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Abstract Two-dimensional numerical simulations of the Richtintroduction

myer -Meshkov unstable “shock-jet” problem are conducted

using both large-eddy simulation (LES) and unsteady Reim®&ichtmyer-Meshkov instability (RMI) is a fundamental in-
-averaged Navier-Stokes (URANS) approaches in an arbéstability in fluids which arises when a shock wave impul-
trary Lagrangian-Eulerian (ALE) hydrodynamics code. Tur-sively accelerates the interface between two fluids of diffe
bulence statistics are extracted from LES by running an erent densities [1,2]. In a sense, RMI may be thought of as
semble of simulations with multi-mode perturbations to thethe impulsive limit of the Rayleigh-Taylor instability (R)T
initial conditions. Detailed grid convergence studiesa@me-  in which a fluid interface is subjected to constant (usually
ducted, and LES results are found to agree well with both exgravitational) acceleration [3]. Both instabilities &iwhen
periment and high-order simulations conducted by Shankaperturbations on the interface between two fluids grow due
Kawai, and Lele [S. Shankar, S. Kawai, and S. Lele, “Two-to imposed acceleration. In the case of RMI, a misalignment
dimensional viscous flow simulation of a shock acceleratethetween the density gradient and the pressure gradierst give
heavy gas cylinder,” Phys. Fluid23 (2011)]. URANS re- rise to the baroclinic generation of vorticity at the interé.
sults using &-L approach are found to be highly sensitive By considering the compressible vorticity transport equa-
to the initialization ofL and to the time at which becomes tion, which is given below in Eqg. (1) in terms of specific
resolved on the computational mesh. It is observed that worticity (Q;j = w /p), it is easy to identify the baroclinic
gradient diffusion closure for turbulent species flux is apo process as one of three mechanisms for vorticity transport
approximation at early time, and a new closure based on thighe other two beingorticity stretching and tiltingandvis-
mass-flux velocity is proposed for low-Reynolds-numbermigous transpoiit[4]. In this equationy; denotes the velocity

ing. vector,x; denotes the coordinate vectprindicates density,
p indicates the static pressugejs the molecular viscosity,

Keywords Richtmyer-Meshkov instability turbulent tindicates time, andj. is the permutation tensor. In RMI,

mixing - large-eddy simulation baroclinic vorticity generation is the primary mechanisin o

instability. At later time, secondary instabilities suchthe
Kelvin-Helmholtz shear instability begin to develop, whic
lead to the breakup of primary vortical structures and lead
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should be on the same order as the Kolmogorov timescale.

If an LES approach is instead utilized, it is still expected
D = i 4 uii (2) that approximately 80% of the turbulent energy should be
Dt ot 0% resolved on the mesh [19]. An alternative approach is to ap-
Bly a Reynolds-averaged Navier-Stokes (RANS) approach
to model the mixing driven by fluid instabilities such as
KMl and RTL. It is the goal of the present work to utilize
high-fidelity LES to evaluate the performance of a typical
two-equation RANS approach applied to the cylindrical RM
problem described above. Specifically, it is intended tetev
age the two-dimensional nature of the flow to obtain an en-
fsemble of LES solutions from which turbulence statistics
may be extracted and compared against closure terms in the
k-L RANS model [20].

Turbulent mixing processes are important in a wide rang
of applications, including inertial confinement fusion AC
[5], astrophysical phenomena [6], and supersonic combu
tion [7]. It is therefore important to develop computatibna
tools that are capable of accurately simulating and/or raode
ing turbulent mixing processes and the fluid instability mec
anisms from which these mixing processes arise.

The focus of the present work is on the simulation o
a simple RMI configuration, the results of which may be

used to inform more complicated simulations of Richtmyer- . o .
The remainder of the paper is laid out as follows. First, in

Meskov-induced mixing in complex geometries and flow ) ) . )
section 2, the governing equations are presented along with

regimes. Perhaps the most commonly studied RMI config o .
uration is that of a shocked planar interface. This configi"€ 9eneralization of these equations to the LES and RANS

uration, which has been studied both experimentally [8,9]3ppro_ac_hes_ used _in the present_work. Next, iq sect_ion 3.a
and computationally [10], is characterized by an initiditiy description is provided of the arbitrary Lagrangian/Eialer

ear growth of crests and troughs followed by the nonlineaFALE) hydrodynamics code that is used in the present study,

growth of spikesithe penetration of heavy fluid into lighter and the experimental configuration is reduced into a repre-

fluid) andbubbles(the rising of light fluid into heavy fluid). Sentative numerical model. Then, in section 4, results are
Eventually, the spikes roll over, giving rise to the “mush- Presented of simulations of the shocked; $finder in air.

rooming” that is often characteristic of classical RMI [3]. glnglly, in Sec“%” 5 conclgsmns a(;_e drgwn, ??d recomrrllen-
An alternative configuration to the planar interaction just ations are made concerning the direction of future work.

described is the interaction of a planar shock wave with a
cylindrical interface. In this configuration, first studies- 5 Governina Equations
perimentally by Haas and Sturtevant [11] and later by Ja- 9=

cobs [12]’ th_e instability enters |r_1to a n_onlmear regime al For the present work, it is assumed that the governing equa-
most immediately, and the flow is dominated by a pair of

tions for an ideal non-reactive gas mixture are the compress

counter—r_otating vortices WhiCh are _analogous to the Spik?ble, multicomponent Navier-Stokes equations, where k-Fic
features in the planar configuration in the absence Of&_w'si'an diffusion law is utilized to describe component mass
;:olus b‘f).“”dafy' Tge_pr)ressnt WOTk flogcus}es oln the e>;]per|lmeﬂax. It is also convenient to express conservation of energy
alcon |gurat!on y fom !net al.[13] ot a planar Shock- i, terms of the specific internal energy, These governing
wave interacting with a cylinder of $fn air. The advantage equations are given explicitly by Egs. (3) through (6). In

of examining this flow configuration is that during the early,[hese equationd is used to denote the scalar mass frac-

time evolution, when the flow is dominated by large counter-,[ion of componentr, Dy indicates the binary molecular dif-

rotating vortices, the vorticity field is predominantly two fusivity of componentr, andd; is the Kronecker delta
dimensional. This aspect allows for the careful applicatio ' ! '

of large-eddy simulation (LES) techniques in two dimen-
sions without a significant loss in accuracy. Previous compuPp _ oau; 3)
tational studies [14—16] have demonstrated that such a tectDt 0%
nigue may be applied relatively successfully to the simula-
tion of the shock-accelerated heavy gas cylinder.
Although Shankar, Kawai, and Lele [14] have previouslyp DYq = 9 (pDa %> (4)
demonstrated the ability to accurately reproduce experime t 0% 0%
tal results for the shock-accelerated cylinder problerh wit
high-fidelity, two-dimensional LES approach, in more com-

plicated applications of turbulent mixing, a high-fidelétg- PFtJ = Tox (p&j + aij) (5)
proach is often prohibitively expensive. As discussed bg&to

and Moin [17] and Kinet al.[18], the number of grid points

required to resolve the smallest scales of turbulence is ex-De oui 0

pected to scale like R, and the computational time step Py — ~Pax. + ox; (uicij —dj) 6)
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To complete the above equations, the viscous stress ten- where

sor, gij, and the heat flux vectog;, are defined according

to Egs. (7) and (8), respectively. Notice that the heat flux i:s~
composed of contributions due to heat conduction and diff =

fusional heat flux [21]. In Eq. (8 indicates thermal con-
ductivity, T indicates temperature, ahg is the specific en-
thalpy of componentr.

- Jdui  0u; 20Uy
G = H <0xj + o'?xi) H3 o'?xkdJ ()
g = 2T 3 hypp, 2 ®)
ooy A& 9%,
———

conduction  enthalpy diffusion

The ideal gas equation of statg; = (Yo — 1)Pa€a, iS
used to relate partial pressures to partial densities anidpa
energies through the ratio of specific hegfs and mixture
guantities are computed according to Egs. (9) [21].

N N
p= Z VaPa, €= Z Ya€q 9
a=1 a=1

(12)

oI T

The RANS model which is investigated in the present
work is thek-L two-equation model by Dimonte and Tipton
[20], which has been developed specifically for its applica-
tion to the prediction of RTI and RMI growth rates. Tk
model has been previously demonstrated to provide good
agreement with theoretical growth rates of RTI- and RMI-
induced mixing in one dimension [20,25]. It has been since
applied in a wide range of applications including prediatio
of astrophysical phenomena [26] and simulation of inertial
confinement fusion (ICF) targets [27].

Turbulent species flux and turbulent heat flux terms are
closed with gradient diffusion arguments. Reynolds stress
terms are closed by utilizing the Boussinesq approximation
and by solving additional transport equations for a turbu-
IenAcg lengthscald,, and the turbulence kinetic enerdys
%ui”ui”. Thek-L model is summarized by Egs. (13) through
(22). In these equations, we additionally introduce the no-
tation 1 to indicate an eddy viscosity;; to indicate the
Reynolds stress tensor, afg to indicate the strain rate ten-

Componentviscosities and mass diffusivities are obtaingd"

by application of the Chapman-Enskog method [22]. Mix-
ture viscosity and thermal conductivity are computed usinddp ~ _dU;
the Wilke rule with Herning and Zipperer approximation Dt —pa—xi
[23], and effective binary diffusivities are computed by ap

plying the Ramshaw method [24], which ensures all binary

diffusivities sum to zero. Further details on the Chapman=DYa _ 9 5D, + Kt 0Yq
Enskog method and associated mixing rules may be found Dt X a

in Appendix A.

2.1 Thek-L RANS Model

In general, the RANS equations can be derived from the

Navier-Stokes equations by applying a Reynolds decompoﬁa3 - _bﬂ btﬂ <dp @) dtpk3/2
sition to the primitive variables and by taking an ensem- Dt 0% P’

ble average of both sides of the governing equations. In the
present work, an overbar) is used to denote an ensemble

averaged quantity. Additionally, it is convenient to wirite

compressible RANS equations in terms of mass-weighted
(or Favre) averaged quantities. In the present work, Relgnol p— = — by f—tz <
decomposition of an arbitrary scaldr,is denoted by Eq. (10), p

while Favre decomposition is denoted by Eq. (11).

f=F+f (10)

f=f+f" (11)
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(13)
— | = 14
Ny ) ox (14)
_Duj  0p J _
P T _(9Xj + ox; (Tij +P1ij) (15)
= = 3
0% 0% g (16)
_|_i U0 —0: +&E
X 19 — G Ne 9X;
Ok, 1 (9D0p)  ou
Dt 3% 0% " ax;
_ 17)
_dtpk3/2 +i +ﬂ ﬁ
L 0% H N¢ /) 0%
PO e 0 (L
P Dt _CCpLaXi +CLp\/ﬁ(+ % <N|_ aXi) (18)

where
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3.1 LES in Two Dimensions

L = atﬁLkl/Z (19) Itiswell-established that two-dimensional turbulendeirs
damentally different from three-dimensional turbulent®, [
33]. This difference follows from the fact that the vortex
stretching term in the vorticity equation vanishes in tweo di
_ _ 2 mensions, and the remaining vorticity term evolves, essen-
PTij = 214Sj — §pk6” (20) tially, as a conserved scalar. As aresult, energy in twoedisional
turbulence is generally transferred up the cascade from the
small scales to the large, rather than from the large scales
. . . to the small as in canonical three-dimensional turbulence
5 = 1 (ﬂ n %) _ 100k j (21)  [34]. Although most physical flows are naturally subject to
2\0xj 0% 3 0% three-dimensional instabilities [35], in the special aire
stance of a flow heavily confined by geometry or by applied
body forces, a flow may be two-dimensional or quasi-two-
dimensional in nature [33].
A number of previous computational studies [14—16] have
all demonstrated that the shocked gas cylinder probleneptisys
In the present work, two sets of model constants are ingnder consideration can be simulated accurately with a two-
vestigated, both of which are consistent with one-dimeraio dimensional approximation. Additionally, Weiet al. [36]
self-similarity analysis. Simulations are performed gdime  have compared two-dimensional and three-dimensional cal-
standard Dimonte and Tipton coefficient set [20], which wascy|ations of the experiment by Tomkiesal.[13] and shown
derived assuming a Rayleigh-Taylor bubble growth rate ofhat three-dimensional effects are generally negligilpil u
ap = 0.060; additionally, we explore results using a new co-re|atively late time (after about 750s). We therefore ex-
efficient set, which is derived in Appendix B and assumes|oit the quasi-two-dimensional nature of the flow at early
a lower growth rate o, = 0.025. The two coefficient sets time in order to justify the careful application of LES in two
are summarized in table 1. dimensions. The advantage of this approach is that it allows
for the efficient collection of turbulence statistics by +un
ning an ensemble of simulations; although those statistics
3 Numerical Models no doubt contain error due to the reduction in dimensional-
ity, it is expected that such errors should be relativelylsma

For the present study, tieesarbitrary Lagrangian/Eulerian during early time evolution.

(ALE) hydrodynamics code developed at Lawrence Liver-

more National Laboratory (LLNL) is utilized. The block-

structurecArescode solves the governing equations describeg sub-grid Scale (SGS) Model

in the previous section in a Lagrangian coordinate frame,

and a second-order remap scheme [28] is then applied 1@ the present work, an implicit LES approachis utilized,[37

avoid mesh tangling and associated computational difficul3g]: that is, no explicit model is used to solve for the sub-

ties. In order to compare most directly with previous compugrid turbulent contributions to the filtered governing equa

tational work [14], the present work utilizes a fixed Euleria tions. Of course, this approach relies on the inherent dis-

mesh. sipation of the numerical scheme to provide stability and
Explicit time integration is accomplished with a second-subgrid energy transfer [39,40]. Much work has been done

order predictor-corrector scheme [29], and spatial diffiees to establish the validity of the implicit LES approach for

are computed with a non-dissipative second-order finite elthe simulation of both three-dimensional [41,42] and two-

ement approach. A tensor artificial viscosity [30] is apgplie dimensional flows [34]. It is important to note, howeverttha

for the capturing of shocks and material discontinuities.  the present work computes the resolved molecular transport
TheArescode additionally utilizes adaptive mesh refine- (viscosity, diffusivity, and thermal conductivity) acaiing

ment (AMR) [31,32] to localize computational grid points to the Chapman-Enskog method as discussed in Appendix

in regions of interest. In the present work, this capabilityA and relies on numerical dissipation for only teebgrid

is utilized to improve computational efficiency by cluster- contribution; this approach is in contrast to much of the lit

ing gridpoints around the shock interface and the heavy gaarature on implicit LES, which often solves the filtered Eule

cylinder. More details on the computational domain are proequations and relies on an assumption of flow in the limit of

vided in section 3.4. high Reynolds number to justify numerics (and by exten-

Tij = 2US; (22)
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Table 1 k-L Model Constants

ap & b o Cc CL Ny Ne N NL
Standard Set 0.060 1.414 120 350 100 1.00 1.00 1.00 1.080 O.
New Set 0.025 0.290 350 100 033 028 0.14 0.14 0.14 o0.07

sion, the subgrid scale) as the dominant contributor ta-diss 5 *
pation. |

By including the effects of molecular transport in the
present simulations, it is possible to more accurately quar (EK,K

125D

1

2ED

tify the effects of the numerical relative to the physicalsiH

pation and thereby assess solution quality. The presetkt wor
therefore, emphasizes the use of detailed grid resolutimys [~ 5, N 230 "
to obtain nearly grid-converged LES results.

D=06cm

Fig. 1 Computational domain (not to scale)

3.3 Initial Conditions

initialization strategies are utilized to set the initiattu-
Initial conditions are chosen to match those of the expertence lengthscald,o, in the gas cylinder. In the first case,
iment by Tomkinset al. [13] and simulations by Shankar, Ly is held constant in the cylinder at 0.@dm (well below
Kawai, and Lele [14]. Specifically, a cylinder (circular re- the grid lengthscale), and in the second caseis speci-
gion, in two dimensions) of Sfgas is located in initially  fied in terms of the finest mesh spacidy,such thatg/A
quiescent air (which is assumed to be a 79:21 mixture of held constant at 0.5, enforcing a mesh dependence on
N2 and G gas) and impacted by a Mach 1.21 shock wavethe initial lengthscale. This second choice is motivated by
Initial pressure and temperature in the stationary unstmbck work by Johnson and Schilling [43,44], who have shown
gas are 0.8atm and 298K, respectively. Initial velocity andhat for simulations with a discontinuous mean flow, the
thermodynamic conditions in the shocked gas are given byrowth rates obtained using two-equation RANS models tend
the Rankine-Hugoniot jump conditions. The initial concen-to scale with grid resolution. It is also worth noting that Di
tration of Sk gas is given by Eq. (23) in terms of the cylin- monte and Tipton [20] similarly observed a sensitivity of
der radiusRy, and the maximum concentratioff,,, which  the realized growth rate to initial conditions, althougkyth
was determined experimentally [13, 36] to be 0.83. did not tie this sensitivity to the mesh resolution. Indeed,
Johnson and Schilling argue that the lack of convergence
they observed when holding a constant initial lengthscale
was due to unresolved interfaces in the initial conditions,

| (trznl ) oM “analogous to the lack of convergence in a shock width in a
Y2 <1.0—6XD<M Ir| <Ry 23 g g

Ygl%(r, 9) =

1.0082 shock-capturing simulation [43].” It is therefore antiatpd
0.0 Ir| > Ry that this second initialization strategy might provideteet
convergence behavior than the first.
In the above profiler) (r, 8) represents a multimode per-
turbation function. For baseline simulations, we tgke 0.
Later, to obtain turbulence statistics from LES, an ensem-
ble of simulations are run, where the perturbation functiord.-4 Computational Domain and Boundary Conditions
is given by Eqg. (24). In this equation, the maximum ampli-
tudeA = 0.035R; is chosen to match experimental error barsThe mesh used in the present study is Cartesian and planar,
reported by Tomkingt al. [13], and ¢ indicates a random parameterized by the diameter of thesS¥linder O = 2Ry
phase shift if—r, . = 0.6 cm). The center of the cylinder is located at the ori-
gin, and the mesh extends from E170 38D in the stream-
14 A wise () dimension and from -12[3to 12.D in the stream-
n(r,6)= ;21_5$in(k9+ @) cos(k6 + @) (24)  normal dimensiony), as illustrated by Fig. 1. A depth of 1
k= cm is assumed in spanwis® @imension when computing
To initialize turbulence quantities in thel. RANS model, Vvolume-integrated quantities.
initial turbulence kinetic energy is set to a near-zero posi  The problem is solved in a laboratory fixed coordinate
tive value everywherek(x,y) = 1e-32). Additionally, two frame such that the shock, initially locatedxat -1.5D, is
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Table 2 Computational mesh parameters grid points across the cylinder. Additionally, the compari
LES results were simulated with zero initial perturbation t
the Sk cylinder with acetone excluded. Indeed it has been

Mesh N AMRLevels cellsD A (um)

A 100 4 82 72.3 shown [14] that the unquantified amount of acetone present
2 138 2 ggg 241'2 in the experimental gas cylinder (which was used for imag-

D 200 6 1473 407 ing purposes) is expected to significantly affect resultse T

E 100 7 2209 2.72 simulations by Shankar, Kawai, and Lele [14] are therefore

F 200 7 4418 1.36 expected to be more directly comparable to the present re-

sults than the experiment by Tomkiaesal [13].

observed to propagate from left to right at a speed of Mach
1.21. 4.1 Baseline LES results

As discussed earlier, th&rescode utilizes AMR to lo-
calize computational cells in regions of interest. In thesent  Figure 2 plots mass fraction contours ofgSebtained by
problem, AMR is utilized to cluster cells along the shock in-LES with no initial perturbation for several levels of grid
terface and in regions of non-zero Skass fraction such resolution. This figure illustrates that good qualitatigesse-
that the cylinder is entirely resolved on the finest level ofment is obtained for mesh resolutions C and above. Specif-
mesh refinement. For each level of grid refinement beyonially, it can be seen that the secondary Kelvin-Helmholtz
the first, the mesh is refined by adding an additional factoinstabilities that begin to appear between 400 and 480
of 3 cells in each dimension. At the first level of grid re- are not well captured on meshes A and B. Itis also observed
finement, the mesh is refined by a factor of 5 cells in eaclthat the comparison results generally predict less seecgnda
dimension. Cells are nominally square; therefore, the cominstability in the primary vortices beyond about 408 than
putational domain is completely parameterized by the numthe present work. This may be a result of the artificial vis-
ber of cells in thex-dimension on the coarsest levlll) and  cosity which is present in the comparison results.
by the number of levels of AMR refinement. Table 2 sum-  To quantify the effect of grid resolution on the solu-
marizes those meshes which are used in the present studytion, Fig. 3 plots two measures of mixing in the problem

Boundary conditions at the inflow fix velocity and ther- for mesh resolutions A through F. First, the total mix mass,
modynamic conditions of the shocked gas. Outflow boundgiven by Eq. (25), provides a measure of the total quantity
ary conditions fix gas velocity and are time dependent suchf mixed fluid in the problem. Additionally, the total mixing
that they “swallow” the primary shock. This ensures the pri-rate (TMR), given in general by Eq. (26), provides an inte-
mary shock is not reflected, and therefore re-shock of thgral description of the instantaneous scalar dissipatbe r
SF; cylinder is not simulated. Upper and lower boundarieq13].
are non-reflecting “sponge” boundaries that are also time de
pendent (to account for the location of the primary shock) .
and allow perturbations in velocity and thermodynamicwvari 0@l mix mass= /pYSFe (1—Ysg)dV (25)
ables to go smoothly to zero. These sponge boundary con-
ditions ensure that spurious acoustic reflections do net-int

i i i i 1 AYsr \ 2
fere with the region of interest around thee3fas cylinder. L o i /DS% ( SF5> qv (26)
(Y9ad” 0x
4 Results and Discussion Both the total mix mass and the total mixing rate demon-

strate a clear trend towards grid convergence, with litfle d
Having presented the theoretical and computational framéderence observed in either quantity beyond mesh resolution
work for the present investigation, it is now possible to-pro level E. The total mixing rate shows more sensitivity to grid
ceed with analysis of results obtained with LES and RANSesolution; fortunately, comparison data for this quarist
simulations of the shock-jet flow. To begin, it is useful to available from both experiment [13] and high-fidelity simu-
first establish confidence in a baseline solution to which allation [14]. Although comparison with these data sets shows
other simulations may be compared. To this end, baselinthat the present simulations appear to converge to a higher
validation efforts in this section will focus on comparison initial mixing rate, good agreement is obtained in both the
with high-order LES results by Shankar, Kawai, and Leletime and magnitude of peak mixing rate as well as in pre-
[14]. These comparison results, which were obtained with diction of late time mixing. The observed discrepancy in
sixth-order compact differencing scheme utilizing lozatl  early time mixing rate, however, is likely related to thevpre
artificial diffusivity for SGS modeling and shock capturing ously discussed secondary instabilities in the primaryivor
[45], have been shown to be nearly grid converged with 96@al structures. Specifically, the present work predictBezar
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) © Ref.[13] Zd . tained from inviscid simulation against results from highl
™ ) . . . . .
E Retf.[14]|7 9‘\ resolved (Mesh E) viscous simulation. First, by plotting to

E 1000

MR
/i’
e

tal mix mass, it is seen that although the inviscid simula-
tions may demonstrate a trend towards convergence, the to-

/ -
00 T“a}\____ﬂ tal mixing in the resolved simulations is less than in the vis
/ e cous simulations. Since the effect of viscosity is gengrall
N to suppress fine scale mixing, the observed increase in the
viscous mix mass may therefore be attributed to molecular
0 200 40’%ime (HS?DO 800 1000 diffusion of species. Interestingly, the very coarse (Mash

Fig. 3 Two measures of mixing using LES with no initial perturbatio

total mix mass (top) and total mixing rate (bottom)

inviscid simulation is observed to agree quite well in total
mix mass with the viscous simulation due to the high level
of numerical dissipation in this simulation. Indeed, bdta t

viscous and inviscid simulations at A-level resolution are

onset of secondary instabilities in the primary vortex spre quite comparable in measures such as total mix mass, which
which likely leads to the higher rate of mixing. Although the indicates that at the low resolution, numerical dissipatio
results by Shankar, Kawai, and Lele [14] demonstrate bettéfominates molecular diffusion. Of course, when total mix
agreement with experiment during the early time mixing, itmass is captured at low resolution, total vorticity is seler
is not clear that the simulations should agree so well wittinder-predicted. Moreover, as demonstrated by the bottom
experiment, which is additionally complicated by the presJlot in Fig. 5, without the physical regularization effedt o
ence of an unknown amount of acetone (an effect which ignolecular viscosity, the inviscid simulations will necass
neglected in both sets of simulations). ily fail to converge in high-order measures of vorticity Buc
Figure 4 further explores the effect of grid resolution onas enstrophy.
more sensitive indicators of vortex intensity by plottirg t Mesh resolution studies on enstrophy such as those in
tal enstrophy as a function of time for mesh resolutions AFigs. 4 and 5 additionally provide some insight into the mang
through F. Enstrophy, defined by Eq. (27) in terms of theof turbulence lengthscales which are resolved in the ptesen
spanwise component of vorticity, and normalized by the viscous simulations. Ideally, large-eddy simulationsudtio
total areaA, provides an integral measure of total vorticity. resolve well into the inertial subrange of the turbulenaxsp
A high degree of grid convergence is observed in enstrophyrum. In two-dimensional simulations such as those in the
for resolution meshes D and higher, which indicates that theresent study, which do not have a homogeneous dimen-
effect of numerical dissipation is low for these resolutionsion over which to compute instantaneous ensemble aver-

levels. age quantities, it is difficult to compute turbulence spectr
directly. However, the convergence in enstrophy observed
1 in viscous simulations, combined with the over-shoot in en-

enstrophy= K// wydxdy (27)  strophy observed in inviscid simulations, suggests thet vi
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gX 10° 5 Inviscid (A) Fig. 7 Convergence of ensemble mix mass as a function of ensemble
¢ Inviscid (B) size.
8 & nviscid (C)
5 / * Inviscid (D)
i Viscous (E) least until late time transition to turbulence (beyond @bou
6 / E 560 us).
L S . .. . . .
E 5 f w—\ To obtain statistics as a baseline for comparison with
= 4 f RANS, 20 LES realizations of the shock-jet problem are run
*5 e, at level-C mesh resolution with initial conditions pertedb
w3 / T according to Eq. (24). When computing ensemble averages,
2 o T in order to reduce statistical noise, averages are taken ove
T . . .
! o =y the 20 realizations and then about the plang=a0. Figure
D — 6 illustrates qualitatively how perturbations in initiardi-
GU 200 400 600 800 1000 tions can lead to significant differences at late time and how
Time (us) abaseline ensemble may be obtained by averaging over mul-
Fig. 5 The effect of molecular transport through comparison with i  tiple realizations.
viscid simulation: total mix mass (top) and enstrophy (wt} Figure 7 plots the ensemble mix mass, given by Eq. (28),

for ensembles of 5, 10, 15, and 20 realizations; this plot in-
dicates good statistical convergence for ensemble mix mass
and suggests that similar integral measures may be reason-
ably considered converged over the 20 realizations consid-
ered. It is also interesting to note in Fig. 7 the difference
between the ensemble mix mass and the total mix mass cal-
culated from the single baseline simulation. It can be shown

In order to directly assess the quality of RANS simulations[46] that the ensemble mix mass is expected to be greater

of the shock-jet problem, it is necessary to consider turbut—han the instantaneous mix mass by a factor approximately

lence statistics and mean profiles which cannot be obtaine%qual to the integrated scalar vananY‘sé;%Yé,%.
from a single two-dimensional simulation. Ideally, turbu-
lence statistics would be obtained from high-fidelity three ) ~ ~
dimensional simulation. Given the computational expens€nSemble mix mass /‘WS'% (1_YSF6) dv (28)

of the problem under consideration, however, such an ap-

proach is not feasible. As a compromise, a large number Figure 8 furthermore demonstrates the effect of initial
of high-resolution two-dimensional simulations can be, run conditions on late-time mixing in the LES database by plot-
with perturbed initial conditions (as discussed previgusl  ting total mix mass and total mixing rate along with error
section 3.3). Of course, this approach will not provide acbars indicating two standard deviations over all 20 realiza
curate statistics when fluctuations into the plane of simulations. Note that this figure shows the mean total mix mass
tion would become significant relative to fluctuationsxin obtained by averaging the temporal mix mass histories of
andy. Fortunately, for the problem under consideration, itisall 20 realizations. This is a different quantity than the en
expected that this should be a reasonable approximation semble mix mass, as defined in Eq. (28). From this image, it

cous simulations with resolution level D and above are re
solving sufficiently near the dissipation range of turbaken

4.2 Ensemble LES Results

LLNL-JRNL-659268 8 Submitted to Shock Waves



i Similarly, Figs. 10 and 11 plot the contributions to tur-
bulent species diffusion that are closed in Eq. (14) with a
gradient diffusion approximation. By plotting the turbroite
terms next to the mean gradient components, however, it is
clear that the two terms demonstrate significantly differen
patterns of symmetry and antisymmetry. For instance, the
mean streamwise gradient demonstrates a change in sign
from the top to the bottom of the cylinder, which does not
appear in the streamwise turbulent transport term. (Due to
rotation of the cylinder in the image, this change is acjuall
along a plane of constagtcoordinate.) Qualitatively, such
observations suggest that gradient diffusion may not be a
good assumption to close these terms during the early phase
evolution.

Q 200 400 600 800 1000
Time (us)

2000
4.3 k-L Results With Standard Coefficient Set

Having established a high-fidelity LES database to which

1500
) we can compare, attention is now shifted to results obtained
NE using thek-L RANS model. One additional complication

= 1000 which is introduced by the RANS model is the necessity for
2 initial conditions on the additional transported turbuen

gquantitiesk andL. Sincek is representative of turbulence ki-
netic energy (TKE) and the flow is assumed initially free of
turbulencek may be reasonably assumed to be zero through-
out the flow. Unfortunately, th&-L model formulation re-
0 200 400 800 800 1000 quires a non-zero value for the initial lengthscalg, This

Time () initial value is often interpreted as the lengthscale diahi
Fig. 8 Effect of initial conditions on total mix mass (top) and tota perturbations (which often is not well characterized in ex-
mixing rate (bottom).' Sglid black lines represer_lt mean @erealiza- periment) [20]; although a more precise interpretationtrig
tions, and errorbars indicate two standard deviations. . . . .

be thatlLg is the lengthscale associated with energy-bearing

eddies, often measured as the integral lengthscale, detate

is clear that the effect of initial conditions does not sfgni  k and TKE dissipationg, through Taylor’s relatiofh. - %/2

cantly affect reproducibility until around 5Q0s. Thisimage in fully developed turbulence [47].

should also provide some sense of the approximate transi- Since there is significant uncertainty associated with both

tion to turbulence, as variance in TMR should correspond tehe interpretation and the knowledge of initial lengthssal

an increase in magnitude of turbulent mixing correlations. in the flow, two different approaches are investigated in the
In addition to mean quantities, having an ensemble datapeggent work for the initialization df. In the first approach,

of LES simulations allows for the extraction of turbulencethe initial lengthscale is chosen to be equal to a constant

statistics. Figure 9 illustrates the 2D Reynolds stress-convalue much less than the finest resolved scale on all meshes,

ponents extracted from the LES database. In this figure, thieg = 0.01um. This approach is consistent with the interpre-

diagonal terms are plotted on the same color scale, and thation ofLg as a known, consistent perturbation lengthscale.

shear stress component is plotted on a scale with magnlia the second approach, the initial lengthscale is choska to

tude half that of the other two components. It is interestequal to one half of the finest mesh spacing= A /2. This

ing to note that regions of11/To,> anisotropy seem to be approach enforces a mesh-dependence on the initial condi-

mostly localized. For instance, thig, component seems to tions forL and is less consistent with a physical interpreta-

dominate at the center of vortex cores, and thecompo-  tion of the lengthscalk.

nent seems to dominate along the interior of the first roll-  Figures 12 and 13 illustrate qualitatively the results ob-

up where the left/right vortex interaction is strongesth-Ot tained with thek-L model using the two different initial-

erwise, in general there does not appear to be significaiation strategies. Firstly, it seems that the RANS results

111/T22 anisotropy. Of course, it is impossible to commentgenerally start by resolving the primary vortical struetur

on anisotropies with respect g using 2D simulations. for some amount of early time before quickly becoming

500
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Fig. 14 Growth of maximumL usingk-L RANS model with constant  Fig. 15 Growth of maximumL usingk-L RANS model with mesh-
Lo = 0.01um. Lengthscale normalized by cylinder diameter (top) anddependenty = A/2. Lengthscale normalized by cylinder diameter
by mesh spacing (bottom). (top) and by mesh spacing (bottom).

“blurred”. Interestingly, and perhaps counter-intuitiydgt ~ dependent on the mesh resolution, and there is no clear trend
appears that those results with mesh-dependentinitiglicon towards convergence at early time. For constant initial con
tions forLy (illustrated in Fig. 13) seem to demonstrate bet-ditions, tres ~ 65 s on mesh D, 12Qus on mesh C, 23Qus

ter grid convergence properties than those results olitaine@n mesh B, and 36Gson mesh A. It appears that qualitative
with a constantq. As discussed previously in section 3.3, onset of “blurring” always occurs aftées in the previously
this sensitivity is most likely attributable to a lack of a@m-  discussed plots of $Fmass fraction, which suggests that
gence in unresolved initial interfaces [43]. Indeed, fag th the value ofL may be acting something like a filter width
levels of resolution considered, it is clear that thoseltesu for ensemble averaging. By contrast, Fig. 15, which plots
obtained with a constahg do not demonstrate grid conver- the growth ofL for constant.g/A demonstrates surprising
gence. Specifically, for those results obtained with a @ntst convergence irL/D for both early and late time. In these
Lo, increasing the grid resolution appears to induce an easimulationsfres ~ 45 s on mesh A, 3Qus on mesh B, and
lier onset of “blurring” in the solution, which suggeststha 20 us on mesh C. As a result of this lesser variationyég,

the growth rate of. (and therefore mixing in the solution) the time evolution ofL/D demonstrates much better grid
must be highly sensitive to the time at whiclbecomes re- convergence properties, a fact which is undoubtedly relate
solved on the mesh (that is, the time at whichA = 1),  to the qualitative similarities in Sfmass fraction previously
which we shall denote biyes. This observation is confirmed commented upon in regards to Fig. 13.

quantitatively in Figs. 14 and 15, which plot maximunas The implications of the observed grid sensitivities to in-
a function of time and mesh resolution for both initializa- tegral mixing are considered in Fig. 16 which plots total mix
tion approaches. In Fig. 14, which plots the growth.dbr ~ mass for the two initialization strategies. It is clear ttred

a constant g, it is clear that the growth df is very much  results with mesh-dependeln§ demonstrate less sensitiv-
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x10™ scale. Between 220s and 31{@s, the first contours df be-

&2 come visible, andk begins to grow rapidly in these regions.
o Mesh A A Beyond 310us, it is striking to see that the region over
— f\ ﬂgi: g e /&f”é‘:» whichL/A > 1 roughly corresponds to a qualitative region
f? 2 « MeshD "’»-"*/J,,,ef”"g 1 of “blurring” in the mass fraction field, indicating that this
é LES // / } = where turbulent diffusion is most active. Unfortunatehg t
£ rate at which this process occurs seems to be much greater
2 than what is observed in the LES ensemble.
;
(@ 4.4 k-L Results With New Coefficient Set
o One possibility that might explain the over-prediction akm
0 200 400 500 800 1000 ing observed with the standakdlL prescription is that the
Time (us) model is calibrated to predict a growth rate that is simply
5k 107 too high. As discussed previously, the standard coefficient
. —— ___;J set for thek-L model is derived asguming a Rayleigh-Taylor
¢ MeshB ,:gf:&? — bubble growth ratex, = 0.060. This value seems to agree
A Mesh G T well with the majority of experimental evidence but seems
to be significantly higher than the majority of previous com-

putational studies [48]. One theory that has been proposed
to explain this discrepancy is that mixing immiscible flu-
ids might be expected to have a higher RT growth rate than
their miscible counterparts. In such a case, simulations of
miscible gases might be expected to predict a lomgethan
experiments which have generally been conducted with im-
miscible liquids. As described in Appendix B, a néw
coefficient set can be derived assuming a lower= 0.025,

0 200 o ms?“” 800 1000 \[/Zgi]Ch is more in line with previous computational studies
:tlg}mlj :Eg.sgﬂtr’rl]e(t?g;zsris;hf‘ dg‘;g;g’gﬂ;’fzgg'fzrﬁf;'t‘gg‘ugL;O” Figures 18 and 19 summarize results obtained with the
standarck-L coefficient set. newk-L coefficient setd, = 0.025) for constaritg = 0.01um

and mesh-dependeht = A/2 initial conditions, respec-

tively. By comparing these figures with Figs. 14 and 15, it is
ity to mesh resolution than those with constaptPerhaps  clear that the new coefficient set leads, as expected, to less
most troubling is the fact that, with constalg, increas- mixing. Indeed, reasonable qualitative agreement seems to
ing mesh resolution both increases ensemble mix mass ap@ obtained between the LES ensemblg 86ntours and
moves the solution further away from the ensemble LEShe results obtained with the new set at C-level mesh reso-
result — implying that solution quality gets worse with in- |ution for theLo = 0.01um. Unfortunately, the sensitivity to
creasing mesh resolution. Of course, the results with meslinesh resolution seems to remain, although it is not quite as
dependento seem to imply that onck is resolved on the extreme as observed previously in Fig. 18. Although having
mesh, the evolution df is relatively insensitive to grid res- resolved initial conditions again seems to improve conver-
olution. Therefore, it might be anticipated in the first casegence properties, as illustrated in Fig. 19, this initiaian
that if grid resolution were continually increased to théo approach continues to lead to results with far too much mix-
whereA ~ 0.01um, a converged solution might be antici- ing.
pated. However, trends in the mix mass curve suggest that Figure 20 quantifies the observations that were drawn
such a converged solution might look very much like the refrom Figs_ 18 and 19 by plotting ensemble mix mass for
sults obtained foko/A = 0.5. the two initialization strategies. Compared to resultshwit

Figure 17 further investigates the issue of mesh sensitithe standard coefficient set (Fig. 16), results with the new

ity by plotting several turbulence parameters from the caseoefficient set demonstrate less overall mix mass. Simula-
of initially unresolvedLy = 0.01um on mesh C. Notice in tions with a constant, unresolved initia} indeed seem to
this figure that contours of the ratlo/A are plotted from  bracket the LES ensemble result; however, it is clear that
0 to 100. By plotting the turbulence lengthscale in this wayjncreasing mesh resolution in this case leads to increasing
contours only become visible whéris greater than the grid mix mass. Figure 21 additionally plots the time evolution

Ensemble mix mass (g)
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x10™ 4.5 A Potential Improvement for RANS Simulation of

&2 Low-Reynolds Number Mixing

o Mesh A

¢ Mesh B . . . i .
& MeshGC As we have seen in the previous two subsections, simulation

LES 1 of the shock-jet problem with thHeL RANS model, regard-
less of the coefficient set used, tends to predict too much
mixing. At issue seems to be the fact that assumptions of
homogeneity of turbulence, which are built into the model
closures, may not be appropriate for early-time evolution
when the Reynolds number is low and the flow has not fully
transitioned to turbulence. As illustrated previously lire t
context of Figs. 10 and 11, the gradient diffusion approxi-
mation seems particularly ill-suited for closing the tudmnt

Ensemble mix mass (g)

0 200 o “15?0“ 800 1000 species flux during this time. Specifically, models relyimg o
B gradient diffusion to close turbulent species flux make the
2510 following approximation.
o Mesh A
¢ MeshB
& Mesh G v
5 e — PP AL]
% 5 LES /ﬁf_;i:___ﬁi— ] PUNG ~ (G (29)
E
£ In addition tok andL, however, some models such as the
2.5 BHR family [49] additionally solve transport equations for
§ the mass-flux velocitiess?. Figure 23 plots these terms, as
] extracted from the LES database. It is interesting to nate th
these terms exhibit very similar qualitative behavior com-
1 ] pared to the turbulent mass flux terpig'Yg. , plotted previ-
ously in Figs. 10 and 11. To examine this idea in more detalil,
0 200 400 800 800 1000

Time (us) let us denote the angle between the turbulent species flux

) . . . , vector and the mean scalar gradient vectoifgy, . Sim-
Fig. 20 Ensemble mix mass as a function of grid resolution for con- Skg .
stantLo = 0.01um (top) and mesh-dependen = A /2 (bottom) using  ilarly, let us denote the angle between the turbulent specie
newk-L coefficient set. flux vector and the mass-flux velocity vector BX,% It is
expected that in regions where the an%@s is Iarge the

gradient diffusion closure should be inaccurate. Fig. 24l
the sine of both9m~(SF6 and 6. From this figure, it is clear

that the turbulent species flux does not follow the mean gra-
of turbulence parameters fog = 0.01um on mesh C. In  dient for most of the problem evolution. On the other hand,
this figure, we see that although the magnitudé aénds by also plotting the sine o, it is observed that the turbu-
to be less than that predicted by the standard coefficient sdént species flux seems to ahgn very closely with the mass-
the magnitude ok is much greater. It is particularly inter- flux velocity vector. Indeed, such a result might suggest tha
esting to note the extreme change in magnitud& @fat  those models which accurately solve for the mass-flux ve-
occurs between 22fs and 31xs, around the time when locity could exploit this feature to obtain a better closure
L first becomes resolved on the mesh. Figure 22 comparesan gradient diffusion. Consider the following relatibips:
the magnitude ok predicted by the two RANS approaches
with TKE extracted from the LES ensemble simulations. Al-

though RANS results with the standard coefficient set appT A (PU) (PYa) (30)
pear to agree better with LES in terms of overall magni- v o)

tude of TKE, itis clear that neither RANS simulation agrees

with LES in the growth rate or spatial distribution of TKE.

Specifically, where the LES results show peaks of TKElo-, .\ ___  (pm) (pTa)

calized in the vortex cores, the RANS simulations predict(ﬁYa) u’ = (pYa) O — ———= (31)

a more homogenized TKE field, distributing TKE relatively
uniformly throughout the mixing region. where we have used
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29 go on to plot the three components of Eq. (33) for both
_ DU the streamwise and stream-normal components of the tur-
W =T — 5 (32)  bulent species flux. These plots indicate that for the early-

time evolution of the cyIinder(u{Yg,) P2 (W) Y« and

Subtracting Eq. (31) from Eq. (30) gives the following ,_
exact result: (ui’Y(;) p > 5up’Y}. However, the appropriateness of the

closure assumptions is seen to diminish with time as the
maghnitude of the triple correlation increases. The applica

puYg — (EY") U’ = puiYa — (PYa) G tion of the proposed closure is therefore confirmed to be lim-
:m (33) ited to the early-time, low-Reynolds-number mixing. Ad-
_ SN ditionally, proper application of such a closure in a RANS
= (Ui'Yé) p+ (Ui'P’) Ya+Uup'Yg model presupposes a reasonable prediction of the mass-flux

R . . velocity. Such an assumption could not be made ofkthe
Next, let us make three simplifying assumptions. FirSty o, 4e| For instance, if a gradient-diffusion assumption
we will neglect the triple correlation term in Eq. (33). S€C-\yare magde to close the mass-flux velocity (asktemodel
ondly, we will assume(ui’Y(;) p~G (UfP’) Yq for some  makesin its closure of the pressure work term inkiegua-

constantC. Finally, let us assum¥, ~ ?0{- In general, we tion), Eq. (34) would reduce to a form that looked very much
might expect these assumptions to be valid when the velocitike the standard gradient diffusion closure given in E§)(2
density correlation is greater than the density variancimor but with the gradient of the mean density field. Instead, the
other words, when species diffusion more closely tracks th@roposed closure would be best coupled with a RANS model
mean velocity field than the mean scalar field. For the shockhat solves a transport equation for the mass-flux velocity,
jet problem and potentially other problems of multi-fluid and additional work would be required to perhaps develop a
mixing, this seems to be the case for early time evolutiodnodel that could transition from this closure over to a stan-
when the turbulent Reynolds number is small and mixingfard gradient diffusion closure at higher Reynolds number.
is dominated by large-scale swirling rather than by small-

scale mixing. When these assumptions are made, Eq. (33) .

can be reduced to a form that lends itself nicely for use b);) Conclusions and Future Work

a turbulence model that can accurately predict the mass-fl

. Yhe presentwork has attempted to utilize careful appbcati
velocity.

of two-dimensional LES to assess the performance okthe
L RANS model in an unsteady problem of turbulent mix-
W ~ G (@7 )u_{’ (34) ing. A detailed grid convergence study was first performed
to establish confidence in baseline LES results. This study
Figures 25 and 26 plot contours of the exact turbulendemonstrated that reasonable convergence behavior could
species flux term as well as the proposed closure term ebe obtained in high-order measures of turbulence including
tracted from the ensemble LES databasedor -2. These total mixing rate and enstrophy and that the present results
figures show that the proposed closure gives good qualitasompared favorably with previous computational work [14]
tive and quantitative representation of the turbulent ggec and experimental measurements [13]. Although the present
flux until approximately 56Qus. Beyond this time, the flow simulations were seen to converge to a different mixing rate
is seen to become more turbulent, and the proposed closuatearly time, the impact of this result on the scalar field ap-
is observed to provide poorer prediction in regions of finepears to be minimal.

scale mixing. Of course, it is worth noting tf@t=-2 is cho- Then, by running a large number of two-dimensional
sen empirically based on the available LES database, andliES realizations with multimode perturbations in the aiti
is unlikely to be universal for all flows. conditions, turbulent statistics and mean flowfields were ex

By utilizing the LES database, it is further possible totracted as a measure by which to evaluate the RANS model
analyze the appropriateness of the three assumptions thagrformance. Although it is acknowledged that statistathg
wentinto constructing the proposed closure. First, inEfly.  ered in this way are expected to be contaminated by a lack
contours are plotted of both Reynolds-averaged and Favref turbulent fluctuations in the spanwigelimension, such
averaged Sfmass fraction. Qualitatively, there is very lit- fluctuations are anticipated to be small relative to fluctua-
tle difference between the two until perhaps around 860 tions in the other two dimensions during early-time evo-
where the Favre-averaged contours appear to have slightytion, and we have therefore limited our analysis to this
greater magnitude in regions of fine-scale mixing. Othertime period. By extracting Reynolds stresses from the LES
wise, this plot seems to confirm thﬁgp5 ~ \75,:6 is a rea- database, it was observed that/ 1,2 anisotropy seemed to
sonable assumption to make for this flow. Figures 28 antbe mostly localized to the vortex cores and the interior re-
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gion of right-left vortex interaction. Extraction of thertu
bulent species flux terms from the LES database revealed
that turbulent diffusion does not appear to follow the mean
scalar field during early time evolution, calling into quest

the validity of a gradient diffusion closure for these tefims
RANS models during this period.

Next, a series of unsteady RANS simulations were run
with two different coefficient sets and two different inltia
ization strategies. In nearly all cases, the RANS resultewe
observed to over-predict total mixing. Although a new coef-
ficient set was derived that ultimately led to simulationgwi
less turbulent mixing, a particular sensitivity to the tiae
which the turbulent lengthscale, was resolved on the mesh
led to observations of non-convergence in simulations with
initially unresolvedLy. Improvements that were observed
with the new coefficient set in this regard were generally
offset by worse prediction d€. It is therefore hypothesized
that assumptions of homogeneity of turbulence that ar¢ buil
into thek-L turbulence closures are particularly inaccurate
for the early time evolution.

Finally, a new RANS closure is proposed to better cap-
ture the early time turbulent species flux when the turbulent
Reynolds number is small and the mixing is dominated by
the large scales. Utilizing the LES database to assess this
closure, it is shown to reasonably accurately reproduce the
turbulent species flux up until about 568, after which the
smaller scales of turbulence begin to dominate the mixing,
and the assumptions that went into the closure approxima-
tion become less accurate.

Of course, much work remains to be done to validate the
proposed closure as a useful tool for RANS simulation of
low-Reynolds number mixing. For one, its formulation pre-
supposes a reasonably accurate prediction of the mass-flux
velocity. It, therefore, would not integrate well into tke.
turbulence model. Additionally, it is only expected to pro-
vide benefit over the standard gradient diffusion closure du
ing the early time mixing phase. For simulations that must
cover a large range of turbulent Reynolds numbers, further
work is required to integrate the proposed closure in such a
way that it might perhaps transition to a more appropriate
closure at later time.
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Fig. 2 Mesh resolution study: S$Fnass fraction contours obtained from LES with no initialtpasation. Contours plotted froivsg, = 0.1 (black)
to 0.6 (white).
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Fig. 6 Effect of initial conditions: SE mass fraction contours obtained from three realizatiorth pérturbed initial conditions and ensemble-
averaged contours computed from all 20 realizations. Gwatplotted fromYsg, = 0.1 (black) to 0.6 (white).

400 s 490 s

Fig. 9 Reynolds stress components computed from an ensemble ofdai@ations. Contours ghu”’u” and pv’v’ plotted from 0.0 (black) to

3.0e-10 g/crus? (white). Contours opu”V” plotted from -1.5e-10 (black) to 1.5e-10 g/qus® (white).
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Fig. 10 Top row: Streamwise turbulent species flux component coetpfrtom an ensemble of LES realizations. Contours plottech fr1.5e-7
(black) to 1.5e-7 glci us (white). Bottom row: Mean streamwise scalar gradient.t@ans plotted from -10.0 (black) to 10.0 cth(white).

Fig. 11 Top row: Stream-normal turbulent species flux componentrded from an ensemble of LES realizations. Contours pidtten -1.5e-7
(black) to 1.5e-7 g/ci us (white). Bottom row: Mean stream-normal scalar gradi€ehntours plotted from -10.0 (black) to 10.0 ci(white).
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400 s 490 s

Mesh A

Fig. 12 Mesh resolution study: $fmass fraction contours obtained wiktt standard coefficient set and constagt= 0.01um. Contours plotted
from Ysg, = 0.1 (black) to 0.6 (white).
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Fig. 13 Mesb resolution study: $Fmass fraction contours obtained wkH. standard coefficient set and mesh-dependgnt A/2. Contours
plotted fromYsg, = 0.1 (black) to 0.6 (white).
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Fig. 17 Growth of turbulence parameterskifL simulation with standard coefficient set dngl= 0.01umon mesh C. Contours @f; plotted from
0.0 (black) to 1.0e-7 g/cmis (white). Contours d plotted from 0.0 (black) to 2.0e-7.gr?/us’(white). Contours of /A plotted from 0.0 (black)
to 100.0 (white). Contours Ofsr, plotted from 0.1 (black) to 0.6 (white).
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3333

Fig. 18 Mesh resolution study: $Fmnass fraction contours obtained with névl. coefficient set and constahp = 0.01um. Contours plotted
from Ysg, = 0.1 (black) to 0.6 (white).
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Fig. 19 Mesh resolution study: $Fnass fraction contours obtained with nksk coefficient set and mesh-dependept= A /2. Contours plotted
from Ysg, = 0.1 (black) to 0.6 (white).
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400 us 490 s

Fig. 21 Growth of turbulence parameterskflL simulation with new coefficient set aiig = 0.01umon mesh C. Contours @f; plotted from 0.0
(black) to 1.0e-7 g/cnus (white). Contours ok plotted from 0.0 (black) to 2.0e-7.gr?/us?(white). Contours of./A plotted from 0.0 (black) to
100.0 (white). Contours Ofsg, plotted from 0.1 (black) to 0.6 (white).

400 ps 490 s 560 |s

RANS )
(a = 0.060) J (C @@ “ .

50 90 8

Fig. 22 A comparison of turbulence kinetic energy predicted byehapproaches. RANS results taken from simulations on meskttCLy =
0.01umusing standard (top) and new (middle) coefficient sets. @ostofk plotted from 0.0 (black) to 2.0e-7.gr?/us(white).
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Fig. 24 Relative orientation of the turbulent species flux vectahwiie mean gradient vector (top row) and the mass-flux vgleeictor (bottom
row) extracted from an ensemble of LES realizations. Castplotted from 0 (black) to 1 (white).

“]t ) _._l_'\

"X
pu"Y g,

)€ )0 36 A

Fig. 25 Proposed closure for streamwise turbulent species flux ateddrom an ensemble of LES realizations. Contours pldted -1.5e-7
(black) to 1.5e-7 g/c us (white).
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Fig. 26 Proposed closure for stream-normal turbulent species @mpated from an ensemble of LES realizations. Contourggaldtom -1.5e-7
(black) to 1.5e-7 g/c us (white).

Fig. 27 Mean Sk mass fraction contours obtained from an ensemble of LESzed@ins. Top row: Reynolds averaged profiles. Bottom row:
Favre averaged profiles. Contours plotted from 0.1 (blazK).@ (white).
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Fig. 28 Relative magnitude of three components of streamwise kembspecies flux identified in Eq. (33). Contours plottedrfrel.5e-7 (black)
to 1.5e-7 g/cr- us (white).

Fig. 29 Relative magnitude of three components of stream-nornralitent species flux identified in Eqg. (33). Contours plothesn -1.5e-7
(black) to 1.5e-7 glcir us (white).
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A Molecular Transport Properties

The Chapman-Enskog method [22] is a reduction of kinetiotéor
use in continuum flows. Utilizing this approach, the vistpsif a sin-
gle fluid component is given by Eq. (35) in terms of a collisitiameter
0q and a collision integra2,, 4. In this section, we additionally intro-
duce the notationgy, Wy, andz, to indicate, respectively, the volume
fraction, molar weight, and mole fraction of a single comgoia .

_ 2669x10°° W, T
Ha = 79“10 02

(35)

The collision integral for viscosity is given by Eq. (36) ierins
of the non-dimensional temperatufg;, = T/T¢ o, WhereT; 4 is the
effective temperature characteristic of the force pogértinction. In
this equationA =1.16145B = 0.14874C = 0.52487D = 0.77320 E
=2.16178, andr = 2.43787.

Qua=A(T;) B +Cexp(—DT;) +Eexp(—FTy) (36)
The thermal conductivity of a species is then related to ibeos-
ity through the Prandtl number, where Pr=0.72.

_ Cp,a la

Pr (37)

Ka

Next, the Wilke rule with Herning and Zipperer approximatio
[23] is utilized to form a mixture viscosity and thermal caowtivity.
This rule, which is written in general form for some quanétyis given
by equation 38.

_ So18aYa a’
- 2
SN Ya Wy
Mass diffusivity coefficients are obtained in a similar manhe
Chapman-Enskog expression for the diffusion coefficierdrad com-
ponent into another is given by Eq. (39). In this equatioerage molar
weights and collision diameters are given\blyg = 2/(W, ' +W; )

ando,p = (04 + 0p)/2, respectively.

¢ (38)

0.00266 T3/2
ap = 2
D08 py/Wap (dap)
The collision integral for diffusivity is then given by E¢Q) in

terms of the non-dimensional temperatl]'r;ﬁ =T/Tg qp, WhereT, o =

\/Te,aTg g In this equationA = 1.06036 B = 0.15610C = 0.19300D
=0.47635FE =1.03587F = 1.52996 G = 1.76474, andH = 3.89411.

39)

Qp.ap =A(Ty5) B +Cexp(—DT;5)+

(40)
Eexp(—FT,p5) + Gexp(—HTyp)

The Ramshaw method [24] is then utilized to provide effectiv

binary diffusivities. This method, which is given by Eq. J4&nsures
that all diffusive mass fluxes sum to zero.

N

Da:(lza)<z

7B

-1
z5/ Da/.?) (41)

Table 3 summarizes the constants used in Egs. (35) throdgh (4 |, = /2K, {c,_ - E—“Bz} +/2Ko {ZE—“BZ _CL} (5)2
L L

Air is assumed to be a mixture of 798 and 21%0, (by molar ratio).
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Table 3 Constants used for computing molecular transport pragserti

Constant N Oy Sk
Tea 82.0 102.6 212.0
Oy 3.7380 3.4800 5.1990
Wy 28.0 32.0 148.0
Ya 1.4 1.4 1.09
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B Derivation of a Newk-L Coefficient Set
In the original derivation of the Dimonte and Tiptkf model, similar-
ity analysis was used to derive a self-consistent set of mmgestants

[20,50]. Here, the same analysis is applied, allowing far additional
degrees of freedonC( # 1 andN # 1).

Self-Similarity of theL Equation

ThelL transport equation in one dimension is given by:

DL _ /] Ht JL du
where the turbulent viscosity is given by
pe = pCyL V2K (43)

Consider a change of variable in terms of the self-similaxing
width, h(t).

X

x=: (44)

It is then assumed that the analytic functidrendL are separable
in space and time:

(45a)
(45b)

k(x.t) =Ko(t)f(x)
L(X,t) = Lo(t) f/%(x)
Assuming incompressibility and an Atwood number that apphes

zero allows us to canceland drop spatial derivatives of velocity. Plug-
ging Egs. (43) through (45) into Eq. (42) then gives:

D y2\ _ 9 (Cu 4 1/2
ﬁ(Lof >_E< N—LLof\/ZKO&(LOf )
JrCLfl/Z\/ZKO

We next assume that the spatial functiois self-similar according

(46)

to

(47a)
(47b)

f(x)=1-x?
Lo(t) = Bh(t)

By distributing the derivatives, Eq. (46) can be reducedratfair
amount of algebra to the following form:

: 48)
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In order to satisfy the self-similarity ansatz, we requiattboth Utilizing Eq. (56) and substituting Egs. (54) and (55) inip. 50)
the terms proportional t&? and the constant terms vanish. These re-gives
quirements can be satisfied simultaneously with the fothgweon-

straints:
Dk - 17} Ht dk 1/2
PBt ~ax <Nk 0x> +PCATg TPV 57)
CLNL 3/2
p= (49) oo BT 2,00
2Ly P —— — 3Pk
Utilizing incompressibility and an Atwood number that apgpches
Lo(t) = % V2Ko (TheLo Equation) zero allows us to cancg and drop spatial derivatives of velocity
CuLlofv/2K
L . D—k:i (Mﬂ<> +CBATgfl/2\/§<
Self-Similarity of thek Equation Dt dx Nic Ix (58)
(2632
Thek transport equation in one dimension is given by: ) L
Dk 0 [k ok After a fair amount of algebra and rearranging, we are abtieto
YRR 2k rive the reduced equation:
p Dt 0Jx (Nk 0x> +PCaAN)GY 50
~ oG @72 2 kU > 0= Ko+ SN (20)”” CsArgy/2Ko +C (CLONS
pPLo— 3P0X =1 T —CgATg o+Co—
whereA(X) is thek-L Atwood number: ) 3N, CL (2K0)3/2 (2K0)3/2 Y\ 2
- |K -= —CgArgy/2K =2 (£
°+< 2N 2) L ATVt (h)
L a 59
A(X) = Ap +Ca Top (TZ (51) 59)
1 p|ox As we did before with thé equation, in order to satisfy the self-

similarity ansatz, we require both the constant terms aedeims that

_ Here, Ap is the discontinuous part of the Atwood number which scaje withx? to go to zero. This gives us our two moment equations:
will always vanish in the self-similar limit. In the limit afmall Atwood

number, the denominator of the continuous part of the Atwagtdber
will also vanish. This means for small Atwood number and mdblf- . CLNL (2Kg)%?
Ko+ LN (2Ko) CeArgv/ 2Ko

similar limit, thek-L Atwood number becomes " ToNe Lo
32
Lap +CD% =0 (Zero Moment)
A(X) =Ca— —— 2 0
(%) CAp Ix (52)

of the density of the light fluidp_ and the density of heavy fluigy:

We assume that the density gradient may be approximaterhis te
yg y pp K0+ <£LNL _&) (2K0)3/2

2Ny 2 Lo
9 - (2Ko)*?
9P Pp (53) —CgArgy/2Ko+Cp-—>— =0 (Second Moment)
ox 2h
Plugging Eg. (53) into Eq. (52), utilizing the scaling asgtion Inspection of these two equations reveals that they can lmotly
for Lo = Bh, and utilizing the small Atwood number approximation be satisfied if
P~ (Pn +pL)/2, we have:
CNC <3C|_N|_ _ Ci) (60)
A(X) = BCaf1/2 <PH - PL) (5) 2N 2N, 2
PP which reduces to
Recall the definition of the conventional Atwood number:
N = 1 (61)
Ar = (PH pr) 5 N2
PH+PL

With this constraint, we can equivalently write our constran 3

Since the self-similar functiofi has a maximum value of 1 &0, as:
it is convenient to define thieL Atwood number such that it has peak
value equal to the conventional Atwood numbex=Q. This constraint

requires us to choose B = CLNL _ CL Nk _ 1 /CGN 62)
2C, ac, 2\ C,
Ca — 1 |2 (56) Similarly, Eqg. (61) reduces both the zero moment and thergkco
ATB T\ aN moment to the same equation.
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(2K, 3/2 _ CgCL
Ko = CaATgy/2Ko — L) Co+ = (TheK, Equation)  B= PR (70)
Lo 4 8 (1 + 2&)
It is now convenient to make a change of varialie= \/2Ko. We know for small Atwood number, the bubble height willtige):
Then substitution into thKg equation gives th¥y equation:
Lo(t) C,CL Cs
V& G , hit) = 22 = | =~ Argt? 71
Vo _CBATg— 0 <CD +7 ) (TheV, Equation) (t) B Nk 4(1+2%> 79 (71)
And, we know that bubble height should grow according(tg =
Richtmyer-Meshkov Growth Rate apgATt2. Utilizing this, we can derive the following expression fbe
buoyancy coefficient:
We now utilize experimental observations to provide caists on the
observed coefficient set. After the shock has passed, tleeaation o (142
term in theVp equation will vanish, and thiey andV equations reduce Ch— b ( + ﬁ) (72)
to the following: B T
Nk
. This makes the Rayleigh-Taylor const&nt
Lo= C—Z"Vo (63) Vel Y
N
g B [N (73)
. V02 CL 2 Cu
Vo=—— (CD+7> (64)
Lo 4

Another useful identity is that the ratio & to Lo should be con-

Substitution of theLg equation into th&/ equation gives a single ~ Stant.
equation forl:

2
L
(CL 0>
The turbulent kinetic energy generated within an RT mixiagel
. Integrating this equation fdto requires initial values dfg(0) and s given by
Lo(0). Anticipating the result, we try a solution of the form:

Ko V¢ N
—O =0 _ 4abAT K 74
g

(ED+1) 65 o 2o cicy
L

h

. , Ex = [ pK(xt)dx

Lo(t) = Lo(0) {QL&E?())) +1} . K = Zoh/h <P+ % ) <1_ (§>2) ox
ox h

:Ko/i {p (1-(%)2)+% <x—:1(—z>}dx (75)

Plugging this equation and its derivatives into Eq. (65 to:

06— Ch 1
9 -2 (CL 4) ©7)  where
or
o— PH -ZH)L (76a)
Co 6 1 2-36
Co_1-6_1_2-36 ©8) 9P _pu—p
CL 20 4 40 " 2h (76b)
By symmetry, we expect the integral over odd powerx taf van-
Rayleigh-Taylor Growth Rate ish, leaving us with:
For the case in which the acceleration term in\geequation cannot 4
be dropped, let us assume a solution of the fagr= BAT gt2. Substi- Bk = §h(t)pK0(t) @7)
tuting into theLg equation gives:
SinceKp /Lo is constantKo/h should also be constant.
4
Vo = (TBAT gt (69) o Ko _ 2apATghc
L =B ="@¢cc (78)
. . . o Lo GGy
Putting the trial solutions into th¥, equation gives (after some
algebra): Utilizing this expression, we can rewrite Eq. (77) as:
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8 [ Nk
Ec=3 (c c )abATpgh2 (79)

The gravitational potential energy within the RT mixingdayan
also be derived by imagining a material interface= and integrating
over a distance@®

d
~—g/ _p(x

:—g/ pLXdx — g/ < +—x)xdx g/ P xdx

Again, integrals of odd powers afvanish, leaving us with:

(80)

2g9dp g
~d) - F g g (@)

9 _ 2
6 (P —pL)h

__9 2
PE= 2p|_ (h

=~ Jon—p )+ (81)
Since we are only interested in the change in potential greargr
the mixing width, we consider the term proportionahto

(82

APE=2 (pu —p)I?

Thus, the fraction of potential energy converted to kinetiergy
is given by:

Ex _ 8( K, ) avAr (P52 ) gi?

SNKab
= 83
APE 2 (pn—pL)h? - GGy ®3)
or
c.CL APE
N R o

Self-Similarity of the Scalar Equation

Our conservation equation for species mass fraction in anertsion
is given by Eq. (85), where without loss of generality we haege
glected to write the species subscript on the mass fraconVe have
done this in order to avoid confusion with the Rayleigh-Gaygrowth
rate,dp

oY _ 9 <“‘ al) (85)

Dt~ dx \ Ny dx

Substituting Eq. (43) and applying the incompressibilisgamp-
tion reduces this equation to:

g — i Cu L\/j(ﬁ_Y (86)
Dt ~ dx Ny dx
We assume that the self-similar solution must look like
1 X
Yt =5 <1— W) (87)
We also have

LLNL-JRNL-659268

2

L(x,t) = Lo(t)/1— (X) (88a)
V2k(x,t) = /2Ko(t)4/1—

2
= & Lolt)y/1- (ﬁ) (88b)

where in Eq. (88b), we have utilized thg equation. Substituting
Egs. (88) into Eq. (86) gives us
g Xh - ZCN LoLoX
Y=o ToN R (89)

Utilizing Lo = Bh andLg = Bh gives
Y_Lh_ZCuBZXj 2Cu( )xh N xh (90)

T 2h2 T CNy 2 CNy h~ Ny R

Inspection reveals that this equation can only be satisfiegei
have

Ny = 2N, (1)

Self-Similarity of the Internal Energy Equation

Our conservation equation for internal energy in one diriogris given
by:

De du J (i de
Pot ~Pax a—x<m—x> o
p(20)** )
—CaA(X)gV 2k+Cp o

Applying incompressibility and small Atwood number assump
tions, this equation reduces to:

(93)

De CuLv2k de (2K)%/?
+Cp
Dt dx Ne 9x L

We assume the self-similar solution takes the followingrfor

e(xt)

After some algebra, we arrive at the reduced energy equation

eCVo) /x\2 N /eiCVo X\ 2
< Lo ><ﬁ) "Ne< Lo )[173@}
X\ 2
oot Lo { () }
As we have done previously, we require that the constantsterm

and x? terms go to zero simultaneously. This gives us two moment
equations. We start by considering the zero moment equation

=etef(xt) (94)

(95)

V3
N (echVo) 5 (Zero Moment)

Co-2 =0
N\ )T
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which can be rearranged to give

C.N
CDVOZ: elNL L
e

(96)

Utilizing the zero moment equation, we can then write th@sdc
moment equation:

eC Vo _ ﬂ eilC Vo
Lo T Ne Lo

(Second Moment)

In order to satisfy the second moment equation, we theretere
quire

Ne = 2N, (97)

Compressibility Concerns

In order to obtain a constraint for the compressibility ioefnt Ce,
we estimate that the total mass of eddies in an RT mixing lgye?)
is conserved under compression. Mathematically, thisistant trans-
lates to the following:

D ozy —azpPl 3PP

Dt(pL)_SLthJrL Dt_O (98)
Recall the continuity equation in one dimension:

Dp o0

Dt *Pg( (99)

Substituting Eq. (99) into Eq. (98) and rearranging yields:

1,00 DL
3P ox P o

This result suggests that the compressibility coefficieriq. (42)
should be given approximately by

(100)

(101)

Summary of Constraints

We now have a set of 13 unknowrGa( Cg, Cc, Cp, Ci, Cyy, Ni, Nk,

Ny, Ne, ap, 8, and AE—FV:E) and 8 relational constraints. These constraints

are summarized in table 4. Clearly, we require an additimalcon-
straints to close the coefficient set. Firstly, let us tke 0.25 based on
linear electric motor experimental data [51], and let ust& =05
based on previous experimental and numerical observadfdRE mix-
ing [52,48]. Note that these values are the same as thosebysed
monte and Tipton [20]. Where Dimonte and Tipton chage= 0.060,
however, to be consistent with the majority of experimedtih avail-
able at the time (which in general were observations of iroibis fluid

mixing), here we choosey, = 0.025 to be consistent with the majority 1

of simulation data of miscible fluid mixing [48]. To close auir con-
straints, it is desirable to enforce the Kolmogorov relagizip between
dissipation of turbulence kinetic energy and the turbulength scale.

(2)%% K32

e=Co— L

(102)
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Table 4 Relational Constraints

Constraint Note
2C
Ca=1\/cn Eg. (56)
N = 2N, Eq. (61)
¢=%"  Ea(9)
4 14228
Ce = @ Eq. (72)
“HML
Ng
Ut — 80y 4P Eq. (84)
Ny = 2N Eg. (91)
Ne = 2N, Eq. (97)
Ce=3 Eg. (101)

Table 5 Additional Constraints

Constraint Note
a,=0.025 Ref. [48]
6=025 Ref. [51]
He = ?’5 Ref. [52]
Cp = 27 Eq. (103)
Cy=9 Ref. [53]

Clearly, to enforce this relationship, we require:

1
Cob=—F7=~035
T 22
Furthermore, we would like the new coefficient set to cotyect
capture Kelvin-Helmholtz instability; this requir€}, << 1. For our
constraint orCy, let us take the value that is consistent with experi-
mental measurements of RT mixing by Baneg¢al [53].

(103)

.2
cu= 2228 <020

N (104)

We now have a complete set of 13 unknowns and 13 constraints,

summarized in tables 4 and 5. Applying these constraintstiams-
lating into the notation used in Egs. (13) through (18) giussthe
complete coefficient set previously identified in table 1.
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