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Impact and Champions Milestones/Dates/Status 

Novel Ideas 

PIs: Greg Bronevetsky, LLNL 

               Scheduled               Actual  

 Initial Design of Log                          May 2013           May 2013 

   Visualization Tool  
 

 Initial Design of Modular                  Dec 2013            Dec 2013 

   Analysis Tool 
 

 Application of Initial Tool                 May 2014            May 2014 

   to Benchmark Applications 
 

 Development of Integrated               Oct 2014              

   and Scalable Tool  
 

 Application of Integrated Tool           Feb 2015 

   to Full DOE Applications 

To support DOE scientific objective HPC applications 

include a complex variety of components, including 

physical models, numerical solvers and parallel 

runtimes. To extend and optimize these applications 

developers require capable tools to help understand 

application behaviors, structure and interactions among 

different components. Today’s tools are too domain-

specific to support general use-cases. The Sight tool 

provides comprehensive support for key application 

analysis needs, including debug logs, statistical 

analysis and visualization. Its use will significantly 

improve the productivity of DOE developers. 

The scale and complexity of scientific applications makes 

it very difficult to optimize, debug and extend them to 

support new capabilities. We have developed a tool that 

supports developers’ efforts to understand the logical flow 

of their applications and interactions between application 

components and hardware in a way that scales with 

application complexity and parallelism. 

• Structured, navigable log of application execution 

• Comparison, alignment and aggregation of logs from 

multiple executions or processes in same execution 

• Statistical analysis, visualization of application behavior 

IMD Sight: visualizing and understanding  
the behavior of complex applications  

Execution 

Logs 

Structured 

Summary 

Behavior 

Visualization 



Visualizing execution logs of complex applications  
Greg Bronevetsky (LLNL) 

Scientific Achievement 
Created novel ways to visualize the dynamic 
behavior of complex applications. Approach 
uses developer annotations to present a 
structured summary of application 
executions. 

 

Research involved 
• Designed simple API for specifying and 

structuring application logs 
• API encodes high-level  

application data for  
easy develop access  
during debugging  

Significance and Impact 
Tool improves developer productivity by 
helping them understand the logical flow 
of applications executions. Supports the 
design of more complex applications. 
 
 
 

• Developed technique to visualize complex 
logs of sequential and parallel applications 

• Identification of differences among 
logs of different runs or processes 

• Scalable visualization of parallel 
application logs via aggregation 

Original Log Aggregated 

― Hierarchical  
organization 

― Easy log navigation  
via graph summaries  
and links 

Log  
contents 



Comprehensive Analysis of Application Behavior 
Greg Bronevetsky (LLNL) 

Scientific Achievement 
Developed method to track and analyze the 
behavior of individual application 
components and how it relates to 
application and hardware state, as well as 
the behavior of other components. 

 

Research involved 
• Created API for communicating application 

modular structure and data structure state 
• Developed system to track this information 

across one or more application executions 
• Developed novel statistical analysis and 

visualization techniques to help developers 
understand their applications’ behavior 

• Relationship between input properties 
and cost of computation (time, energy) 

• Identify most efficient way to reach 
target accuracy level 

Significance and Impact 
Tool improves developer productivity by 
helping them understand the logical flow 
of applications executions. Supports the 
design of more complex applications. 
 

Lulesh: hydrodynamic shock simulation 
Asymmetry error  
with different  
numerical precision  
and spatial  
discretization 

Hypre: GMRES solver, AMG preconditioner 
Time to solve problems  
of increasing size to  
different accuracy 
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Visualizing execution logs of complex applications

Greg Bronevetsky 

Center for Applied Scientific Computing 

Lawrence Livermore National Laboratory 

Livermore, CA, USA 
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Abstract—The demands on the capabilities of scientific 

applications causes them to become extremely complex. To 

productively upgrade and debug such applications developers 

require mechanisms to help them understand their structure in 

great detail. However, since today there exist almost no tools to 

support this work, developers are forced to utilize primitive 

methods like printing status messages during their applications’ 

execution or using a debugger to manually step through short 

segments of execution on a few target processors. This paper 

presents a tool called Sight that makes it easy for developers to 

produce structured application logs that reflect application 

logical and parallel structure. The resulting logs help developers 

understand the logical flow of individual application runs, as well 

as the difference among multiple runs or multiple processes 

within the same run. Sight works with both sequential 

applications and applications parallelized with MPI, pthreads, 

the Open Community Runtime and Containment Domains. 

Keywords—logging; visualization; productivity; debugging 

I. INTRODUCTION 

Modern scientific applications are extremely complex, 
employing one or more physical models (multi-physics) at one 
or more scales (multi-scale) and using various numerical 
discretization (e.g., finite-differences or finite-volume) or 
solution (e.g., implicit or explicit) techniques. Further, these 
applications may be parallelized using one or more parallel 
programming models, such as using MPI for inter-node 
communication and threading for intra-node parallelism. The 
resulting software artifacts are difficult for developers to debug 
or upgrade because of the many fine-grained interactions 
among different data structures and code regions that affect 
application accuracy and performance. 

To manage this high complexity developers require 
powerful tools to understand both the normal and erroneous 
behavior of their applications. Unfortunately, the tools 
available today are very primitive. For example, the most 
popular approach to understanding application behavior is 
printing a message log from each application thread or process 
and then manually reading these logs or using search tools like 
grep to find patterns. While this is effective for small logs, it is 
inadequate for large applications. Similarly, popular debugging 
tools like gdb or totalview[1] help developers step through 
individual code regions but do a poor job of showing the 
behavior of highly parallel applications or visualizing the 
evolution of state over time. This lack of tool support 
significantly reduces the productivity of scientific developers, 
who waste time searching through logs or developing custom 
log analysis tools instead of reasoning about the high-level 
concepts these logs encode, such as communication protocols, 
data structures or simulation properties. 

To overcome this issue we are working on Sight, a tool that 
supports developer efforts to document and understand the 
dynamic behavior of their applications. Sight is a library that 
provides simple API for developers to: 

- Format these logs to make them easier to read by 
controlling indentation or creating graphical views of their 
data structures, 

- Document the logical relationships between log regions to 
make it possible to easily navigate between related regions 
even if they executed at different points in time or on 
different processors, and 

- Integrate graphical representations of application structure 
(e.g., graphs or scatter plots) with textual representations 

Sight automatically collects log information across different 
application threads and processes and presents the combined 
log in a format that accounts for causal dependencies and 
explicitly shows communications between log entries on 
different threads and processes.  

II. CAPABILITIES OF SIGHT 

A. Log Visualization 

Sight makes it easy for developers to improve the 
readability of their log. Developers write to a log by using 
variants of the C printf function and C++ cout stream 
(APIs for other languages are in development) provided by 
Sight. Indentation of the generated text can be controlled by 
calling functions to add or remove indentation. For example 
Figure 1 shows the C++ API where indentation is controlled by 
declaring a variable of type indent (Sight calls highlighted in 
red). All text emitted while such a variable is live is indented 
and indentation is additive to support recursive applications. 
Similarly, if developers declare a variable of type scope, all 
log output emitted while it is live is shown in a box. 

Source code Log output 

int fib(int a) { 

  indent ind(":  "); 

  if(a==0 || a==1) {  

    dbg << "=1"<<endl; 

    return 1; 

  } else { 

    int val = fib(a-1)+fib(a-2); 

    dbg << "="<<val<<endl; 

    return val; 

  } 

} 

:  :  :  :  =1 
:  :  :  :  =1 
:  :  :  =2 
:  :  :  =1 
:  :  =3 
:  :  :  =1 
:  :  :  =1 
:  :  =2 
:  =5 

Figure 1: Indentation management in Sight 



B. Log Navigation 

Since application logs can grow to be very large it becomes 
difficult for developers to navigate from one log region to 
other, logically related regions that were emitted at very 
different times. Sight significantly simplifies log navigation by 
enabling developers to document the logical structure of their 
log. Sight uses this information to present a high-level 
navigable map of the log. Figure 2 provides an example of this 
for the above Fibonacci code, where the developer explicitly 
creates links between caller and callee functions and Sight 
creates a graph that organizes the resulting log. Clicking on any 
node in the focuses the view on its corresponding region of the 
log. Further, Sight enables developers to add links to the log 
that they can use to easily navigate between logically related 
log regions (e.g., different calls to the same function). 

C. Parallel applications 

The behavior of parallel applications is very difficult to 
understand because the total amount of log information 
increases with the number of tasks, their communications and 
synchronizations. Sight tracks the information emitted by each 
application thread in a separate log and then merges these logs 
together, while aligning the entries according to their happens-
before order. The Figure 3 shows an example log of a master-
worker application  The log of each process is shown as a 
separate column, while events on different processes are laid 
out in their happens-before order. Connections from MPI_Send 
to MPI_Recv operations are shown as explicit arrows. This 
view clearly illustrates the parallel structure of the application, 
its communication protocol and the logical relationships 
between code regions on the same and different MPI processes. 
Figure 4 shows another log of a 1-dimensional simulation of 

the heat equation, which uses a nearest neighbor stencil 
communication pattern. 

A key limitation of logging is that the amount of 
information presented to the developer scales linearly with (i) 
the application’s execution time and (ii) the number of threads 
and processes it uses. Sight addresses these issues in three 
ways. First, users can remove any portion of the log from view 
by clicking the link at the top of the box that contains it. 
Second, users may filter the displayed information based on 
values of key application variables (e.g. show only log regions 
where variable x=5). Finally, Sight can merge the logs that are 
very similar to each other. This causes log data from multiple 
processes and threads to be shown in one column, with any 
differences among them explicitly highlighted. The figure 
below shows the Sight log for the 1-D stencil application after 
the logs of the 3 center processes have been merged. Similar 
results would be produced regardless of the process count. 

Figure 2: Sequential log with navigation graph Figure 3: Log of MPI master-worker application 



 

D. Differential analysis 

 Sight enables logs of multiple processes or application runs 
to be merged together and automatically identifies regions that 
are the same or different among these logs. An example is 
shown in Figure 7., This is highly useful for differential 
debugging tasks where the developer needs to understand the 
difference between the executions of correct and erroneous 
application runs. It is also useful for understand how an 
application’s behavior evolves 
across versions. 

III. IMPLEMENTATION 

A prototype version of Sight has 

already been implemented and 

applied to several major HPC 

benchmarks, including AMG2013, 

Lulesh and CoMD. It is available 

as an open source project at 

https://github.com/bronevet/sight.  

The current implementation 

supports both sequential 

applications and applications 

parallelized using MPI, pthreads, 

the Open Community Runtime[2] 

(fine-grained tasking framework) 

and Containment Domains[3] 

(resilience management 

framework). 
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Figure 4: Log of MPI 1-D wave equation application (nearest 

neighbor stencil communication pattern) 

Figure 5: Aggregated log of MPI master-worker application 

Figure 6: Aggregated log of 1-D wave equation application 

Figure 7: Merged log of 

multiple runs 
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Abstract—Scientific application developers simultaneously 

work at several levels of abstraction that include the physical 

processes being simulated, the approximations that model them, 

the numerical techniques to discretize these approximations, the 

data structures and control logic that implement the above and 

finally, the efficient and scalable mapping of this software to 

hardware. Since no one individual can be an expert on all of 

these domains, real applications are developed by large teams of 

domain experts who divide the above concerns among them and 

carefully coordinate to ensure that all application goals, from 

accuracy to performance, are met. The diverse knowledge and 

constraints of these disparate domains makes this task very 

challenging. 

The paper presents a tool called “Sight” that supports 

developers’ efforts to understand how different aspects of their 

applications’ design interact. Sight makes it easy for developers 

to document key information about various application 

components, aggregate this information across many application 

runs and analyze this data to obtain actionable insights. We 

describe the tool’s major capabilities and illustrate its ability to 

uncover complex application behavioral properties in the context 

of the AMG2013, Lulesh and miniFE benchmarks. 

Keywords—logging; visualization; productivity; debugging, 

application behavior analysis 

I. INTRODUCTION 

Large scientific applications are very complex and 
incorporate many heterogeneous components. An application’s 
developers must consider the physical processes that are most 
important to their end-users. They must then select 
approximations of these processes and numerical discretization 
techniques for these approximations. Both the approximation 
and the discretization must be selected to balance the accuracy 
of the computed solution against the cost of doing the 
computation. In most cases the chosen approximation can be 
varied to provide different trade-offs for different end-users. 
The physical and numerical algorithms are implemented using 
concrete data structures and control logic and parallelized using 
one or more parallel programming models. These design 
decisions balance performance of a given version of the 
application against the productivity of developers and the 
design’s flexibility for future changes. Finally, the application 
software is mapped to available hardware to minimize 
execution time and maximize power efficiency. 

The above concerns span several major domains of human 
knowledge, ranging from theoretical physics, chemistry or 
biology, to applied mathematics and ultimately to computer 

science. Balancing them against each other is extremely 
challenging due both to their individual complexity and the fact 
that no individual can be an expert in more than one or two of 
these domains. This makes it difficult to design full 
applications while ensuring that they meet the demands of end 
users both efficiently and accurately. 

We are working on the Sight tool to help developers gather 
a holistic understanding of their applications’ behavior, across 
all the major domains of interest. Sight provides an API that 
developers use to document major application components and 
their properties. This information is aggregated across multiple 
processes in a single application run or multiple runs with 
different configurations, and presented to developers to 
quantify how properties of different aspects of the application 
relate to each other.  

II. TOOL INTERFACE 

To use Sight developers must identify the code regions of 
major application components and call routines begin and 

end at their beginning and end (the details of the API vary 
according to the language in for which the API is provided): 

 begin() takes as input a string label that identifies the 
application component and a set of values that record the 
properties of the component’s inputs. These may be the 
current time step, the average temperature of the simulated 
system, the size and sparsity of an input matrix or an entire 
data structure such as a tree. 

 end() takes as input a set of values that record the 
component’s outputs. 

 Sight can also be configured with performance-related 
measurements that are performed during the execution of 
each application component, such as execution time, 
performance counters, energy use or memory allocation. 

An example of how the Sight API may be applied to a 
scientific application is provided in Figure 1. When collected 
for a given application run this data can illuminate how the 
evolution of one aspect of the application (e.g., the kinetic 
energy of the simulated system) relates to very different 
aspects of application behavior (e.g., cache miss rate or 
numerical accuracy). Further, the developer may run the 
application may times, configuring each application component 
differently in each run. This makes it possible to quantify the 
interactions among different design decisions across the 
application, which are typically made by different developers. 
The following sections describe three use-cases that highlight 
the utility of our tool.  



III. AMG CASE STUDY 

We instrumented the AMG2013[1] benchmark to use Sight 
to document the key routines and their major inputs and 
outputs. Starting from almost no prior knowledge of the design 
of AMG2013 (95k lines of code), the process took 
approximately 4 days. AMG2013 uses either the PCG or 
GMRES linear solver in concert with the AMG or diagonal 
preconditioner. The AMG preconditioner approximately solves 
a linear problem by taking the original problem and iteratively 
coarsening it by grouping multiple unknowns into one. At each 

level of the algorithm the problem becomes smaller and denser. 

Figure 2 shows execution time (blue bars, left axis) and 
energy (red squares, right axis) of the Coarsen phase of AMG 
within the GMRES solver on the default problem as a function 
of the level and the cap on processor power use (Intel Xeon 
E5-2670 processors). This phase computes a coarser problem 
from a finer one. Sparser problems (smaller level values) take 
up most of AMG’s execution time and are not significantly 
slowed by running at 50W rather than 100W. However, 
placing a 25W power cap significantly slows them down. In 
contrast, denser problems are significantly slowed by power 
capping but account for little of AMG’s overall time. The 
energy use of the Coarsen phase is therefore is minimized at 
50W, where these two phenomena are balanced. This also 
holds for the full code. 

Figure 3 shows an alternate view that compares the 
execution time of different solvers and preconditioners in 
AMG2013 on the default problem as the size of the problem is 
set to 1, 6 or 12 and the solver’s target error level is set to 1E-4, 
1E-5 and 1E-6. Problem size has a very significant effect on 
AMG2013’s execution time, while the error target has very 
little impact (10%-20%). For the smallest problems the PCG 
solver with the Diagonal preconditioner runs fastest, while the 
GMRES solver with the AMG preconditioner is best for larger 
problems. This is because AMG is both much more effective 
and expensive. Although it enables the solver to converge in 
far fewer iterations, for simple problems this is not enough to 
offset its cost, while for larger problems it is the better choice. 

IV. LULESH CASE STUDY 

We also used Sight to analyze the behavior of the Lulesh 
[2] benchmark, which represents the domain of shock 
hydrodynamics. Lulesh simulates a spherical explosion and can 
be parameterized to use different memory layouts (array-of-
structs or structs-of-arrays), floating point numbers with 
different precisions (float, double and long double) and spatial 
discretizations (number of mesh cells in each dimension). It 
chooses time steps adaptively to satisfy the Courant condition 
on information propagation and adapts the shape of the mesh 
based on the progress of the simulation. In the first experiment 
we analyzed how the numerical configuration of Lulesh relates 

Figure 1: Example of source code instrumentation 

needed to use Sight 

Figure 2: Performance and Energy use of the AMG Coarsen phase at different V-cycle levels and power caps 



to its performance by running it with various numerical 
precisions and spatial discretizations (3, 7 and 15 mesh points 
per dimension), while setting the power cap at 25W, 50W and 
100W. The execution time of these variants of Lulesh is 
presented in Figure 5 and shows that the choice spatial 
discretization has a strong impact on execution time and 
numerical precision has an additional 5%-30% effect. 
Lowering the power cap from 100W to 50W has a negligible 
effect on execution time, while moving it to 25W slows it by 
over 50%. Figure 6 quantifies the impact of choosing the 

Lulesh memory layout (array-of-structs vs struct-of-arrays), 
focusing on the scenario with the finest spatial discretization 
and loosest power cap. It shows that the difference between the 
two memory layouts is minimal, significantly smaller than the 
impact of numerical precision.  

In addition to measuring the impact of the configuration of 
Lulesh on performance, we also quantified its impact on the 
accuracy of Lulesh results. In this experiment we varied the 
numerical precision and the spatial discretization (3, 7, 15, 31 
and 63 points) and measured two error metrics. First, since the 

Figure 5: Lulesh execution time as a function of numerical configuration and power cap 

Figure 4: Errors in symmetry and energy in Lulesh output as a function of its numerical precision and spatial discretization 

Figure 3: Execution time of AMG2013 as a function of the solver choice and target solution accuracy 



system simulated by Lulesh must be spherically symmetrical, 
we measured the error in symmetry as the total difference 
between all spherically opposite mesh points (blue bars, left 
axis). Second, we compared the total energy in the simulated 
system to that computed by Lulesh at the maximum numerical 
precision and the finest spatial discretization (red squares, right 
axis). The data (Figure 4) shows that the two error metrics 
behave very differently. Symmetry error grows significantly 
worse with less precise numbers and somewhat worse with 
finer spatial discretizations. The latter is most likely due to the 
fact that finer spatial discretizations use smaller time steps. 
This results in simulations that run for more time steps and thus 
accumulate more asymmetry. In contrast, energy error is 
insensitive to numerical precision and grows worse with 
coarser spatial discretizations. This result indicates that 
developers must pay close attention to the error metric that is 
most meaningful to their end-users and optimize with respect 
to it. 

MINIFE 

We used the miniFE[3] benchmark to demonstrate the use 
our tool to quantify the impact of soft errors on application 
state. MiniFE represents implicit finite-element simulations 
and its key workload is an implicit solve that uses the CG 
linear solver, which is summarized in Figure 6. Figure 8 shows 
the distribution of errors in the CG vector x (error is the L2 
norm of the difference between the correct and incorrect 
versions of the vector) at the end of a CG iteration when an 
error is injected into two types of instructions during the 
iteration. The data shows that injections into 64-bit IEEE Float 
data have a significantly worse impact than 32-bit Int data.  

Figures 9 and 10 focus on how errors injected in one 
iteration of the CG algorithm propagate through subsequent 
iterations. They plot on the vertical axis the error in vector x at 
the end of an iteration and on the horizontal axis the error in 

either vector x (Figure 9) or p (Figure 10). The data shows that 

error in x at iteration end are strongly correlated to errors in x 

at iteration start and more weakly correlated with errors in p. 
This quantifies the way in which errors propagate through the 
logic of CG, which can help developers design resilience 
mechanisms for this algorithm. 

  

Figure 7: Impact of memory layout of Lulesh data structures (array-of-structs or struct-of-arrays) on Lulesh execution time 

Figure 6: CG Algorithm 

Figure 8: Distribution of L2 errors in vector x at the end of CG 

time steps due to different types of injected errors 



IMPLEMENTATION 

The Sight tool and it source code are available at 
https://github.com/bronevet/sight. This repository includes 
examples of the AMG2013, Lulesh and miniFE modified with 
Sight annotations. 
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Figure 9: Propagation of errors from x at the start of an iteration to x at the end 

Figure 10: Propagation of errors from p at the start of an iteration to x at the end 


