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Abstract Two-dimensional numerical simulations of the Richt-
myer -Meshkov unstable “shock-jet” problem are conducted
using both large-eddy simulation (LES) and unsteady Reynolds
-averaged Navier-Stokes (URANS) approaches in an arbi-
trary Lagrangian-Eulerian (ALE) hydrodynamics code. Tur-
bulence statistics are extracted from LES by running an en-
semble of simulations with multi-mode perturbations to the
initial conditions. Detailed grid convergence studies arecon-
ducted, and LES results are found to agree well with both ex-
periment and high-order simulations conducted by Shankar,
Kawai, and Lele [S. Shankar, S. Kawai, and S. Lele, “Two-
dimensional viscous flow simulation of a shock accelerated
heavy gas cylinder,” Phys. Fluids23 (2011)]. URANS re-
sults using ak-L approach are found to be highly sensitive
to the initialization ofL and to the time at whichL becomes
resolved on the computational mesh. It is observed that a
gradient diffusion closure for turbulent species flux is a poor
approximation at early time, and a new closure based on the
mass-flux velocity is proposed for low-Reynolds-numbermix-
ing.
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1 Introduction

Richtmyer-Meshkov instability (RMI) is a fundamental in-
stability in fluids which arises when a shock wave impul-
sively accelerates the interface between two fluids of differ-
ent densities [1,2]. In a sense, RMI may be thought of as
the impulsive limit of the Rayleigh-Taylor instability (RTI),
in which a fluid interface is subjected to constant (usually
gravitational) acceleration [3]. Both instabilities arise when
perturbations on the interface between two fluids grow due
to imposed acceleration. In the case of RMI, a misalignment
between the density gradient and the pressure gradient gives
rise to the baroclinic generation of vorticity at the interface.
By considering the compressible vorticity transport equa-
tion, which is given below in Eq. (1) in terms of specific
vorticity (Ωi = ωi/ρ), it is easy to identify the baroclinic
process as one of three mechanisms for vorticity transport
(the other two beingvorticity stretching and tiltingandvis-
cous transport) [4]. In this equation,ui denotes the velocity
vector,xi denotes the coordinate vector,ρ indicates density,
p indicates the static pressure,µ is the molecular viscosity,
t indicates time, andεi jk is the permutation tensor. In RMI,
baroclinic vorticity generation is the primary mechanism of
instability. At later time, secondary instabilities such as the
Kelvin-Helmholtz shear instability begin to develop, which
lead to the breakup of primary vortical structures and lead
ultimately to a region of turbulent mixing [3].
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Turbulent mixing processes are important in a wide range
of applications, including inertial confinement fusion (ICF)
[5], astrophysical phenomena [6], and supersonic combus-
tion [7]. It is therefore important to develop computational
tools that are capable of accurately simulating and/or model-
ing turbulent mixing processes and the fluid instability mech-
anisms from which these mixing processes arise.

The focus of the present work is on the simulation of
a simple RMI configuration, the results of which may be
used to inform more complicated simulations of Richtmyer-
Meskov-induced mixing in complex geometries and flow
regimes. Perhaps the most commonly studied RMI config-
uration is that of a shocked planar interface. This config-
uration, which has been studied both experimentally [8,9]
and computationally [10], is characterized by an initiallylin-
ear growth of crests and troughs followed by the nonlinear
growth ofspikes(the penetration of heavy fluid into lighter
fluid) andbubbles(the rising of light fluid into heavy fluid).
Eventually, the spikes roll over, giving rise to the “mush-
rooming” that is often characteristic of classical RMI [3].

An alternative configuration to the planar interaction just
described is the interaction of a planar shock wave with a
cylindrical interface. In this configuration, first studiedex-
perimentally by Haas and Sturtevant [11] and later by Ja-
cobs [12], the instability enters into a nonlinear regime al-
most immediately, and the flow is dominated by a pair of
counter-rotating vortices which are analogous to the spike
features in the planar configuration in the absence of a vis-
cous boundary. The present work focuses on the experimen-
tal configuration by Tomkinset al. [13] of a planar shock-
wave interacting with a cylinder of SF6 in air. The advantage
of examining this flow configuration is that during the early
time evolution, when the flow is dominated by large counter-
rotating vortices, the vorticity field is predominantly two-
dimensional. This aspect allows for the careful application
of large-eddy simulation (LES) techniques in two dimen-
sions without a significant loss in accuracy. Previous compu-
tational studies [14–16] have demonstrated that such a tech-
nique may be applied relatively successfully to the simula-
tion of the shock-accelerated heavy gas cylinder.

Although Shankar, Kawai, and Lele [14] have previously
demonstrated the ability to accurately reproduce experimen-
tal results for the shock-accelerated cylinder problem with a
high-fidelity, two-dimensional LES approach, in more com-
plicated applications of turbulent mixing, a high-fidelityap-
proach is often prohibitively expensive. As discussed by Moser
and Moin [17] and Kimet al.[18], the number of grid points
required to resolve the smallest scales of turbulence is ex-
pected to scale like Re9/4, and the computational time step

should be on the same order as the Kolmogorov timescale.
If an LES approach is instead utilized, it is still expected
that approximately 80% of the turbulent energy should be
resolved on the mesh [19]. An alternative approach is to ap-
ply a Reynolds-averaged Navier-Stokes (RANS) approach
to model the mixing driven by fluid instabilities such as
RMI and RTI. It is the goal of the present work to utilize
high-fidelity LES to evaluate the performance of a typical
two-equation RANS approach applied to the cylindrical RM
problem described above. Specifically, it is intended to lever-
age the two-dimensional nature of the flow to obtain an en-
semble of LES solutions from which turbulence statistics
may be extracted and compared against closure terms in the
k-L RANS model [20].

The remainder of the paper is laid out as follows. First, in
section 2, the governing equations are presented along with
the generalization of these equations to the LES and RANS
approaches used in the present work. Next, in section 3, a
description is provided of the arbitrary Lagrangian/Eulerian
(ALE) hydrodynamics code that is used in the present study,
and the experimental configuration is reduced into a repre-
sentative numerical model. Then, in section 4, results are
presented of simulations of the shocked SF6 cylinder in air.
Finally, in section 5, conclusions are drawn, and recommen-
dations are made concerning the direction of future work.

2 Governing Equations

For the present work, it is assumed that the governing equa-
tions for an ideal non-reactive gas mixture are the compress-
ible, multicomponent Navier-Stokes equations, where a Fick-
ian diffusion law is utilized to describe component mass
flux. It is also convenient to express conservation of energy
in terms of the specific internal energy,e. These governing
equations are given explicitly by Eqs. (3) through (6). In
these equations,Yα is used to denote the scalar mass frac-
tion of componentα, Dα indicates the binary molecular dif-
fusivity of componentα, andδi j is the Kronecker delta.
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To complete the above equations, the viscous stress ten-
sor,σi j , and the heat flux vector,q j , are defined according
to Eqs. (7) and (8), respectively. Notice that the heat flux is
composed of contributions due to heat conduction and dif-
fusional heat flux [21]. In Eq. (8),κ indicates thermal con-
ductivity,T indicates temperature, andhα is the specific en-
thalpy of componentα.
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The ideal gas equation of state,pα = (γα −1)ραeα , is
used to relate partial pressures to partial densities and partial
energies through the ratio of specific heatsγα , and mixture
quantities are computed according to Eqs. (9) [21].

p =
N

∑
α=1

vα pα , e=
N

∑
α=1

Yαeα (9)

Component viscosities and mass diffusivities are obtained
by application of the Chapman-Enskog method [22]. Mix-
ture viscosity and thermal conductivity are computed using
the Wilke rule with Herning and Zipperer approximation
[23], and effective binary diffusivities are computed by ap-
plying the Ramshaw method [24], which ensures all binary
diffusivities sum to zero. Further details on the Chapman-
Enskog method and associated mixing rules may be found
in Appendix A.

2.1 Thek-L RANS Model

In general, the RANS equations can be derived from the
Navier-Stokes equations by applying a Reynolds decompo-
sition to the primitive variables and by taking an ensem-
ble average of both sides of the governing equations. In the
present work, an overbar(·) is used to denote an ensemble
averaged quantity. Additionally, it is convenient to writethe
compressible RANS equations in terms of mass-weighted
(or Favre) averaged quantities. In the present work, Reynolds
decomposition of an arbitrary scalar,f , is denoted by Eq. (10),
while Favre decomposition is denoted by Eq. (11).

f = f + f ′ (10)

f = f̃ + f ′′ (11)

where

f̃ =
ρ f
ρ

(12)

The RANS model which is investigated in the present
work is thek-L two-equation model by Dimonte and Tipton
[20], which has been developed specifically for its applica-
tion to the prediction of RTI and RMI growth rates. Thek-L
model has been previously demonstrated to provide good
agreement with theoretical growth rates of RTI- and RMI-
induced mixing in one dimension [20,25]. It has been since
applied in a wide range of applications including prediction
of astrophysical phenomena [26] and simulation of inertial
confinement fusion (ICF) targets [27].

Turbulent species flux and turbulent heat flux terms are
closed with gradient diffusion arguments. Reynolds stress
terms are closed by utilizing the Boussinesq approximation
and by solving additional transport equations for a turbu-
lence lengthscale,L, and the turbulence kinetic energy,k =
1
2ũ′′i u′′i . Thek-L model is summarized by Eqs. (13) through
(22). In these equations, we additionally introduce the no-
tation µt to indicate an eddy viscosity,τi j to indicate the
Reynolds stress tensor, andSi j to indicate the strain rate ten-
sor.
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µt = atρLk1/2 (19)

ρτi j = 2µtSi j −
2
3

ρkδi j (20)
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In the present work, two sets of model constants are in-
vestigated, both of which are consistent with one-dimensional
self-similarity analysis. Simulations are performed using the
standard Dimonte and Tipton coefficient set [20], which was
derived assuming a Rayleigh-Taylor bubble growth rate of
αb = 0.060; additionally, we explore results using a new co-
efficient set, which is derived in Appendix B and assumes
a lower growth rate ofαb = 0.025. The two coefficient sets
are summarized in table 1.

3 Numerical Models

For the present study, theAresarbitrary Lagrangian/Eulerian
(ALE) hydrodynamics code developed at Lawrence Liver-
more National Laboratory (LLNL) is utilized. The block-
structuredArescode solves the governing equations described
in the previous section in a Lagrangian coordinate frame,
and a second-order remap scheme [28] is then applied to
avoid mesh tangling and associated computational difficul-
ties. In order to compare most directly with previous compu-
tational work [14], the present work utilizes a fixed Eulerian
mesh.

Explicit time integration is accomplished with a second-
order predictor-corrector scheme [29], and spatial differences
are computed with a non-dissipative second-order finite el-
ement approach. A tensor artificial viscosity [30] is applied
for the capturing of shocks and material discontinuities.

TheArescode additionally utilizes adaptive mesh refine-
ment (AMR) [31,32] to localize computational grid points
in regions of interest. In the present work, this capability
is utilized to improve computational efficiency by cluster-
ing gridpoints around the shock interface and the heavy gas
cylinder. More details on the computational domain are pro-
vided in section 3.4.

3.1 LES in Two Dimensions

It is well-established that two-dimensional turbulence isfun-
damentally different from three-dimensional turbulence [19,
33]. This difference follows from the fact that the vortex
stretching term in the vorticity equation vanishes in two di-
mensions, and the remaining vorticity term evolves, essen-
tially, as a conserved scalar. As a result, energy in two-dimensional
turbulence is generally transferred up the cascade from the
small scales to the large, rather than from the large scales
to the small as in canonical three-dimensional turbulence
[34]. Although most physical flows are naturally subject to
three-dimensional instabilities [35], in the special circum-
stance of a flow heavily confined by geometry or by applied
body forces, a flow may be two-dimensional or quasi-two-
dimensional in nature [33].

A number of previous computational studies [14–16] have
all demonstrated that the shocked gas cylinder problem presently
under consideration can be simulated accurately with a two-
dimensional approximation. Additionally, Weirset al. [36]
have compared two-dimensional and three-dimensional cal-
culations of the experiment by Tomkinset al.[13] and shown
that three-dimensional effects are generally negligible until
relatively late time (after about 750µs). We therefore ex-
ploit the quasi-two-dimensional nature of the flow at early
time in order to justify the careful application of LES in two-
dimensions. The advantage of this approach is that it allows
for the efficient collection of turbulence statistics by run-
ning an ensemble of simulations; although those statistics
no doubt contain error due to the reduction in dimensional-
ity, it is expected that such errors should be relatively small
during early time evolution.

3.2 Sub-grid Scale (SGS) Model

In the present work, an implicit LES approach is utilized [37,
38]; that is, no explicit model is used to solve for the sub-
grid turbulent contributions to the filtered governing equa-
tions. Of course, this approach relies on the inherent dis-
sipation of the numerical scheme to provide stability and
subgrid energy transfer [39,40]. Much work has been done
to establish the validity of the implicit LES approach for
the simulation of both three-dimensional [41,42] and two-
dimensional flows [34]. It is important to note, however, that
the present work computes the resolved molecular transport
(viscosity, diffusivity, and thermal conductivity) according
to the Chapman-Enskog method as discussed in Appendix
A and relies on numerical dissipation for only thesubgrid
contribution; this approach is in contrast to much of the lit-
erature on implicit LES, which often solves the filtered Euler
equations and relies on an assumption of flow in the limit of
high Reynolds number to justify numerics (and by exten-
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Table 1 k-L Model Constants

αb at bt dt CC CL NY Ne Nk NL

Standard Set 0.060 1.414 1.20 3.50 1.00 1.00 1.00 1.00 1.00 0.50
New Set 0.025 0.290 3.50 1.00 0.33 0.28 0.14 0.14 0.14 0.07

sion, the subgrid scale) as the dominant contributor to dissi-
pation.

By including the effects of molecular transport in the
present simulations, it is possible to more accurately quan-
tify the effects of the numerical relative to the physical dissi-
pation and thereby assess solution quality. The present work,
therefore, emphasizes the use of detailed grid resolution study
to obtain nearly grid-converged LES results.

3.3 Initial Conditions

Initial conditions are chosen to match those of the exper-
iment by Tomkinset al. [13] and simulations by Shankar,
Kawai, and Lele [14]. Specifically, a cylinder (circular re-
gion, in two dimensions) of SF6 gas is located in initially
quiescent air (which is assumed to be a 79:21 mixture of
N2 and O2 gas) and impacted by a Mach 1.21 shock wave.
Initial pressure and temperature in the stationary unshocked
gas are 0.8atm and 298K, respectively. Initial velocity and
thermodynamic conditions in the shocked gas are given by
the Rankine-Hugoniot jump conditions. The initial concen-
tration of SF6 gas is given by Eq. (23) in terms of the cylin-
der radius,Rd, and the maximum concentration,Y0

max, which
was determined experimentally [13,36] to be 0.83.

Y0
SF6

(r,θ ) =




Y0
max

(
1.0−exp

(
−
∣∣∣
( |r−η|

Rd
−1
)

π
∣∣∣
1.54

1.0082

))
|r| ≤ Rd

0.0 |r| > Rd

(23)

In the above profile,η(r,θ ) represents a multimode per-
turbation function. For baseline simulations, we takeη = 0.
Later, to obtain turbulence statistics from LES, an ensem-
ble of simulations are run, where the perturbation function
is given by Eq. (24). In this equation, the maximum ampli-
tudeA= 0.035Rd is chosen to match experimental error bars
reported by Tomkinset al. [13], andφ indicates a random
phase shift in[−π ,π ].

η (r,θ ) =
14

∑
k=0

2
A
15

sin(kθ + φ)cos(kθ + φ) (24)

To initialize turbulence quantities in thek-L RANS model,
initial turbulence kinetic energy is set to a near-zero posi-
tive value everywhere (k(x,y) = 1e-32). Additionally, two

Fig. 1 Computational domain (not to scale)

initialization strategies are utilized to set the initial turbu-
lence lengthscale,L0, in the gas cylinder. In the first case,
L0 is held constant in the cylinder at 0.01µm (well below
the grid lengthscale), and in the second case,L0 is speci-
fied in terms of the finest mesh spacing,∆ , such thatL0/∆
is held constant at 0.5, enforcing a mesh dependence on
the initial lengthscale. This second choice is motivated by
work by Johnson and Schilling [43,44], who have shown
that for simulations with a discontinuous mean flow, the
growth rates obtained using two-equation RANS models tend
to scale with grid resolution. It is also worth noting that Di-
monte and Tipton [20] similarly observed a sensitivity of
the realized growth rate to initial conditions, although they
did not tie this sensitivity to the mesh resolution. Indeed,
Johnson and Schilling argue that the lack of convergence
they observed when holding a constant initial lengthscale
was due to unresolved interfaces in the initial conditions,
“analogous to the lack of convergence in a shock width in a
shock-capturing simulation [43].” It is therefore anticipated
that this second initialization strategy might provide better
convergence behavior than the first.

3.4 Computational Domain and Boundary Conditions

The mesh used in the present study is Cartesian and planar,
parameterized by the diameter of the SF6 cylinder (D = 2Rd

= 0.6 cm). The center of the cylinder is located at the ori-
gin, and the mesh extends from -17D to 38D in the stream-
wise (x) dimension and from -12.5D to 12.5D in the stream-
normal dimension (y), as illustrated by Fig. 1. A depth of 1
cm is assumed in spanwise (z) dimension when computing
volume-integrated quantities.

The problem is solved in a laboratory fixed coordinate
frame such that the shock, initially located atx = -1.5D, is
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Table 2 Computational mesh parameters

Mesh N1
x AMR Levels cells/D ∆ (µm)

A 100 4 82 72.3
B 100 5 245 24.5
C 100 6 736 8.15
D 200 6 1473 4.07
E 100 7 2209 2.72
F 200 7 4418 1.36

observed to propagate from left to right at a speed of Mach
1.21.

As discussed earlier, theArescode utilizes AMR to lo-
calize computational cells in regions of interest. In the present
problem, AMR is utilized to cluster cells along the shock in-
terface and in regions of non-zero SF6 mass fraction such
that the cylinder is entirely resolved on the finest level of
mesh refinement. For each level of grid refinement beyond
the first, the mesh is refined by adding an additional factor
of 3 cells in each dimension. At the first level of grid re-
finement, the mesh is refined by a factor of 5 cells in each
dimension. Cells are nominally square; therefore, the com-
putational domain is completely parameterized by the num-
ber of cells in thex-dimension on the coarsest level (N1

x ) and
by the number of levels of AMR refinement. Table 2 sum-
marizes those meshes which are used in the present study.

Boundary conditions at the inflow fix velocity and ther-
modynamic conditions of the shocked gas. Outflow bound-
ary conditions fix gas velocity and are time dependent such
that they “swallow” the primary shock. This ensures the pri-
mary shock is not reflected, and therefore re-shock of the
SF6 cylinder is not simulated. Upper and lower boundaries
are non-reflecting “sponge” boundaries that are also time de-
pendent (to account for the location of the primary shock)
and allow perturbations in velocity and thermodynamic vari-
ables to go smoothly to zero. These sponge boundary con-
ditions ensure that spurious acoustic reflections do not inter-
fere with the region of interest around the SF6 gas cylinder.

4 Results and Discussion

Having presented the theoretical and computational frame-
work for the present investigation, it is now possible to pro-
ceed with analysis of results obtained with LES and RANS
simulations of the shock-jet flow. To begin, it is useful to
first establish confidence in a baseline solution to which all
other simulations may be compared. To this end, baseline
validation efforts in this section will focus on comparisons
with high-order LES results by Shankar, Kawai, and Lele
[14]. These comparison results, which were obtained with a
sixth-order compact differencing scheme utilizing localized
artificial diffusivity for SGS modeling and shock capturing
[45], have been shown to be nearly grid converged with 960

grid points across the cylinder. Additionally, the comparison
LES results were simulated with zero initial perturbation to
the SF6 cylinder with acetone excluded. Indeed it has been
shown [14] that the unquantified amount of acetone present
in the experimental gas cylinder (which was used for imag-
ing purposes) is expected to significantly affect results. The
simulations by Shankar, Kawai, and Lele [14] are therefore
expected to be more directly comparable to the present re-
sults than the experiment by Tomkinset al [13].

4.1 Baseline LES results

Figure 2 plots mass fraction contours of SF6 obtained by
LES with no initial perturbation for several levels of grid
resolution. This figure illustrates that good qualitative agree-
ment is obtained for mesh resolutions C and above. Specif-
ically, it can be seen that the secondary Kelvin-Helmholtz
instabilities that begin to appear between 400 and 490µs
are not well captured on meshes A and B. It is also observed
that the comparison results generally predict less secondary
instability in the primary vortices beyond about 400µs than
the present work. This may be a result of the artificial vis-
cosity which is present in the comparison results.

To quantify the effect of grid resolution on the solu-
tion, Fig. 3 plots two measures of mixing in the problem
for mesh resolutions A through F. First, the total mix mass,
given by Eq. (25), provides a measure of the total quantity
of mixed fluid in the problem. Additionally, the total mixing
rate (TMR), given in general by Eq. (26), provides an inte-
gral description of the instantaneous scalar dissipation rate
[13].

total mix mass=
∫

ρYSF6

(
1−YSF6

)
dV (25)

TMR =
1

(Y0
max)

2

∫
DSF6

(
∂YSF6

∂xi

)2

dV (26)

Both the total mix mass and the total mixing rate demon-
strate a clear trend towards grid convergence, with little dif-
ference observed in either quantity beyond mesh resolution
level E. The total mixing rate shows more sensitivity to grid
resolution; fortunately, comparison data for this quantity is
available from both experiment [13] and high-fidelity simu-
lation [14]. Although comparison with these data sets shows
that the present simulations appear to converge to a higher
initial mixing rate, good agreement is obtained in both the
time and magnitude of peak mixing rate as well as in pre-
diction of late time mixing. The observed discrepancy in
early time mixing rate, however, is likely related to the previ-
ously discussed secondary instabilities in the primary vorti-
cal structures. Specifically, the present work predicts earlier
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Fig. 3 Two measures of mixing using LES with no initial perturbation:
total mix mass (top) and total mixing rate (bottom)

onset of secondary instabilities in the primary vortex cores,
which likely leads to the higher rate of mixing. Although the
results by Shankar, Kawai, and Lele [14] demonstrate better
agreement with experiment during the early time mixing, it
is not clear that the simulations should agree so well with
experiment, which is additionally complicated by the pres-
ence of an unknown amount of acetone (an effect which is
neglected in both sets of simulations).

Figure 4 further explores the effect of grid resolution on
more sensitive indicators of vortex intensity by plotting to-
tal enstrophy as a function of time for mesh resolutions A
through F. Enstrophy, defined by Eq. (27) in terms of the
spanwise component of vorticityωz and normalized by the
total areaA, provides an integral measure of total vorticity.
A high degree of grid convergence is observed in enstrophy
for resolution meshes D and higher, which indicates that the
effect of numerical dissipation is low for these resolution
levels.

enstrophy=
1
A

∫∫
ω2

z dxdy (27)

Fig. 4 Enstrophy as a function of grid resolution using LES with no
initial perturbations

By comparison, Fig. 5 plots two quantities of interest ob-
tained from inviscid simulation against results from highly
resolved (Mesh E) viscous simulation. First, by plotting to-
tal mix mass, it is seen that although the inviscid simula-
tions may demonstrate a trend towards convergence, the to-
tal mixing in the resolved simulations is less than in the vis-
cous simulations. Since the effect of viscosity is generally
to suppress fine scale mixing, the observed increase in the
viscous mix mass may therefore be attributed to molecular
diffusion of species. Interestingly, the very coarse (MeshA)
inviscid simulation is observed to agree quite well in total
mix mass with the viscous simulation due to the high level
of numerical dissipation in this simulation. Indeed, both the
viscous and inviscid simulations at A-level resolution are
quite comparable in measures such as total mix mass, which
indicates that at the low resolution, numerical dissipation
dominates molecular diffusion. Of course, when total mix
mass is captured at low resolution, total vorticity is severely
under-predicted. Moreover, as demonstrated by the bottom
plot in Fig. 5, without the physical regularization effect of
molecular viscosity, the inviscid simulations will necessar-
ily fail to converge in high-order measures of vorticity such
as enstrophy.

Mesh resolution studies on enstrophy such as those in
Figs. 4 and 5 additionally provide some insight into the range
of turbulence lengthscales which are resolved in the present
viscous simulations. Ideally, large-eddy simulations should
resolve well into the inertial subrange of the turbulence spec-
trum. In two-dimensional simulations such as those in the
present study, which do not have a homogeneous dimen-
sion over which to compute instantaneous ensemble aver-
age quantities, it is difficult to compute turbulence spectra
directly. However, the convergence in enstrophy observed
in viscous simulations, combined with the over-shoot in en-
strophy observed in inviscid simulations, suggests that vis-
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Fig. 5 The effect of molecular transport through comparison with in-
viscid simulation: total mix mass (top) and enstrophy (bottom)

cous simulations with resolution level D and above are re-
solving sufficiently near the dissipation range of turbulence.

4.2 Ensemble LES Results

In order to directly assess the quality of RANS simulations
of the shock-jet problem, it is necessary to consider turbu-
lence statistics and mean profiles which cannot be obtained
from a single two-dimensional simulation. Ideally, turbu-
lence statistics would be obtained from high-fidelity three
dimensional simulation. Given the computational expense
of the problem under consideration, however, such an ap-
proach is not feasible. As a compromise, a large number
of high-resolution two-dimensional simulations can be run,
with perturbed initial conditions (as discussed previously in
section 3.3). Of course, this approach will not provide ac-
curate statistics when fluctuations into the plane of simula-
tion would become significant relative to fluctuations inx
andy. Fortunately, for the problem under consideration, it is
expected that this should be a reasonable approximation at

Fig. 7 Convergence of ensemble mix mass as a function of ensemble
size.

least until late time transition to turbulence (beyond about
560µs).

To obtain statistics as a baseline for comparison with
RANS, 20 LES realizations of the shock-jet problem are run
at level-C mesh resolution with initial conditions perturbed
according to Eq. (24). When computing ensemble averages,
in order to reduce statistical noise, averages are taken over
the 20 realizations and then about the plane aty = 0. Figure
6 illustrates qualitatively how perturbations in initial condi-
tions can lead to significant differences at late time and how
a baseline ensemble may be obtained by averaging over mul-
tiple realizations.

Figure 7 plots the ensemble mix mass, given by Eq. (28),
for ensembles of 5, 10, 15, and 20 realizations; this plot in-
dicates good statistical convergence for ensemble mix mass
and suggests that similar integral measures may be reason-
ably considered converged over the 20 realizations consid-
ered. It is also interesting to note in Fig. 7 the difference
between the ensemble mix mass and the total mix mass cal-
culated from the single baseline simulation. It can be shown
[46] that the ensemble mix mass is expected to be greater
than the instantaneous mix mass by a factor approximately
equal to the integrated scalar variance,Y′

SF6
Y′

SF6
.

ensemble mix mass=
∫

ρỸSF6

(
1− ỸSF6

)
dV (28)

Figure 8 furthermore demonstrates the effect of initial
conditions on late-time mixing in the LES database by plot-
ting total mix mass and total mixing rate along with error
bars indicating two standard deviations over all 20 realiza-
tions. Note that this figure shows the mean total mix mass
obtained by averaging the temporal mix mass histories of
all 20 realizations. This is a different quantity than the en-
semble mix mass, as defined in Eq. (28). From this image, it
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Fig. 8 Effect of initial conditions on total mix mass (top) and total
mixing rate (bottom). Solid black lines represent mean over20 realiza-
tions, and errorbars indicate two standard deviations.

is clear that the effect of initial conditions does not signifi-
cantly affect reproducibility until around 500µs. This image
should also provide some sense of the approximate transi-
tion to turbulence, as variance in TMR should correspond to
an increase in magnitude of turbulent mixing correlations.

In addition to mean quantities, having an ensemble database
of LES simulations allows for the extraction of turbulence
statistics. Figure 9 illustrates the 2D Reynolds stress com-
ponents extracted from the LES database. In this figure, the
diagonal terms are plotted on the same color scale, and the
shear stress component is plotted on a scale with magni-
tude half that of the other two components. It is interest-
ing to note that regions ofτ11/τ22 anisotropy seem to be
mostly localized. For instance, theτ22 component seems to
dominate at the center of vortex cores, and theτ11 compo-
nent seems to dominate along the interior of the first roll-
up where the left/right vortex interaction is strongest. Oth-
erwise, in general there does not appear to be significant
τ11/τ22 anisotropy. Of course, it is impossible to comment
on anisotropies with respect toτ33 using 2D simulations.

Similarly, Figs. 10 and 11 plot the contributions to tur-
bulent species diffusion that are closed in Eq. (14) with a
gradient diffusion approximation. By plotting the turbulence
terms next to the mean gradient components, however, it is
clear that the two terms demonstrate significantly different
patterns of symmetry and antisymmetry. For instance, the
mean streamwise gradient demonstrates a change in sign
from the top to the bottom of the cylinder, which does not
appear in the streamwise turbulent transport term. (Due to
rotation of the cylinder in the image, this change is actually
along a plane of constanty coordinate.) Qualitatively, such
observations suggest that gradient diffusion may not be a
good assumption to close these terms during the early phase
evolution.

4.3 k-L Results With Standard Coefficient Set

Having established a high-fidelity LES database to which
we can compare, attention is now shifted to results obtained
using thek-L RANS model. One additional complication
which is introduced by the RANS model is the necessity for
initial conditions on the additional transported turbulence
quantitiesk andL. Sincek is representative of turbulence ki-
netic energy (TKE) and the flow is assumed initially free of
turbulence,k may be reasonably assumed to be zero through-
out the flow. Unfortunately, thek-L model formulation re-
quires a non-zero value for the initial lengthscale,L0. This
initial value is often interpreted as the lengthscale of initial
perturbations (which often is not well characterized in ex-
periment) [20]; although a more precise interpretation might
be thatL0 is the lengthscale associated with energy-bearing
eddies, often measured as the integral lengthscale, related to

k and TKE dissipation,ε, through Taylor’s relationL ∽
k3/2

ε
in fully developed turbulence [47].

Since there is significant uncertainty associated with both
the interpretation and the knowledge of initial lengthscales
in the flow, two different approaches are investigated in the
present work for the initialization ofL. In the first approach,
the initial lengthscale is chosen to be equal to a constant
value much less than the finest resolved scale on all meshes,
L0 = 0.01µm. This approach is consistent with the interpre-
tation ofL0 as a known, consistent perturbation lengthscale.
In the second approach, the initial lengthscale is chosen tobe
equal to one half of the finest mesh spacing,L0 = ∆/2. This
approach enforces a mesh-dependence on the initial condi-
tions forL and is less consistent with a physical interpreta-
tion of the lengthscaleL.

Figures 12 and 13 illustrate qualitatively the results ob-
tained with thek-L model using the two different initial-
ization strategies. Firstly, it seems that the RANS results
generally start by resolving the primary vortical structures
for some amount of early time before quickly becoming
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Fig. 14 Growth of maximumL usingk-L RANS model with constant
L0 = 0.01µm. Lengthscale normalized by cylinder diameter (top) and
by mesh spacing (bottom).

“blurred”. Interestingly, and perhaps counter-intuitively, it
appears that those results with mesh-dependent initial condi-
tions forL0 (illustrated in Fig. 13) seem to demonstrate bet-
ter grid convergence properties than those results obtained
with a constantL0. As discussed previously in section 3.3,
this sensitivity is most likely attributable to a lack of conver-
gence in unresolved initial interfaces [43]. Indeed, for the
levels of resolution considered, it is clear that those results
obtained with a constantL0 do not demonstrate grid conver-
gence. Specifically, for those results obtained with a constant
L0, increasing the grid resolution appears to induce an ear-
lier onset of “blurring” in the solution, which suggests that
the growth rate ofL (and therefore mixing in the solution)
must be highly sensitive to the time at whichL becomes re-
solved on the mesh (that is, the time at whichL/∆ = 1),
which we shall denote bytres. This observation is confirmed
quantitatively in Figs. 14 and 15, which plot maximumL as
a function of time and mesh resolution for both initializa-
tion approaches. In Fig. 14, which plots the growth ofL for
a constantL0, it is clear that the growth ofL is very much

Fig. 15 Growth of maximumL using k-L RANS model with mesh-
dependentL0 = ∆/2. Lengthscale normalized by cylinder diameter
(top) and by mesh spacing (bottom).

dependent on the mesh resolution, and there is no clear trend
towards convergence at early time. For constant initial con-
ditions,tres≈ 65 µs on mesh D, 120µs on mesh C, 230µs
on mesh B, and 365µson mesh A. It appears that qualitative
onset of “blurring” always occurs aftertres in the previously
discussed plots of SF6 mass fraction, which suggests that
the value ofL may be acting something like a filter width
for ensemble averaging. By contrast, Fig. 15, which plots
the growth ofL for constantL0/∆ demonstrates surprising
convergence inL/D for both early and late time. In these
simulations,tres≈ 45 µs on mesh A, 30µs on mesh B, and
20 µs on mesh C. As a result of this lesser variation intres,
the time evolution ofL/D demonstrates much better grid
convergence properties, a fact which is undoubtedly related
to the qualitative similarities in SF6 mass fraction previously
commented upon in regards to Fig. 13.

The implications of the observed grid sensitivities to in-
tegral mixing are considered in Fig. 16 which plots total mix
mass for the two initialization strategies. It is clear thatthe
results with mesh-dependentL0 demonstrate less sensitiv-
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Fig. 16 Ensemble mix mass as a function of grid resolution for con-
stantL0 = 0.01µm(top) and mesh-dependentL0 = ∆/2 (bottom) using
standardk-L coefficient set.

ity to mesh resolution than those with constantL0. Perhaps
most troubling is the fact that, with constantL0, increas-
ing mesh resolution both increases ensemble mix mass and
moves the solution further away from the ensemble LES
result – implying that solution quality gets worse with in-
creasing mesh resolution. Of course, the results with mesh-
dependentL0 seem to imply that onceL is resolved on the
mesh, the evolution ofL is relatively insensitive to grid res-
olution. Therefore, it might be anticipated in the first case
that if grid resolution were continually increased to the point
where∆ ≈ 0.01µm, a converged solution might be antici-
pated. However, trends in the mix mass curve suggest that
such a converged solution might look very much like the re-
sults obtained forL0/∆ = 0.5.

Figure 17 further investigates the issue of mesh sensitiv-
ity by plotting several turbulence parameters from the case
of initially unresolvedL0 = 0.01µm on mesh C. Notice in
this figure that contours of the ratioL/∆ are plotted from
0 to 100. By plotting the turbulence lengthscale in this way,
contours only become visible whenL is greater than the grid

scale. Between 220µs and 310µs, the first contours ofL be-
come visible, andk begins to grow rapidly in these regions.
Beyond 310µs, it is striking to see that the region over
which L/∆ > 1 roughly corresponds to a qualitative region
of “blurring” in the mass fraction field, indicating that this is
where turbulent diffusion is most active. Unfortunately, the
rate at which this process occurs seems to be much greater
than what is observed in the LES ensemble.

4.4 k-L Results With New Coefficient Set

One possibility that might explain the over-predictionof mix-
ing observed with the standardk-L prescription is that the
model is calibrated to predict a growth rate that is simply
too high. As discussed previously, the standard coefficient
set for thek-L model is derived assuming a Rayleigh-Taylor
bubble growth rateαb = 0.060. This value seems to agree
well with the majority of experimental evidence but seems
to be significantly higher than the majority of previous com-
putational studies [48]. One theory that has been proposed
to explain this discrepancy is that mixing immiscible flu-
ids might be expected to have a higher RT growth rate than
their miscible counterparts. In such a case, simulations of
miscible gases might be expected to predict a lowerαb than
experiments which have generally been conducted with im-
miscible liquids. As described in Appendix B, a newk-L
coefficient set can be derived assuming a lowerαb = 0.025,
which is more in line with previous computational studies
[48].

Figures 18 and 19 summarize results obtained with the
newk-L coefficient set (αb = 0.025) for constantL0 = 0.01µm
and mesh-dependentL0 = ∆/2 initial conditions, respec-
tively. By comparing these figures with Figs. 14 and 15, it is
clear that the new coefficient set leads, as expected, to less
mixing. Indeed, reasonable qualitative agreement seems to
be obtained between the LES ensemble SF6 contours and
the results obtained with the new set at C-level mesh reso-
lution for theL0 = 0.01µm. Unfortunately, the sensitivity to
mesh resolution seems to remain, although it is not quite as
extreme as observed previously in Fig. 18. Although having
resolved initial conditions again seems to improve conver-
gence properties, as illustrated in Fig. 19, this initialization
approach continues to lead to results with far too much mix-
ing.

Figure 20 quantifies the observations that were drawn
from Figs. 18 and 19 by plotting ensemble mix mass for
the two initialization strategies. Compared to results with
the standard coefficient set (Fig. 16), results with the new
coefficient set demonstrate less overall mix mass. Simula-
tions with a constant, unresolved initialL0 indeed seem to
bracket the LES ensemble result; however, it is clear that
increasing mesh resolution in this case leads to increasing
mix mass. Figure 21 additionally plots the time evolution
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Fig. 20 Ensemble mix mass as a function of grid resolution for con-
stantL0 = 0.01µm(top) and mesh-dependentL0 = ∆/2 (bottom) using
newk-L coefficient set.

of turbulence parameters forL0 = 0.01µm on mesh C. In
this figure, we see that although the magnitude ofL tends
to be less than that predicted by the standard coefficient set,
the magnitude ofk is much greater. It is particularly inter-
esting to note the extreme change in magnitude ofk that
occurs between 220µs and 310µs, around the time when
L first becomes resolved on the mesh. Figure 22 compares
the magnitude ofk predicted by the two RANS approaches
with TKE extracted from the LES ensemble simulations. Al-
though RANS results with the standard coefficient set ap-
pear to agree better with LES in terms of overall magni-
tude of TKE, it is clear that neither RANS simulation agrees
with LES in the growth rate or spatial distribution of TKE.
Specifically, where the LES results show peaks of TKE lo-
calized in the vortex cores, the RANS simulations predict
a more homogenized TKE field, distributing TKE relatively
uniformly throughout the mixing region.

4.5 A Potential Improvement for RANS Simulation of
Low-Reynolds Number Mixing

As we have seen in the previous two subsections, simulation
of the shock-jet problem with thek-L RANS model, regard-
less of the coefficient set used, tends to predict too much
mixing. At issue seems to be the fact that assumptions of
homogeneity of turbulence, which are built into the model
closures, may not be appropriate for early-time evolution
when the Reynolds number is low and the flow has not fully
transitioned to turbulence. As illustrated previously in the
context of Figs. 10 and 11, the gradient diffusion approxi-
mation seems particularly ill-suited for closing the turbulent
species flux during this time. Specifically, models relying on
gradient diffusion to close turbulent species flux make the
following approximation.

ρu′′i Y
′′
α ≈− µt

NY

∂Ỹα
∂xi

(29)

In addition tok andL, however, some models such as the
BHR family [49] additionally solve transport equations for
the mass-flux velocities,u′′i . Figure 23 plots these terms, as
extracted from the LES database. It is interesting to note that
these terms exhibit very similar qualitative behavior com-
pared to the turbulent mass flux termsρu′′i Y

′′
SF6

, plotted previ-
ously in Figs. 10 and 11. To examine this idea in more detail,
let us denote the angle between the turbulent species flux
vector and the mean scalar gradient vector byθ∇ỸSF6

. Sim-

ilarly, let us denote the angle between the turbulent species
flux vector and the mass-flux velocity vector byθu′′i

. It is

expected that in regions where the angleθ∇ỸSF6
is large, the

gradient diffusion closure should be inaccurate. Fig. 24 plots
the sine of bothθ∇ỸSF6

andθu′′i
. From this figure, it is clear

that the turbulent species flux does not follow the mean gra-
dient for most of the problem evolution. On the other hand,
by also plotting the sine ofθu′′i

, it is observed that the turbu-

lent species flux seems to align very closely with the mass-
flux velocity vector. Indeed, such a result might suggest that
those models which accurately solve for the mass-flux ve-
locity could exploit this feature to obtain a better closure
than gradient diffusion. Consider the following relationships:

ρu′′i Y
′′
α = ρuiYα − (ρui)

(
ρYα

)

ρ
(30)

(
ρỸα

)
u′′i =

(
ρYα

)
ui −

(ρui)
(
ρYα

)

ρ
(31)

where we have used
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u′′i = ui −
ρui

ρ
(32)

Subtracting Eq. (31) from Eq. (30) gives the following
exact result:

ρu′′i Y
′′
α −

(
ρỸα

)
u′′i = ρuiYα −

(
ρYα

)
ui

= (ρYα)u′i

=
(

u′iY
′
α

)
ρ +

(
u′iρ ′

)
Yα +u′iρ ′Y′

α

(33)

Next, let us make three simplifying assumptions. First,
we will neglect the triple correlation term in Eq. (33). Sec-

ondly, we will assume
(

u′iY
′
α

)
ρ ≈ Ct

(
u′iρ ′

)
Yα for some

constantCt . Finally, let us assumeYα ≈ Ỹα . In general, we
might expect these assumptions to be valid when the velocity-
density correlation is greater than the density variance or, in
other words, when species diffusion more closely tracks the
mean velocity field than the mean scalar field. For the shock-
jet problem and potentially other problems of multi-fluid
mixing, this seems to be the case for early time evolution
when the turbulent Reynolds number is small and mixing
is dominated by large-scale swirling rather than by small-
scale mixing. When these assumptions are made, Eq. (33)
can be reduced to a form that lends itself nicely for use by
a turbulence model that can accurately predict the mass-flux
velocity.

ρu′′i Y
′′
α ≈Ct

(
ρỸα

)
u′′i (34)

Figures 25 and 26 plot contours of the exact turbulent
species flux term as well as the proposed closure term ex-
tracted from the ensemble LES database forCt = -2. These
figures show that the proposed closure gives good qualita-
tive and quantitative representation of the turbulent species
flux until approximately 560µs. Beyond this time, the flow
is seen to become more turbulent, and the proposed closure
is observed to provide poorer prediction in regions of fine-
scale mixing. Of course, it is worth noting thatCt = -2 is cho-
sen empirically based on the available LES database, and it
is unlikely to be universal for all flows.

By utilizing the LES database, it is further possible to
analyze the appropriateness of the three assumptions that
went into constructing the proposed closure. First, in Fig.27,
contours are plotted of both Reynolds-averaged and Favre-
averaged SF6 mass fraction. Qualitatively, there is very lit-
tle difference between the two until perhaps around 560µs,
where the Favre-averaged contours appear to have slightly
greater magnitude in regions of fine-scale mixing. Other-
wise, this plot seems to confirm thatYSF6 ≈ ỸSF6 is a rea-
sonable assumption to make for this flow. Figures 28 and

29 go on to plot the three components of Eq. (33) for both
the streamwise and stream-normal components of the tur-
bulent species flux. These plots indicate that for the early-

time evolution of the cylinder,
(

u′iY
′
α

)
ρ ≈ 2

(
u′iρ ′

)
Yα and

(
u′iY

′
α

)
ρ ≥ 5u′iρ ′Y′

α . However, the appropriateness of the

closure assumptions is seen to diminish with time as the
magnitude of the triple correlation increases. The applica-
tion of the proposed closure is therefore confirmed to be lim-
ited to the early-time, low-Reynolds-number mixing. Ad-
ditionally, proper application of such a closure in a RANS
model presupposes a reasonable prediction of the mass-flux
velocity. Such an assumption could not be made of thek-
L model. For instance, if a gradient-diffusion assumption
were made to close the mass-flux velocity (as thek-L model
makes in its closure of the pressure work term in thek equa-
tion), Eq. (34) would reduce to a form that looked very much
like the standard gradient diffusion closure given in Eq. (29)
but with the gradient of the mean density field. Instead, the
proposed closure would be best coupled with a RANS model
that solves a transport equation for the mass-flux velocity,
and additional work would be required to perhaps develop a
model that could transition from this closure over to a stan-
dard gradient diffusion closure at higher Reynolds number.

5 Conclusions and Future Work

The present work has attempted to utilize careful application
of two-dimensional LES to assess the performance of thek-
L RANS model in an unsteady problem of turbulent mix-
ing. A detailed grid convergence study was first performed
to establish confidence in baseline LES results. This study
demonstrated that reasonable convergence behavior could
be obtained in high-order measures of turbulence including
total mixing rate and enstrophy and that the present results
compared favorably with previous computational work [14]
and experimental measurements [13]. Although the present
simulations were seen to converge to a different mixing rate
at early time, the impact of this result on the scalar field ap-
pears to be minimal.

Then, by running a large number of two-dimensional
LES realizations with multimode perturbations in the initial
conditions, turbulent statistics and mean flowfields were ex-
tracted as a measure by which to evaluate the RANS model
performance. Although it is acknowledged that statistics gath-
ered in this way are expected to be contaminated by a lack
of turbulent fluctuations in the spanwisez dimension, such
fluctuations are anticipated to be small relative to fluctua-
tions in the other two dimensions during early-time evo-
lution, and we have therefore limited our analysis to this
time period. By extracting Reynolds stresses from the LES
database, it was observed thatτ11/τ22 anisotropy seemed to
be mostly localized to the vortex cores and the interior re-
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gion of right-left vortex interaction. Extraction of the tur-
bulent species flux terms from the LES database revealed
that turbulent diffusion does not appear to follow the mean
scalar field during early time evolution, calling into question
the validity of a gradient diffusion closure for these termsin
RANS models during this period.

Next, a series of unsteady RANS simulations were run
with two different coefficient sets and two different initial-
ization strategies. In nearly all cases, the RANS results were
observed to over-predict total mixing. Although a new coef-
ficient set was derived that ultimately led to simulations with
less turbulent mixing, a particular sensitivity to the timeat
which the turbulent lengthscale,L, was resolved on the mesh
led to observations of non-convergence in simulations with
initially unresolvedL0. Improvements that were observed
with the new coefficient set in this regard were generally
offset by worse prediction ofk. It is therefore hypothesized
that assumptions of homogeneity of turbulence that are built
into thek-L turbulence closures are particularly inaccurate
for the early time evolution.

Finally, a new RANS closure is proposed to better cap-
ture the early time turbulent species flux when the turbulent
Reynolds number is small and the mixing is dominated by
the large scales. Utilizing the LES database to assess this
closure, it is shown to reasonably accurately reproduce the
turbulent species flux up until about 560µs, after which the
smaller scales of turbulence begin to dominate the mixing,
and the assumptions that went into the closure approxima-
tion become less accurate.

Of course, much work remains to be done to validate the
proposed closure as a useful tool for RANS simulation of
low-Reynolds number mixing. For one, its formulation pre-
supposes a reasonably accurate prediction of the mass-flux
velocity. It, therefore, would not integrate well into thek-L
turbulence model. Additionally, it is only expected to pro-
vide benefit over the standard gradient diffusion closure dur-
ing the early time mixing phase. For simulations that must
cover a large range of turbulent Reynolds numbers, further
work is required to integrate the proposed closure in such a
way that it might perhaps transition to a more appropriate
closure at later time.
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Fig. 2 Mesh resolution study: SF6 mass fraction contours obtained from LES with no initial perturbation. Contours plotted fromYSF6 = 0.1 (black)
to 0.6 (white).
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Fig. 6 Effect of initial conditions: SF6 mass fraction contours obtained from three realizations with perturbed initial conditions and ensemble-
averaged contours computed from all 20 realizations. Contours plotted fromYSF6 = 0.1 (black) to 0.6 (white).

Fig. 9 Reynolds stress components computed from an ensemble of LESrealizations. Contours ofρu′′u′′ andρv′′v′′ plotted from 0.0 (black) to
3.0e-10 g/cm·µs2 (white). Contours ofρu′′v′′ plotted from -1.5e-10 (black) to 1.5e-10 g/cm·µs2 (white).
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Fig. 10 Top row: Streamwise turbulent species flux component computed from an ensemble of LES realizations. Contours plotted from -1.5e-7
(black) to 1.5e-7 g/cm2 · µs (white). Bottom row: Mean streamwise scalar gradient. Contours plotted from -10.0 (black) to 10.0 cm−1 (white).

Fig. 11 Top row: Stream-normal turbulent species flux component computed from an ensemble of LES realizations. Contours plotted from -1.5e-7
(black) to 1.5e-7 g/cm2 · µs (white). Bottom row: Mean stream-normal scalar gradient.Contours plotted from -10.0 (black) to 10.0 cm−1 (white).
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Fig. 12 Mesh resolution study: SF6 mass fraction contours obtained withk-L standard coefficient set and constantL0 = 0.01µm. Contours plotted
from ỸSF6 = 0.1 (black) to 0.6 (white).
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Fig. 13 Mesh resolution study: SF6 mass fraction contours obtained withk-L standard coefficient set and mesh-dependentL0 = ∆/2. Contours
plotted fromỸSF6 = 0.1 (black) to 0.6 (white).

LLNL-JRNL-659268 19 Submitted to Shock Waves



Fig. 17 Growth of turbulence parameters ink-L simulation with standard coefficient set andL0 = 0.01µmon mesh C. Contours ofµt plotted from
0.0 (black) to 1.0e-7 g/cm·µs (white). Contours ofk plotted from 0.0 (black) to 2.0e-7 g·cm2/µs2(white). Contours ofL/∆ plotted from 0.0 (black)
to 100.0 (white). Contours of̃YSF6 plotted from 0.1 (black) to 0.6 (white).
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Fig. 18 Mesh resolution study: SF6 mass fraction contours obtained with newk-L coefficient set and constantL0 = 0.01µm. Contours plotted
from ỸSF6 = 0.1 (black) to 0.6 (white).

Fig. 19 Mesh resolution study: SF6 mass fraction contours obtained with newk-L coefficient set and mesh-dependentL0 = ∆/2. Contours plotted
from ỸSF6 = 0.1 (black) to 0.6 (white).
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Fig. 21 Growth of turbulence parameters ink-L simulation with new coefficient set andL0 = 0.01µmon mesh C. Contours ofµt plotted from 0.0
(black) to 1.0e-7 g/cm·µs (white). Contours ofk plotted from 0.0 (black) to 2.0e-7 g·cm2/µs2(white). Contours ofL/∆ plotted from 0.0 (black) to
100.0 (white). Contours of̃YSF6 plotted from 0.1 (black) to 0.6 (white).

Fig. 22 A comparison of turbulence kinetic energy predicted by three approaches. RANS results taken from simulations on mesh C with L0 =
0.01µmusing standard (top) and new (middle) coefficient sets. Contours ofk plotted from 0.0 (black) to 2.0e-7 g·cm2/µs2(white).
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Fig. 23 Mass-flux velocities computed from an ensemble of LES realizations. Contours plotted from -1.0e-4 (black) to 1.0e-4 cm/µs (white).

Fig. 24 Relative orientation of the turbulent species flux vector with the mean gradient vector (top row) and the mass-flux velocity vector (bottom
row) extracted from an ensemble of LES realizations. Contours plotted from 0 (black) to 1 (white).

Fig. 25 Proposed closure for streamwise turbulent species flux computed from an ensemble of LES realizations. Contours plottedfrom -1.5e-7
(black) to 1.5e-7 g/cm2 · µs (white).

LLNL-JRNL-659268 23 Submitted to Shock Waves



Fig. 26 Proposed closure for stream-normal turbulent species flux computed from an ensemble of LES realizations. Contours plotted from -1.5e-7
(black) to 1.5e-7 g/cm2 · µs (white).

Fig. 27 Mean SF6 mass fraction contours obtained from an ensemble of LES realizations. Top row: Reynolds averaged profiles. Bottom row:
Favre averaged profiles. Contours plotted from 0.1 (black) to 0.6 (white).
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Fig. 28 Relative magnitude of three components of streamwise turbulent species flux identified in Eq. (33). Contours plotted from -1.5e-7 (black)
to 1.5e-7 g/cm2 · µs (white).

Fig. 29 Relative magnitude of three components of stream-normal turbulent species flux identified in Eq. (33). Contours plottedfrom -1.5e-7
(black) to 1.5e-7 g/cm2 · µs (white).
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A Molecular Transport Properties

The Chapman-Enskog method [22] is a reduction of kinetic theory for
use in continuum flows. Utilizing this approach, the viscosity of a sin-
gle fluid component is given by Eq. (35) in terms of a collisiondiameter
σα and a collision integralΩµ,α . In this section, we additionally intro-
duce the notationvα , Wα , andzα to indicate, respectively, the volume
fraction, molar weight, and mole fraction of a single componentα .

µα =
26.69×10−6

Ωµ,α

√
Wα T
σ 2

α
(35)

The collision integral for viscosity is given by Eq. (36) in terms
of the non-dimensional temperature,T∗

α = T/Tε,α , whereTε,α is the
effective temperature characteristic of the force potential function. In
this equation,A = 1.16145,B = 0.14874,C = 0.52487,D = 0.77320,E
= 2.16178, andF = 2.43787.

Ωµ,α = A(T∗
α )−B +Cexp(−DT∗

α )+Eexp(−FT∗
α ) (36)

The thermal conductivity of a species is then related to the viscos-
ity through the Prandtl number, where Pr=0.72.

κα =
Cp,α µα

Pr
(37)

Next, the Wilke rule with Herning and Zipperer approximation
[23] is utilized to form a mixture viscosity and thermal conductivity.
This rule, which is written in general form for some quantityξ , is given
by equation 38.

ξ =
∑N

α=1 ξαYα /W1/2
α

∑N
α=1Yα /W1/2

α
(38)

Mass diffusivity coefficients are obtained in a similar manner. The
Chapman-Enskog expression for the diffusion coefficient ofone com-
ponent into another is given by Eq. (39). In this equation, average molar
weights and collision diameters are given byWαβ = 2/(W−1

α +W−1
β )

andσαβ = (σα +σβ )/2, respectively.

Dαβ =
0.00266
ΩD,αβ

T3/2

p
√

Wαβ
(
σαβ

)2 (39)

The collision integral for diffusivity is then given by Eq. (40) in
terms of the non-dimensional temperature,T∗

αβ = T/Tε,αβ , whereTε,αβ =√
Tε,αTε,β In this equation,A = 1.06036,B = 0.15610,C = 0.19300,D

= 0.47635,E = 1.03587,F = 1.52996,G = 1.76474, andH = 3.89411.

ΩD,αβ =A(T∗
αβ )−B +Cexp(−DT∗

αβ )+

Eexp(−FT∗
αβ )+Gexp(−HT∗

αβ )
(40)

The Ramshaw method [24] is then utilized to provide effective
binary diffusivities. This method, which is given by Eq. (41), ensures
that all diffusive mass fluxes sum to zero.

Dα = (1−zα)

(
N

∑
α 6=β

zβ /Dαβ

)−1

(41)

Table 3 summarizes the constants used in Eqs. (35) through (41).
Air is assumed to be a mixture of 79%N2 and 21%O2 (by molar ratio).

Table 3 Constants used for computing molecular transport properties

Constant N2 O2 SF6

Tε,α 82.0 102.6 212.0
σα 3.7380 3.4800 5.1990
Wα 28.0 32.0 148.0
γα 1.4 1.4 1.09

B Derivation of a Newk-L Coefficient Set

In the original derivation of the Dimonte and Tiptonk-L model, similar-
ity analysis was used to derive a self-consistent set of model constants
[20,50]. Here, the same analysis is applied, allowing for two additional
degrees of freedom (CL 6= 1 andNk 6= 1).

Self-Similarity of theL Equation

TheL transport equation in one dimension is given by:

ρ
DL
Dt

=
∂
∂x

(
µt

NL

∂L
∂x

)
+CLρ

√
2k+CcρL

∂u
∂x

(42)

where the turbulent viscosity is given by

µt = ρCµ L
√

2k (43)

Consider a change of variable in terms of the self-similar mixing
width, h(t).

χ ≡ x
h

(44)

It is then assumed that the analytic functionsk andL are separable
in space and time:

k(χ , t) = K0(t) f (χ) (45a)

L(χ , t) = L0(t) f 1/2(χ) (45b)

Assuming incompressibility and an Atwood number that approaches
zero allows us to cancelρ and drop spatial derivatives of velocity. Plug-
ging Eqs. (43) through (45) into Eq. (42) then gives:

D
Dt

(
L0 f 1/2

)
=

∂
∂x

(
Cµ

NL
L0 f

√
2K0

∂
∂x

(
L0 f 1/2

))

+CL f 1/2
√

2K0

(46)

We next assume that the spatial functionf is self-similar according
to

f (χ) = 1− χ2 (47a)

L0(t) = βh(t) (47b)

By distributing the derivatives, Eq. (46) can be reduced after a fair
amount of algebra to the following form:

L̇0 =
√

2K0

[
CL −

Cµ

NL
β 2
]
+
√

2K0

[
2

Cµ

NL
β 2−CL

]( x
h

)2
(48)
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In order to satisfy the self-similarity ansatz, we require that both
the terms proportional tox2 and the constant terms vanish. These re-
quirements can be satisfied simultaneously with the following con-
straints:

β =

√
CLNL

2Cµ
(49)

L̇0(t) =
CL

2

√
2K0 (TheL0 Equation)

Self-Similarity of thek Equation

Thek transport equation in one dimension is given by:

ρ
Dk
Dt

=
∂
∂x

(
µt

Nk

∂k
∂x

)
+ρCBA(x)g

√
2k

−ρCD
(2k)3/2

L
− 2

3
ρk

∂u
∂x

(50)

whereA(x) is thek-L Atwood number:

A(x) = AD +CA


 L

1+ L
ρ

∣∣∣ ∂ρ
∂x

∣∣∣


 ∂ ρ

∂x
(51)

Here,AD is the discontinuous part of the Atwood number which
will always vanish in the self-similar limit. In the limit ofsmall Atwood
number, the denominator of the continuous part of the Atwoodnumber
will also vanish. This means for small Atwood number and in the self-
similar limit, thek-L Atwood number becomes

A(x) = CA
L
ρ

∂ ρ
∂x

(52)

We assume that the density gradient may be approximated in terms
of the density of the light fluid,ρL and the density of heavy fluid,ρH :

∂ ρ
∂x

≈ ρH −ρL

2h
(53)

Plugging Eq. (53) into Eq. (52), utilizing the scaling assumption
for L0 = βh, and utilizing the small Atwood number approximation
ρ ≈ (ρH +ρL)/2, we have:

A(x) = βCA f 1/2
(

ρH −ρL

ρH +ρL

)
(54)

Recall the definition of the conventional Atwood number:

AT =

(
ρH −ρL

ρH +ρL

)
(55)

Since the self-similar functionf has a maximum value of 1 atx=0,
it is convenient to define thek-L Atwood number such that it has peak
value equal to the conventional Atwood number atx=0. This constraint
requires us to choose

CA =
1
β

=

√
2Cµ

CLNL
(56)

Utilizing Eq. (56) and substituting Eqs. (54) and (55) into Eq. (50)
gives

ρ
Dk
Dt

=
∂
∂x

(
µt

Nk

∂k
∂x

)
+ρCBATg f1/2

√
2k

−ρCD
(2k)3/2

L
− 2

3
ρk

∂u
∂x

(57)

Utilizing incompressibility and an Atwood number that approaches
zero allows us to cancelρ and drop spatial derivatives of velocity

Dk
Dt

=
∂
∂x

(
Cµ L0 f

√
2K0

Nk

∂k
∂x

)
+CBATg f1/2

√
2k

−CD
(2k)3/2

L

(58)

After a fair amount of algebra and rearranging, we are able tode-
rive the reducedk equation:

0 =

[
K̇0 +

CLNL

2Nk

(2K0)
3/2

L0
−CBATg

√
2K0 +CD

(2K0)
3/2

L0

]

−
[

K̇0 +

(
3CLNL

2Nk
− CL

2

)
(2K0)

3/2

L0
−CBATg

√
2K0 +CD

(2K0)
3/2

L0

]( x
h

)2

(59)

As we did before with theL equation, in order to satisfy the self-
similarity ansatz, we require both the constant terms and the terms that
scale withx2 to go to zero. This gives us our two moment equations:

K̇0 +
CLNL

2Nk

(2K0)
3/2

L0
−CBATg

√
2K0

+CD
(2K0)

3/2

L0
= 0 (Zero Moment)

K̇0 +

(
3CLNL

2Nk
− CL

2

)
(2K0)

3/2

L0

−CBATg
√

2K0 +CD
(2K0)

3/2

L0
= 0 (Second Moment)

Inspection of these two equations reveals that they can onlyboth
be satisfied if

CLNL

2Nk
=

(
3CLNL

2Nk
− CL

2

)
(60)

which reduces to

NL

Nk
=

1
2

(61)

With this constraint, we can equivalently write our constraint onβ
as:

β =

√
CLNL

2Cµ
=

√
CLNk

4Cµ
=

1
2

√
CLNk

Cµ
(62)

Similarly, Eq. (61) reduces both the zero moment and the second
moment to the same equation.
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K̇0 = CBATg
√

2K0−
(2K0)

3/2

L0

(
CD +

CL

4

)
(TheK0 Equation)

It is now convenient to make a change of variableV0 =
√

2K0.
Then substitution into theK0 equation gives theV0 equation:

V̇0 = CBATg− V2
0

L0

(
CD +

CL

4

)
(TheV0 Equation)

Richtmyer-Meshkov Growth Rate

We now utilize experimental observations to provide constraints on the
observed coefficient set. After the shock has passed, the acceleration
term in theV0 equation will vanish, and theL0 andV0 equations reduce
to the following:

L̇0 =
CL

2
V0 (63)

V̇0 = −V2
0

L0

(
CD +

CL

4

)
(64)

Substitution of theL0 equation into theV0 equation gives a single
equation forL0:

(
2

CL
L̈0

)
= −2

L̇2
0

L0

(
CD

CL
+

1
4

)
(65)

Integrating this equation forL0 requires initial values ofL0(0) and
L̇0(0). Anticipating the result, we try a solution of the form:

L0(t) = L0(0)

[
L̇0(0)

θL0(0)
+1

]θ
(66)

Plugging this equation and its derivatives into Eq. (65) reduces to:

θ −1
θ

= −2

(
CD

CL
+

1
4

)
(67)

or

CD

CL
=

1−θ
2θ

− 1
4

=
2−3θ

4θ
(68)

Rayleigh-Taylor Growth Rate

For the case in which the acceleration term in theV0 equation cannot
be dropped, let us assume a solution of the formL0 = BATgt2. Substi-
tuting into theL0 equation gives:

V0 =
4

CL
BAT gt (69)

Putting the trial solutions into theV0 equation gives (after some
algebra):

B =
CBCL

8
(

1+2CD
CL

) (70)

We know for small Atwood number, the bubble height will beh(t):

h(t) =
L0(t)

β
=

√
CµCL

NK


 CB

4
(

1+2CD
CL

)


ATgt2 (71)

And, we know that bubble height should grow according toh(t) =
αbgAT t2. Utilizing this, we can derive the following expression forthe
buoyancy coefficient:

CB =
4αb

(
1+2CD

CL

)

√
CµCL

NK

(72)

This makes the Rayleigh-Taylor constantB:

B =
αb

2

√
CLNK

Cµ
(73)

Another useful identity is that the ratio ofK0 to L0 should be con-
stant.

K0

L0
=

V2
0

2L0
= 4αbATg

√
NK

C3
LCµ

(74)

The turbulent kinetic energy generated within an RT mixing layer
is given by

EK =
∫ h

−h
ρK(x, t)dx

= K0

∫ h

−h

(
ρ +

∂ ρ
∂x

x

)(
1−
( x

h

)2
)

dx

= K0

∫ h

−h

[
ρ
(

1−
( x

h

)2
)

+
∂ ρ
∂x

(
x− x3

h2

)]
dx (75)

where

ρ =
ρH +ρL

2
(76a)

∂ ρ
∂x

=
ρH −ρL

2h
(76b)

By symmetry, we expect the integral over odd powers ofx to van-
ish, leaving us with:

EK =
4
3

h(t)ρK0(t) (77)

SinceK0/L0 is constant,K0/h should also be constant.

K0

h
= β

K0

L0
=

2αbATgNK

CLCµ
(78)

Utilizing this expression, we can rewrite Eq. (77) as:
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EK =
8
3

(
NK

CLCµ

)
αbAT ρgh2 (79)

The gravitational potential energy within the RT mixing layer can
also be derived by imagining a material interface atx=0 and integrating
over a distance 2d:

PE= −g
∫ d

−d
ρ(x)xdx

= −g
∫ −h

−d
ρLxdx−g

∫ h

−h

(
ρ +

∂ ρ
∂x

x

)
xdx−g

∫ d

h
ρHxdx (80)

Again, integrals of odd powers ofx vanish, leaving us with:

PE= −g
2

ρL
(
h2−d2)− 2g

3
∂ ρ
∂x

h3− g
2

ρH
(
d2−h2)

= −g
2

(ρH −ρL)d2 +
g
6

(ρH −ρL)h2 (81)

Since we are only interested in the change in potential energy over
the mixing width, we consider the term proportional toh:

∆PE=
g
6

(ρH −ρL)h2 (82)

Thus, the fraction of potential energy converted to kineticenergy
is given by:

EK

∆PE
=

8
3

(
NK

CLCµ

)
αbAT

( ρH+ρL
2

)
gh2

g
6 (ρH −ρL)h2 =

8NKαb

CLCµ
(83)

or

CµCL

NK
= 8αb

∆PE
EK

(84)

Self-Similarity of the Scalar Equation

Our conservation equation for species mass fraction in one dimension
is given by Eq. (85), where without loss of generality we havene-
glected to write the species subscript on the mass fraction,Yα . We have
done this in order to avoid confusion with the Rayleigh-Taylor growth
rate,αb

ρ
DY
Dt

=
∂
∂x

(
µt

NY

∂Y
∂x

)
(85)

Substituting Eq. (43) and applying the incompressibility assump-
tion reduces this equation to:

DY
Dt

=
∂
∂x

(
Cµ L

√
2k

NY

∂Y
∂x

)
(86)

We assume that the self-similar solution must look like

Y(x, t) =
1
2

(
1− x

h(t)

)
(87)

We also have

L(x, t) = L0(t)

√
1−
( x

h

)2
(88a)

√
2k(x, t) =

√
2K0(t)

√
1−
( x

h

)2

=
2

CL
L̇0(t)

√
1−
( x

h

)2
(88b)

where in Eq. (88b), we have utilized theL0 equation. Substituting
Eqs. (88) into Eq. (86) gives us

Ẏ =
xḣ
2h2 =

2Cµ

CLNY

L0L̇0x
h3 (89)

Utilizing L0 = βh andL̇0 = β ḣ gives

Ẏ =
xḣ
2h2 =

2Cµ β 2

CLNY

xḣ
h2 =

2Cµ

(
CLNL
2Cµ

)

CLNY

xḣ
h2 =

NL

NY

xḣ
h2 (90)

Inspection reveals that this equation can only be satisfied if we
have

NY = 2NL (91)

Self-Similarity of the Internal Energy Equation

Our conservation equation for internal energy in one dimension is given
by:

ρ
De
Dt

=p
∂u
∂x

+
∂
∂x

(
µt

Ne

∂e
∂x

)

−CBA(x)g
√

2k+CD
ρ (2k)3/2

L

(92)

Applying incompressibility and small Atwood number assump-
tions, this equation reduces to:

De
Dt

=
∂
∂x

(
Cµ L

√
2k

Ne

∂e
∂x

)
+CD

(2k)3/2

L
(93)

We assume the self-similar solution takes the following form:

e(x, t) = e0 +e1 f (x, t) (94)

After some algebra, we arrive at the reduced energy equation.

(
e1CLV0

L0

)( x
h

)2
=− NL

Ne

(
e1CLV0

L0

)[
1−3

( x
h

)2
]

+CD
V3

0

L0

[
1−
( x

h

)2
] (95)

As we have done previously, we require that the constant terms
and x2 terms go to zero simultaneously. This gives us two moment
equations. We start by considering the zero moment equation:

−NL

Ne

(
e1CLV0

L0

)
+CD

V3
0

L0
= 0 (Zero Moment)
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which can be rearranged to give

CDV2
0 =

e1CLNL

Ne
(96)

Utilizing the zero moment equation, we can then write the second
moment equation:

(
e1CLV0

L0

)
=

2NL

Ne

(
e1CLV0

L0

)
(Second Moment)

In order to satisfy the second moment equation, we thereforere-
quire

Ne = 2NL (97)

Compressibility Concerns

In order to obtain a constraint for the compressibility coefficient Cc,
we estimate that the total mass of eddies in an RT mixing layer(ρL3)
is conserved under compression. Mathematically, this statement trans-
lates to the following:

D
Dt

(
ρL3)= 3L2ρ

DL
Dt

+L3 Dρ
Dt

= 0 (98)

Recall the continuity equation in one dimension:

Dρ
Dt

= −ρ
∂ ũ
∂x

(99)

Substituting Eq. (99) into Eq. (98) and rearranging yields:

1
3

ρL
∂ ũ
∂x

= ρ
DL
Dt

(100)

This result suggests that the compressibility coefficient in Eq. (42)
should be given approximately by

Cc =
1
3

(101)

Summary of Constraints

We now have a set of 13 unknowns (CA, CB, CC, CD, CL, Cµ , NL, Nk,
NY, Ne, αb, θ , and EK

∆PE) and 8 relational constraints. These constraints
are summarized in table 4. Clearly, we require an additionalfive con-
straints to close the coefficient set. Firstly, let us takeθ = 0.25 based on
linear electric motor experimental data [51], and let us take EK

∆PE = 0.5
based on previous experimental and numerical observationsof RT mix-
ing [52,48]. Note that these values are the same as those usedby Di-
monte and Tipton [20]. Where Dimonte and Tipton choseαb = 0.060,
however, to be consistent with the majority of experimentaldata avail-
able at the time (which in general were observations of immiscible fluid
mixing), here we chooseαb = 0.025 to be consistent with the majority
of simulation data of miscible fluid mixing [48]. To close outour con-
straints, it is desirable to enforce the Kolmogorov relationship between
dissipation of turbulence kinetic energy and the turbulentlength scale.

ε = CD
(2k)3/2

L
=

k3/2

L
(102)

Table 4 Relational Constraints

Constraint Note

CA =
√

2Cµ
CLNL

Eq. (56)

Nk = 2NL Eq. (61)
CD
CL

= 2−3θ
4θ Eq. (68)

CB =
4αb

(
1+2CD

CL

)

√
Cµ CL

NK

Eq. (72)

CµCL
Nk

= 8αb
∆PE
EK

Eq. (84)
NY = 2NL Eq. (91)
Ne = 2NL Eq. (97)
Cc = 1

3 Eq. (101)

Table 5 Additional Constraints

Constraint Note

αb = 0.025 Ref. [48]
θ = 0.25 Ref. [51]
EK

∆PE = 0.5 Ref. [52]
CD = 1

2
√

2
Eq. (103)

Cµ = 0.288√
2

Ref. [53]

Clearly, to enforce this relationship, we require:

CD =
1

2
√

2
≈ 0.35 (103)

Furthermore, we would like the new coefficient set to correctly
capture Kelvin-Helmholtz instability; this requiresCµ << 1. For our
constraint onCµ , let us take the value that is consistent with experi-
mental measurements of RT mixing by Banerjeeet al [53].

Cµ =
0.288√

2
≈ 0.20 (104)

We now have a complete set of 13 unknowns and 13 constraints,
summarized in tables 4 and 5. Applying these constraints andtrans-
lating into the notation used in Eqs. (13) through (18) givesus the
complete coefficient set previously identified in table 1.
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