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Summation by Parts Finite Difference
Approximations for Seismic and
Seismo-Acoustic Computations

Björn Sjögreen and N. Anders Petersson

Abstract We develop stable finite difference approximations for a multi-physics
problem that couples elastic wave propagation in one domainto acoustic wave
propagation in another domain. The approximation consistsof one finite difference
schemes in each domain together with discrete interface conditions that couple the
two schemes. The finite difference approximations use summation-by-parts (SBP)
operators, that lead to stability of the coupled problem. Furthermore, we develop a
new way to enforce boundary conditions for SBP discretizations of first order prob-
lems. The new method, which uses ghost points to enforce the boundary conditions,
is a flexible alternative to the more established projectionand SAT methods.

1 Introduction

Near surface seismic events emit both elastic waves traveling in the earth and acous-
tic waves propagating in the atmosphere. Acoustic waves canalso occur because
of other events, such as bolides or vulcanic eruptions. Elastic and acoustic waves
are recorded by seismographs and by infrasound instrumentsat various locations
around the world. A coupled seismo-acoustic modeling capability is of relevance to
many applications in order to analyze and understand seismograms and infrasound
recordings.

We will here model seismic wave propagation by the elastic wave equation.
Acoustic infrasound will be described by the linearized Euler equations of com-
pressible gas dynamics. The elastic and acoustic domains are coupled by interface
conditions that enforce continuity of normal stresses and of normal velocities. We
will here develop finite difference discretizations, basedon the summation-by-parts
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(SBP) principle, of the elastic equations, the acoustic equations, and the interface
conditions, that make the coupled seismo-acoustic problemstable.

In [2], we made use of ghost points to enforce physical boundary conditions on
SBP discretizations of the elastic wave equation in second order formulation. For
first order hyperbolic PDEs, boundary conditions in the SBP context have tradition-
ally been imposed by either projection or penalty term (SAT). We will here develop
ghost point enforced boundary conditions also for SBP discretizations of problems
in first order formulation.

2 SBP operators

Let D be a standard summation by parts finite difference operator for approximat-
ing a first derivative.D can be represented as a realN by N matrix acting on grid
functionsu = (u1, u2, u3, . . . , uN). The grid functions are defined on a domain
0 ≤ x ≤ 1, with uniformly distributed grid pointsx j = ( j − 1)h, j = 1,2, . . . ,N,
whereh = 1/(N− 1) is the grid spacing. When ghost points are present they are
located at the pointsj = 0 and j = N+1. The standard SBP identity,

(u,Dv)h = −(Du,v)h−u1v1 +uNvN, (1)

is assumed to hold in a scalar product

(u,v)h = h
N

∑
j=1

ω ju jv j , (2)

whereω j are positive weights. We extend the difference operatorD to handle ghost
points by adding an operator to the first and last row ofD. The resulting operator,
D̃, can be represented as a rectangular matrix withN rows andN+2 columns,

D̃ =
(

0 D 0
)
+

1
h




β T

0
−δ T


 , (3)

β T = (β0, β1, · · · , βr , 0, · · · , 0) (4)

δ T = (0, · · · , 0, δr , δr−1, · · · , δ0) (5)

At the first grid point,(Du)1 is replaced by(Du)1 + 1
hβ T ũ, where we denote

ũ = (u0, u1, u2, . . . ,uN, uN+1)
T .

Similarly, at the last grid point, the difference approximation is (Du)N − 1
hδ T ũ.

Lemma 1. The difference operator̃D satisfies the SBP-like identity

(u,D̃ṽ)h = −(Du,v)h−u1(v1−ω1β T ṽ)+uN(vN −ωNδ T ṽ). (6)
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Proof. The definition ofD̃ gives

D̃ṽ = Dv+
1
h

e1(β T ṽ)−
1
h

eN(δ T ṽ), (7)

wheree1 = (1,0, . . . ,0)T andeN = (0, . . . ,0,1)T . It therefore follows from (1),

(u,D̃ṽ)h = −(Du,v)h−u1v1 +uNvN +u1ω1β T ṽ−uNωNδ T ṽ,

which leads to (6).

To illustrate the usage of (6), we consider the initial boundary value problem

ut +a(x)ux = 0, 0≤ x≤ 1, t > 0, (8)

u(0,t) = g(t), t > 0, (9)

wherea(x) is a real-valued function. We assumea(0) > 0 anda(1) > 0. We can
write (8) as

ut = −
1
2

a(x)ux−
1
2

(au)x +
1
2

axu.

Multiplying this equation byu and integrating over 0≤ x≤ 1 gives the estimate

1
2

d
dt
‖u‖2 =

1
2
(u,axu)+

1
2

[
a(0)u(0,t)2−a(1)u(1,t)2]

≤
1
2

α‖u‖2+
1
2

a(0)g(t)2, (10)

whereα = |ax|∞. (u,v) and||u|| denote the standardL2 scalar product and norm.
Letv j(t) be the semi-discrete approximation ofu(x j ,t). We discretize (8) in space

by mixing the standard and extended SBP operators,

dv
dt

= −
1
2

aD̃ṽ−
1
2

D(av)+
1
2

D(a)v. (11)

To derive an energy estimate, we form the scalar product betweenv and (11),

(v,vt)h = −
1
2
(v,aD̃ṽ)h−

1
2
(v,D(av))h +

1
2
(v,D(a)v)h.

We setw = av in the first term on the right hand side. The SBP property (6) gives

(w,D̃v)h = −(Dw,v)h−w1(v1−ω1β T ṽ)+wN(vN −ωNδ T ṽ).

Therefore,

(v,vt)h =
1
2
(v,D(a)v)h +

1
2

[
a1v1(v1−ω1β T ṽ)−aNvN(vN −ωNδ T ṽ)

]
.

We can write
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v1(v1−ω1β T ṽ) =
(

v1−
ω1

2
β T ṽ

)2
−

ω2
1

4
(β T ṽ)2,

and the estimate for the semi-discrete problem becomes

1
2

d||v||2h
dt

=
1
2
(v,D(a)v)h +

a1

2

[(
v1−

ω1

2
β T ṽ

)2
−

ω2
1

4
(β T ṽ)2

]

−
aN

2

[(
vN −

ωN

2
δ T ṽ

)2
−

ω2
N

4
(δ T ṽ)2

]
. (12)

The boundary data atx = 0 (inflow) can be enforced by choosing the ghost point
valuev0 such that

v1−
ω1

2
β T ṽ = g(t). (13)

At x = 1 (outflow), we choose the ghost point valuevN+1 such that

δ T ṽ = 0, (14)

which is an extrapolation formula. With the boundary conditions (13) and (14), we
arrive the estimate

1
2

d‖v‖2
h

dt
≤

1
2

αh‖v‖2
h +

a1

2
g(t)2,

whereαh = maxj |D(a) j |. This estimate corresponds to (10) for (8).
If, for example, we use a diagonal norm SBP operator that is 6th order accurate

in the interior of the domain, and 3rd order near the boundary, the solution can not
be expected to be more than 4th order accurate. It is then reasonable to choose

β T ṽ = κ(v0−4v1+6v2−4v3+v4), (15)

δ T ṽ = κ(vN+1−4vN +6vN−1−4vN−2+vN−3), (16)

whereκ is a tunable parameter. With this choice1
hβ T ṽ = O(h3), i.e.,D̃v has a 3rd

order truncation error near the boundary. Furthermore, (13) imposes the Dirichlet
boundary condition to 4th order accuracy. Inserting (15) and (16) into (13) and (14),
respectively, lead to the boundary conditions

v0 =
2(v1−g(t))

κω1
+4v1−6v2+4v3−v4,

vN+1 = 4vN −6vN−1+4vN−2−vN−3.

Remark 1.In this simple example the ghost point valuevN+1 is only used to set
δ T ṽ = 0. We could therefore have defined̃D without the termeN(δ T ṽ), i.e., we
obtain the standard SBP procedure where no boundary condition is explicitly needed
at outflow boundaries. Furthermore, if the ghost pointv0 is eliminated from (11) for
j = 1, it turns out that the term−av1−g

hω1
appears. Hence, for this simple semi-discrete

problem the proposed technique is equivalent with an SAT method.
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3 Elastic-acoustic coupled problem

We consider a one dimensional domain of length 2L, −L ≤ x ≤ L, with an elastic-
acoustic interface atx = 0. The domain to the left,−L ≤ x≤ 0, is a solid described
by the wave equation

ρewtt = (µwx)x +g, t > 0 −L ≤ x≤ 0 (17)

wherew is the displacement,ρe(x) is the density of the solid,µ(x) its shear modulus,
andg = g(x, t) is a given forcing function. The domain to the right, 0≤ x ≤ L, is
acoustic and described by the linearized and symmetrized Euler equations,

qt +A(x)qx = E(x)q+ f, (18)

whereq = (s, u, p̃), with

s=
1

ρ̂ ĉ
p−

ĉ
ρ̂

ρ p̃ =
1

ρ̂ ĉ
p,

and whereρ , u, andp are the density, velocity, and pressure perturbations in the air.
The hat variables denote a given, steady, background field(ρ̂(x), û(x), ĉ(x)), where
the background pressure is given by ˆp = ĉ2ρ̂/γ. Hereγ is a constant, usually taken
to be 1.4 in air. The matrices are given by

A =




û 0 0
0 û ĉ
0 ĉ û


 E =




ûx−3 û
ĉ ĉx + û

p̂ p̂x
γ−1
ρ̂ ĉ p̂x +2ĉx (γ −1)ûx+2 û

ĉ ĉx
1

ρ̂ ĉ p̂x ûx
γ−1
ρ̂ ĉ p̂x− ĉx

0 1
ρ̂ĉ p̂x γûx−

û
ĉ ĉx + û

p̂ p̂x




where we note thatA(x) is symmetric. The functionf = f(x,t) is a given forcing
function. At the interface, the background velocity is assumed to vanish, ˆu(0) = 0.

A grid with grid spacingh, x j = jh discretizes the domain. The interface is lo-
cated atx0 = 0. Here,x−1 is a ghost point for the acoustic domain, andx1 is ghost
point for the elastic domain. Fig. 1 shows the grid points of the acoustic (blue) and
elastic (red) domains near the interface. Similarly to the scalar problem in Sec. 2,

1 2−1 0

0 1−1−2

3

Fig. 1 Grid x j = jh near the interface atj = 0. The elastic domain (red) uses a ghost point atj = 1.
The acoustic domain (blue) has a ghost point atj = −1.

the acoustic equations are discretized in space by
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d
dt

q j = −
1
2

A jD̃q j −
1

2ρ̂ j
D(ρ̂Aq) j +Fjq j + f j (19)

for j = 0,1, . . . ,N. The matrix F = E + 1
ρ̂ (ρ̂A)x. The density weighting in the

splitting is introduced to ensure that the scaling of the boundary terms at the
interface matches the scaling of the boundary term from the wave equation in
the elastic domain. Denote the SBP scalar product on the acoustic domain by
(u,v)h+ = h∑N

j=0ω+
j uT

j v j , whereω+
j are the SBP norm weights. The spatial dis-

cretization satisfies the estimate (where we setf = 0),

1
2

d
dt

(ρ̂q,q)h+ = (q, ρ̂qt)h+ =−
1
2
(q, ρ̂AD̃q)h+−

1
2
(q,D(ρ̂Aq))h+ +(q, ρ̂Fq)h+

=
1
2

qT
0 ρ̂0A0(q0−β q0)−

1
2

qT
Nρ̂NAN(qN − δqN)+ (q, ρ̂Fq)h+. (20)

This can be seen by straightforward generalization of the scalar identity (6) and by
using the symmetry ofA. The assumption ˆu(0) = 0 implies that the boundary term
at x = x0 can be written

1
2

qT
0 ρ̂0A0(q0−β q0) = (u0−βu0)(p0−β p0)− (βu0)(β p0)

Here we use the notationβu0 = ∑r−1
k=−1 βk+1uk for the operator (4) and similarly for

δuN. When applied to vectors,β q is defined component wise,β q = (βs, βu, β p̃).
In order to advance in time with the same method in the acoustic and elastic do-
mains, we rewrite (17) as a system of two equations with first derivatives in time.
After discretizing in space we obtain,

dvj

dt
= G(µ ,w) j +g j

dwj

dt
= v j , (21)

for j = −N, . . . ,0. The spatial discretizationG(µ ,w) is the SBP operator approxi-
mating(µux)x, developed in [2]. It satisfies, in the SBP scalar product(v,w)h−,

(v,G(µ ,w))h− = −(Dv,µDw)h−− (v,Pw)h−−v−Nµ−NSw−N +v0µ0Sw0, (22)

whereP is a positive semi-definite operator that is small andSw0 is a high order
approximation ofwx(x0) using the stencilw−m, . . . ,w1, for some stencil widthm+1.

The energy norm,NE, of the solution over both domains satisfies

1
2

dNE

dt
=

1
2

d
dt

((wt ,ρewt)h− +(Dw,µDw)h− +(w,Pw)h− +(q, ρ̂q)h+)

= (v,ρevt)h− +(Dv,µDw)h−+(v,Pw)h− +(q, ρ̂qt)h+

= v0µ0Sw0 +
1
2

qT
0 ρ̂0A0(q0−β q0)+ (q, ρ̂Fq)h+ +B2, (23)
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which can be seen by combining (20) and (22). Here,B2 denotes boundary terms at
the boundaries atx = ±L, and we have setg = 0 in (21). The interface conditions
will be stable if the boundary terms at the interface do not contriubte to any norm
increase, i.e., if

v0µ0Sw0 +(u0−βu0)(p0−β p0)− (βu0)(β p0) = 0. (24)

We enforce the discrete interface condition (24), by setting

β p0 = 0 (25)

µ0Sw0 = −(p0−β p0) (26)

v0 = u0−βu0. (27)

Here (25) determinesp−1, (26) determinesw1, and (27) determinesu−1. This means
that stress and velocity are required to be continuous across the interface.

Alternatively, the approximation for the acoustic equations can be done without
use of ghost points. In that case, the operatorD̃ in (19) is replaced byD, and the
extra operatorβ = 0, which give

v0µ0Sw0 = −p0 and v0 = u0.

These two conditions are used to determinew1 andu0, respectively. Here, the acous-
tic velocity is set by direct injection. This is equivalent with the projection method,
and hence, also leads to a stable method.

4 Numerical experiments

The semi-discrete acoustic-elastic problem (19), (21) with interface conditions (25)–
(27) was solved in time by the fourth order accurate Runge-Kutta method. The SBP
first derivative operatorD of order six interior and three on the boundary was used in
(19). The SBP operatorG(µ ,w) of fourth order accuracy in the interior and second
order on the boundary, developed in [2], was used in (21).

The domain is−L ≤ x ≤ L, with L = 1000. The grid near the interface is as
outlined in Fig. 1. The acoustic background state is

(ρ̂, û, ĉ) = (1+cos(ωmx+ φ1)/5, 10sin(ωmx), 340−30sin(ωmx+ φ2))

and elastic material is

ρe = 2600+150cos(ωx+ φ2) µ = ρec
2, c = 1000+400sin(ωx+ φ1).

These material properties have sizes that are realistic fora seismo-acoustic compu-
tation. The manufactured solution for the elastic domain is
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w(x, t) = sin(210ωt−φ1)cos(−2ω(x−200t)−φ1)

and the acoustic manufactured solution is



ρ
u
p


 =




cos(ωx)sin(ω(x−150t))/20
sin(ωx+ φ1)cos(420ωt)

200sin(ωx)sin(170ωt + φ2)




The parameters have valuesω = 0.023, ωm = 0.021, φ1 = 0.17, andφ2 = 0.08.
The source functionsf(x, t) and g(x,t) in (18) and (17) are determined to yield
the manufactured solutions as solutions. Forcing functions are also inserted into
the interface conditions. These are needed to enforce the jump in the manufactured
solutions across the interface. Finally, all time dependent boundary forcing and in-
terface forcing functions are modified, as described in [1],when imposed during the
Runge-Kutta stages, to make the time discretization achieve full fourth order. The
convergence under grid refinement is shown in Fig. 2. Fourth order convergence
is observed in all variables except in the acoustic density,which converges some-
where between third and fourth order. This is probably due tothe interface being
a characteristic boundary for the acoustic equations, since recovery of fourth order
convergence from the third order truncation error on the boundary is not guaranteed
at such boundaries.
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Fig. 2 Maximum norm errors of the manufactured solution att = 1 vs. grid spacing. Left subplot
shows the error in the elastic variablew, the right subplot shows errors in the acoustic density
(blue), velocity (black), and pressure (red). Thin black lines show 4th order reference.

References

1. M. H. Carpenter, D. Gottlieb, S. Arbabanel, and W.-S. Don.The theoretical accuracy of Runge-
Kutta time discretizations for the initial boundary value problem: A study of the boundary error.
SIAM J. Sci. Comput., 16:1241–1252, 1995.
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