dirichlet
boundary condition to 4th order accuracy. Inserting (1%) @r6) into (13) and (14),
respectively, lead to the boundary conditions
2(vi—g(t))
=== +4v;— 6V +4vz—
Vo Koo + 4V — OVo + 4V3 — Vg,
VN+1 = 4VN — BVN-1+4VN-2 — WN-3.

Remark 1In this simple example the ghost point valug, ; is only used to set
5"7 = 0. We could therefore have defin@without the termey(5'7), i.e., we
obtain the standard SBP procedure where no boundary condtexplicitly needed

at outflow boundaries. Furthermore, if the ghost pejit eliminated from (11) for

j =1, itturns out that the terma% appears. Hence, for this simple semi-discrete
problem the proposed technique is equivalent with an SAThotet
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3 Elastic-acoustic coupled problem

We consider a one dimensional domain of length 2L < x < L, with an elastic-
acoustic interface at= 0. The domain to the left;L < x <0, is a solid described
by the wave equation

Pt = (UWy)x+0, t>0 —L<x<O0 (17)

wherew is the displacemenpe(X) is the density of the soligy(x) its shear modulus,
andg = g(x,t) is a given forcing function. The domain to the right<x <L, is
acoustic and described by the linearized and symmetrizést Equations,

Gt + A(X)0x = E(x)q +f, (18)
whereq = (s, u, f), with
S= iIO— —CP p=—=p
pc” b pc

and wherep, u, andp are the density, velocity, and pressure perturbationsdrath
The hat variables denote a given, steady, background(fiéld, 0(x), €(x)), where
the background pressure is given py=t2p/y. Herey is a constant, usually taken
to be 1.4 in air. The matrices are given by

400 Ox — 336+ 3P Y5 P+ 26¢ (v — 1) 0+ 286
A=|0Udc¢C E = b%f)x Ox %ﬁx—éx

A A 1 a ~ 0~ 0 2

0ca 0 b—épx VUX_%CX+%pX

where we note thaf\(x) is symmetric. The functiof = f(x,t) is a given forcing
function. At the interface, the background velocity is ased to vanishy(0) = 0.

A grid with grid spacingh, xj = jh discretizes the domain. The interface is lo-
cated atxg = 0. Here,x_; is a ghost point for the acoustic domain, ands ghost
point for the elastic domain. Fig. 1 shows the grid pointshef &coustic (blue) and
elastic (red) domains near the interface. Similarly to tbala problem in Sec. 2,

-1 ( 1 2 3

o—¢—0—0—0——0—
—e——0——0—0
-2 -1 Q0 1

Fig. 1 Gridx; = jh near the interface gt= 0. The elastic domain (red) uses a ghost poirjt-atl.
The acoustic domain (blue) has a ghost pointat—1.

the acoustic equations are discretized in space by
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d 1 =~ 1 _ .

aqj:—EAquj—Z—FA)jD(pAq)j—FquJ'—Ffj (29)
for j = 0,1,...,N. The matrixF = E + }(pA)x. The density weighting in the
splitting is introduced to ensure that tﬁe scaling of theratauy terms at the
interface matches the scaling of the boundary term from thgewequation in
the elastic domain. Denote the SBP scalar product on thesticodomain by
(U,V)hy = hz’j“:O ooj*uijj, whereooj+ are the SBP norm weights. The spatial dis-
cretization satisfies the estimate (where wefseD),

=%

. . 1, . o~ 1 ; ;
(P9, Q)hs = (0, PGt )nt = —E(q,pADq)m - E(q, D(PAQ))n+ + (9, 0Fq)n+

NI -
(o}

t
1. 1. .
= EqSPvo(qo —Bdo) — EQLPNAN(QN —8qn) + (9, PFQ)ns-  (20)

This can be seen by straightforward generalization of tladasédentity (6) and by
using the symmetry oA. The assumption(0) = 0 implies that the boundary term
atx = xg can be written

2§ PoRo(do — Blo) = (uo — )P0~ Bo) — (Buo) (B

Here we use the notatigduy = Zrk;l_lﬁkﬂuk for the operator (4) and similarly for
oun. When applied to vectorgq is defined component wisgg = (s, Bu, Bp).
In order to advance in time with the same method in the acoasiil elastic do-
mains, we rewrite (17) as a system of two equations with fiesivdtives in time.
After discretizing in space we obtain,
dy; dw;
Gt ~Ckwite

for j = —N,...,0. The spatial discretizatioB(u,w) is the SBP operator approxi-
mating(uuy)x, developed in [2]. It satisfies, in the SBP scalar produgat)y,_,

=Vj, (21)

(V7 G(I»‘aW))hf = —(DV, UDW)hf - (Va PW)h, - V*N“*NSV\LN +VOHOS\N)5 (22)

whereP is a positive semi-definite operator that is small &w is a high order
approximation ofwy (Xp) using the stencilv_p, ..., w1, for some stencil widtim-+ 1.
The energy normi\g, of the solution over both domains satisfies

1dNe 1d ~
>4t 2at (W, PeWt )n— + (DW, UDW)p_ + (W, PW)h— + (0, 09)n+ )
= (V, PVt )h— + (DV, UDW)p_ + (V,PW)n_ + (q, At )n+

1. i
= VoloSW -+ 5010 PoAo(Clo — BTo) + (a. PF)ns + Bz, (23)



SBP for Seismo-Acoustic Computations 7

which can be seen by combining (20) and (22). HBgegenotes boundary terms at
the boundaries at= +L, and we have sef = 0 in (21). The interface conditions
will be stable if the boundary terms at the interface do nettdobte to any norm
increase, i.e., if

VoHoSV6 + (Uo — Buo) (Po — BPo) — (BUo)(BPo) = 0. (24)
We enforce the discrete interface condition (24), by sgttin
Bpo=0 (25)
HoSvé = —(po— Bpo) (26)
Vo = Up — BUo. (27)

Here (25) determines_1, (26) determiness;, and (27) determinas_;. This means
that stress and velocity are required to be continuous ad¢hasinterface.

Alternatively, the approximation for the acoustic equas@an be done without
use of ghost points. In that case, the oper&tan (19) is replaced by, and the
extra operatofi = 0, which give

VoHoSW = —po  and Vg = Up.

These two conditions are used to determin@ndug, respectively. Here, the acous-
tic velocity is set by direct injection. This is equivalenithwvthe projection method,
and hence, also leads to a stable method.

4 Numerical experiments

The semi-discrete acoustic-elastic problem (19), (21) witerface conditions (25)—
(27) was solved in time by the fourth order accurate Rungéekuethod. The SBP
first derivative operatdD of order six interior and three on the boundary was used in
(19). The SBP operatds(u,w) of fourth order accuracy in the interior and second
order on the boundary, developed in [2], was used in (21).

The domain is—L < x < L, with L = 1000. The grid near the interface is as
outlined in Fig. 1. The acoustic background state is

(P, G, €) = (1+ cogwmX+ @1)/5, 10sinwmX), 340— 30SinwmX+ @))
and elastic material is
Pe = 2600+ 150co$wX+ @) U = pec’, = 1000+ 400sifwx+ @).

These material properties have sizes that are realistia $®ismo-acoustic compu-
tation. The manufactured solution for the elastic domain is
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w(X,t) = sin(210wt — @) cog —2w(x— 20Q) — @)

and the acoustic manufactured solution is

p coq wx)sin(w(x—15Q))/20
ulf = sin(wx+ ¢ ) cog420wt)
p 200 sin(wx) sin(170cwt + @)

The parameters have values= 0.023, wy, = 0.021, ¢ = 0.17, and¢g = 0.08.
The source function§(x,t) andg(x,t) in (18) and (17) are determined to yield
the manufactured solutions as solutions. Forcing funstiare also inserted into
the interface conditions. These are needed to enforce the jo the manufactured
solutions across the interface. Finally, all time depentfenndary forcing and in-
terface forcing functions are modified, as described inftlen imposed during the
Runge-Kutta stages, to make the time discretization aeHig/fourth order. The
convergence under grid refinement is shown in Fig. 2. Fourtleroconvergence
is observed in all variables except in the acoustic densitych converges some-
where between third and fourth order. This is probably duth&interface being
a characteristic boundary for the acoustic equationsgsiacovery of fourth order
convergence from the third order truncation error on therfatzury is not guaranteed
at such boundaries.

s rho
u

P
_10 4th order
10° 10t

w
“10 4th order
10° 10t

Fig. 2 Maximum norm errors of the manufactured solution at 1 vs. grid spacing. Left subplot
shows the error in the elastic variable the right subplot shows errors in the acoustic density
(blue), velocity (black), and pressure (red). Thin blacieB show 4th order reference.
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