
LLNL-TR-660554

Sight Application Analysis Tool

G. Bronevetsky

September 17, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Impact and Champions Milestones/Dates/Status

Novel Ideas

PIs: Greg Bronevetsky, LLNL

 Scheduled Actual

 Initial Design of Log May 2013 May 2013

 Visualization Tool

 Initial Design of Modular Dec 2013 Dec 2013

 Analysis Tool

 Application of Initial Tool May 2014 May 2014

 to Benchmark Applications

 Development of Integrated Oct 2014

 and Scalable Tool

 Application of Integrated Tool Feb 2015

 to Full DOE Applications

To support DOE scientific objective HPC applications

include a complex variety of components, including

physical models, numerical solvers and parallel

runtimes. To extend and optimize these applications

developers require capable tools to help understand

application behaviors, structure and interactions among

different components. Today’s tools are too domain-

specific to support general use-cases. The Sight tool

provides comprehensive support for key application

analysis needs, including debug logs, statistical

analysis and visualization. Its use will significantly

improve the productivity of DOE developers.

The scale and complexity of scientific applications makes

it very difficult to optimize, debug and extend them to

support new capabilities. We have developed a tool that

supports developers’ efforts to understand the logical flow

of their applications and interactions between application

components and hardware in a way that scales with

application complexity and parallelism.

• Structured, navigable log of application execution

• Comparison, alignment and aggregation of logs from

multiple executions or processes in same execution

• Statistical analysis, visualization of application behavior

IMD Sight: visualizing and understanding
the behavior of complex applications

Execution

Logs

Structured

Summary

Behavior

Visualization

Visualizing execution logs of complex applications
Greg Bronevetsky (LLNL)

Scientific Achievement
Created novel ways to visualize the dynamic
behavior of complex applications. Approach
uses developer annotations to present a
structured summary of application
executions.

Research involved
• Designed simple API for specifying and

structuring application logs
• API encodes high-level

application data for
easy develop access
during debugging

Significance and Impact
Tool improves developer productivity by
helping them understand the logical flow
of applications executions. Supports the
design of more complex applications.

• Developed technique to visualize complex
logs of sequential and parallel applications

• Identification of differences among
logs of different runs or processes

• Scalable visualization of parallel
application logs via aggregation

Original Log Aggregated

― Hierarchical
organization

― Easy log navigation
via graph summaries
and links

Log
contents

Comprehensive Analysis of Application Behavior
Greg Bronevetsky (LLNL)

Scientific Achievement
Developed method to track and analyze the
behavior of individual application
components and how it relates to
application and hardware state, as well as
the behavior of other components.

Research involved
• Created API for communicating application

modular structure and data structure state
• Developed system to track this information

across one or more application executions
• Developed novel statistical analysis and

visualization techniques to help developers
understand their applications’ behavior

• Relationship between input properties
and cost of computation (time, energy)

• Identify most efficient way to reach
target accuracy level

Significance and Impact
Tool improves developer productivity by
helping them understand the logical flow
of applications executions. Supports the
design of more complex applications.

Lulesh: hydrodynamic shock simulation
Asymmetry error
with different
numerical precision
and spatial
discretization

Hypre: GMRES solver, AMG preconditioner
Time to solve problems
of increasing size to
different accuracy

2

Visualizing execution logs of complex applications

Greg Bronevetsky

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

Livermore, CA, USA

bronevetsky@llnl.gov

Abstract—The demands on the capabilities of scientific

applications causes them to become extremely complex. To

productively upgrade and debug such applications developers

require mechanisms to help them understand their structure in

great detail. However, since today there exist almost no tools to

support this work, developers are forced to utilize primitive

methods like printing status messages during their applications’

execution or using a debugger to manually step through short

segments of execution on a few target processors. This paper

presents a tool called Sight that makes it easy for developers to

produce structured application logs that reflect application

logical and parallel structure. The resulting logs help developers

understand the logical flow of individual application runs, as well

as the difference among multiple runs or multiple processes

within the same run. Sight works with both sequential

applications and applications parallelized with MPI, pthreads,

the Open Community Runtime and Containment Domains.

Keywords—logging; visualization; productivity; debugging

I. INTRODUCTION

Modern scientific applications are extremely complex,
employing one or more physical models (multi-physics) at one
or more scales (multi-scale) and using various numerical
discretization (e.g., finite-differences or finite-volume) or
solution (e.g., implicit or explicit) techniques. Further, these
applications may be parallelized using one or more parallel
programming models, such as using MPI for inter-node
communication and threading for intra-node parallelism. The
resulting software artifacts are difficult for developers to debug
or upgrade because of the many fine-grained interactions
among different data structures and code regions that affect
application accuracy and performance.

To manage this high complexity developers require
powerful tools to understand both the normal and erroneous
behavior of their applications. Unfortunately, the tools
available today are very primitive. For example, the most
popular approach to understanding application behavior is
printing a message log from each application thread or process
and then manually reading these logs or using search tools like
grep to find patterns. While this is effective for small logs, it is
inadequate for large applications. Similarly, popular debugging
tools like gdb or totalview[1] help developers step through
individual code regions but do a poor job of showing the
behavior of highly parallel applications or visualizing the
evolution of state over time. This lack of tool support
significantly reduces the productivity of scientific developers,
who waste time searching through logs or developing custom
log analysis tools instead of reasoning about the high-level
concepts these logs encode, such as communication protocols,
data structures or simulation properties.

To overcome this issue we are working on Sight, a tool that
supports developer efforts to document and understand the
dynamic behavior of their applications. Sight is a library that
provides simple API for developers to:

- Format these logs to make them easier to read by
controlling indentation or creating graphical views of their
data structures,

- Document the logical relationships between log regions to
make it possible to easily navigate between related regions
even if they executed at different points in time or on
different processors, and

- Integrate graphical representations of application structure
(e.g., graphs or scatter plots) with textual representations

Sight automatically collects log information across different
application threads and processes and presents the combined
log in a format that accounts for causal dependencies and
explicitly shows communications between log entries on
different threads and processes.

II. CAPABILITIES OF SIGHT

A. Log Visualization

Sight makes it easy for developers to improve the
readability of their log. Developers write to a log by using
variants of the C printf function and C++ cout stream
(APIs for other languages are in development) provided by
Sight. Indentation of the generated text can be controlled by
calling functions to add or remove indentation. For example
Figure 1 shows the C++ API where indentation is controlled by
declaring a variable of type indent (Sight calls highlighted in
red). All text emitted while such a variable is live is indented
and indentation is additive to support recursive applications.
Similarly, if developers declare a variable of type scope, all
log output emitted while it is live is shown in a box.

Source code Log output

int fib(int a) {

 indent ind(": ");

 if(a==0 || a==1) {

 dbg << "=1"<<endl;

 return 1;

 } else {

 int val = fib(a-1)+fib(a-2);

 dbg << "="<<val<<endl;

 return val;

 }

}

: : : : =1
: : : : =1
: : : =2
: : : =1
: : =3
: : : =1
: : : =1
: : =2
: =5

Figure 1: Indentation management in Sight

B. Log Navigation

Since application logs can grow to be very large it becomes
difficult for developers to navigate from one log region to
other, logically related regions that were emitted at very
different times. Sight significantly simplifies log navigation by
enabling developers to document the logical structure of their
log. Sight uses this information to present a high-level
navigable map of the log. Figure 2 provides an example of this
for the above Fibonacci code, where the developer explicitly
creates links between caller and callee functions and Sight
creates a graph that organizes the resulting log. Clicking on any
node in the focuses the view on its corresponding region of the
log. Further, Sight enables developers to add links to the log
that they can use to easily navigate between logically related
log regions (e.g., different calls to the same function).

C. Parallel applications

The behavior of parallel applications is very difficult to
understand because the total amount of log information
increases with the number of tasks, their communications and
synchronizations. Sight tracks the information emitted by each
application thread in a separate log and then merges these logs
together, while aligning the entries according to their happens-
before order. The Figure 3 shows an example log of a master-
worker application The log of each process is shown as a
separate column, while events on different processes are laid
out in their happens-before order. Connections from MPI_Send
to MPI_Recv operations are shown as explicit arrows. This
view clearly illustrates the parallel structure of the application,
its communication protocol and the logical relationships
between code regions on the same and different MPI processes.
Figure 4 shows another log of a 1-dimensional simulation of

the heat equation, which uses a nearest neighbor stencil
communication pattern.

A key limitation of logging is that the amount of
information presented to the developer scales linearly with (i)
the application’s execution time and (ii) the number of threads
and processes it uses. Sight addresses these issues in three
ways. First, users can remove any portion of the log from view
by clicking the link at the top of the box that contains it.
Second, users may filter the displayed information based on
values of key application variables (e.g. show only log regions
where variable x=5). Finally, Sight can merge the logs that are
very similar to each other. This causes log data from multiple
processes and threads to be shown in one column, with any
differences among them explicitly highlighted. The figure
below shows the Sight log for the 1-D stencil application after
the logs of the 3 center processes have been merged. Similar
results would be produced regardless of the process count.

Figure 2: Sequential log with navigation graph Figure 3: Log of MPI master-worker application

D. Differential analysis

 Sight enables logs of multiple processes or application runs
to be merged together and automatically identifies regions that
are the same or different among these logs. An example is
shown in Figure 7., This is highly useful for differential
debugging tasks where the developer needs to understand the
difference between the executions of correct and erroneous
application runs. It is also useful for understand how an
application’s behavior evolves
across versions.

III. IMPLEMENTATION

A prototype version of Sight has

already been implemented and

applied to several major HPC

benchmarks, including AMG2013,

Lulesh and CoMD. It is available

as an open source project at

https://github.com/bronevet/sight.

The current implementation

supports both sequential

applications and applications

parallelized using MPI, pthreads,

the Open Community Runtime[2]

(fine-grained tasking framework)

and Containment Domains[3]

(resilience management

framework).

IV. REFERENCES

[1] Totalview, http://www.roguewave.com/products/totalview.aspx

[2] The Open Community Runtime, https://01.org/open-community-runtime

[3] Michael Sullivan, Doe Hyun Yoon, and Mattan Erez. “Containment
Domains: A Full-System Approach to Computational Resiliency”. Tech

Figure 4: Log of MPI 1-D wave equation application (nearest

neighbor stencil communication pattern)

Figure 5: Aggregated log of MPI master-worker application

Figure 6: Aggregated log of 1-D wave equation application

Figure 7: Merged log of

multiple runs

Comprehensive analysis of

application behavior with Sight

Greg Bronevetsky

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

Livermore, CA, USA

bronevetsky@llnl.gov

Abstract—Scientific application developers simultaneously

work at several levels of abstraction that include the physical

processes being simulated, the approximations that model them,

the numerical techniques to discretize these approximations, the

data structures and control logic that implement the above and

finally, the efficient and scalable mapping of this software to

hardware. Since no one individual can be an expert on all of

these domains, real applications are developed by large teams of

domain experts who divide the above concerns among them and

carefully coordinate to ensure that all application goals, from

accuracy to performance, are met. The diverse knowledge and

constraints of these disparate domains makes this task very

challenging.

The paper presents a tool called “Sight” that supports

developers’ efforts to understand how different aspects of their

applications’ design interact. Sight makes it easy for developers

to document key information about various application

components, aggregate this information across many application

runs and analyze this data to obtain actionable insights. We

describe the tool’s major capabilities and illustrate its ability to

uncover complex application behavioral properties in the context

of the AMG2013, Lulesh and miniFE benchmarks.

Keywords—logging; visualization; productivity; debugging,

application behavior analysis

I. INTRODUCTION

Large scientific applications are very complex and
incorporate many heterogeneous components. An application’s
developers must consider the physical processes that are most
important to their end-users. They must then select
approximations of these processes and numerical discretization
techniques for these approximations. Both the approximation
and the discretization must be selected to balance the accuracy
of the computed solution against the cost of doing the
computation. In most cases the chosen approximation can be
varied to provide different trade-offs for different end-users.
The physical and numerical algorithms are implemented using
concrete data structures and control logic and parallelized using
one or more parallel programming models. These design
decisions balance performance of a given version of the
application against the productivity of developers and the
design’s flexibility for future changes. Finally, the application
software is mapped to available hardware to minimize
execution time and maximize power efficiency.

The above concerns span several major domains of human
knowledge, ranging from theoretical physics, chemistry or
biology, to applied mathematics and ultimately to computer

science. Balancing them against each other is extremely
challenging due both to their individual complexity and the fact
that no individual can be an expert in more than one or two of
these domains. This makes it difficult to design full
applications while ensuring that they meet the demands of end
users both efficiently and accurately.

We are working on the Sight tool to help developers gather
a holistic understanding of their applications’ behavior, across
all the major domains of interest. Sight provides an API that
developers use to document major application components and
their properties. This information is aggregated across multiple
processes in a single application run or multiple runs with
different configurations, and presented to developers to
quantify how properties of different aspects of the application
relate to each other.

II. TOOL INTERFACE

To use Sight developers must identify the code regions of
major application components and call routines begin and

end at their beginning and end (the details of the API vary
according to the language in for which the API is provided):

 begin() takes as input a string label that identifies the
application component and a set of values that record the
properties of the component’s inputs. These may be the
current time step, the average temperature of the simulated
system, the size and sparsity of an input matrix or an entire
data structure such as a tree.

 end() takes as input a set of values that record the
component’s outputs.

 Sight can also be configured with performance-related
measurements that are performed during the execution of
each application component, such as execution time,
performance counters, energy use or memory allocation.

An example of how the Sight API may be applied to a
scientific application is provided in Figure 1. When collected
for a given application run this data can illuminate how the
evolution of one aspect of the application (e.g., the kinetic
energy of the simulated system) relates to very different
aspects of application behavior (e.g., cache miss rate or
numerical accuracy). Further, the developer may run the
application may times, configuring each application component
differently in each run. This makes it possible to quantify the
interactions among different design decisions across the
application, which are typically made by different developers.
The following sections describe three use-cases that highlight
the utility of our tool.

III. AMG CASE STUDY

We instrumented the AMG2013[1] benchmark to use Sight
to document the key routines and their major inputs and
outputs. Starting from almost no prior knowledge of the design
of AMG2013 (95k lines of code), the process took
approximately 4 days. AMG2013 uses either the PCG or
GMRES linear solver in concert with the AMG or diagonal
preconditioner. The AMG preconditioner approximately solves
a linear problem by taking the original problem and iteratively
coarsening it by grouping multiple unknowns into one. At each

level of the algorithm the problem becomes smaller and denser.

Figure 2 shows execution time (blue bars, left axis) and
energy (red squares, right axis) of the Coarsen phase of AMG
within the GMRES solver on the default problem as a function
of the level and the cap on processor power use (Intel Xeon
E5-2670 processors). This phase computes a coarser problem
from a finer one. Sparser problems (smaller level values) take
up most of AMG’s execution time and are not significantly
slowed by running at 50W rather than 100W. However,
placing a 25W power cap significantly slows them down. In
contrast, denser problems are significantly slowed by power
capping but account for little of AMG’s overall time. The
energy use of the Coarsen phase is therefore is minimized at
50W, where these two phenomena are balanced. This also
holds for the full code.

Figure 3 shows an alternate view that compares the
execution time of different solvers and preconditioners in
AMG2013 on the default problem as the size of the problem is
set to 1, 6 or 12 and the solver’s target error level is set to 1E-4,
1E-5 and 1E-6. Problem size has a very significant effect on
AMG2013’s execution time, while the error target has very
little impact (10%-20%). For the smallest problems the PCG
solver with the Diagonal preconditioner runs fastest, while the
GMRES solver with the AMG preconditioner is best for larger
problems. This is because AMG is both much more effective
and expensive. Although it enables the solver to converge in
far fewer iterations, for simple problems this is not enough to
offset its cost, while for larger problems it is the better choice.

IV. LULESH CASE STUDY

We also used Sight to analyze the behavior of the Lulesh
[2] benchmark, which represents the domain of shock
hydrodynamics. Lulesh simulates a spherical explosion and can
be parameterized to use different memory layouts (array-of-
structs or structs-of-arrays), floating point numbers with
different precisions (float, double and long double) and spatial
discretizations (number of mesh cells in each dimension). It
chooses time steps adaptively to satisfy the Courant condition
on information propagation and adapts the shape of the mesh
based on the progress of the simulation. In the first experiment
we analyzed how the numerical configuration of Lulesh relates

Figure 1: Example of source code instrumentation

needed to use Sight

Figure 2: Performance and Energy use of the AMG Coarsen phase at different V-cycle levels and power caps

to its performance by running it with various numerical
precisions and spatial discretizations (3, 7 and 15 mesh points
per dimension), while setting the power cap at 25W, 50W and
100W. The execution time of these variants of Lulesh is
presented in Figure 5 and shows that the choice spatial
discretization has a strong impact on execution time and
numerical precision has an additional 5%-30% effect.
Lowering the power cap from 100W to 50W has a negligible
effect on execution time, while moving it to 25W slows it by
over 50%. Figure 6 quantifies the impact of choosing the

Lulesh memory layout (array-of-structs vs struct-of-arrays),
focusing on the scenario with the finest spatial discretization
and loosest power cap. It shows that the difference between the
two memory layouts is minimal, significantly smaller than the
impact of numerical precision.

In addition to measuring the impact of the configuration of
Lulesh on performance, we also quantified its impact on the
accuracy of Lulesh results. In this experiment we varied the
numerical precision and the spatial discretization (3, 7, 15, 31
and 63 points) and measured two error metrics. First, since the

Figure 5: Lulesh execution time as a function of numerical configuration and power cap

Figure 4: Errors in symmetry and energy in Lulesh output as a function of its numerical precision and spatial discretization

Figure 3: Execution time of AMG2013 as a function of the solver choice and target solution accuracy

system simulated by Lulesh must be spherically symmetrical,
we measured the error in symmetry as the total difference
between all spherically opposite mesh points (blue bars, left
axis). Second, we compared the total energy in the simulated
system to that computed by Lulesh at the maximum numerical
precision and the finest spatial discretization (red squares, right
axis). The data (Figure 4) shows that the two error metrics
behave very differently. Symmetry error grows significantly
worse with less precise numbers and somewhat worse with
finer spatial discretizations. The latter is most likely due to the
fact that finer spatial discretizations use smaller time steps.
This results in simulations that run for more time steps and thus
accumulate more asymmetry. In contrast, energy error is
insensitive to numerical precision and grows worse with
coarser spatial discretizations. This result indicates that
developers must pay close attention to the error metric that is
most meaningful to their end-users and optimize with respect
to it.

MINIFE

We used the miniFE[3] benchmark to demonstrate the use
our tool to quantify the impact of soft errors on application
state. MiniFE represents implicit finite-element simulations
and its key workload is an implicit solve that uses the CG
linear solver, which is summarized in Figure 6. Figure 8 shows
the distribution of errors in the CG vector x (error is the L2
norm of the difference between the correct and incorrect
versions of the vector) at the end of a CG iteration when an
error is injected into two types of instructions during the
iteration. The data shows that injections into 64-bit IEEE Float
data have a significantly worse impact than 32-bit Int data.

Figures 9 and 10 focus on how errors injected in one
iteration of the CG algorithm propagate through subsequent
iterations. They plot on the vertical axis the error in vector x at
the end of an iteration and on the horizontal axis the error in

either vector x (Figure 9) or p (Figure 10). The data shows that

error in x at iteration end are strongly correlated to errors in x

at iteration start and more weakly correlated with errors in p.
This quantifies the way in which errors propagate through the
logic of CG, which can help developers design resilience
mechanisms for this algorithm.

Figure 7: Impact of memory layout of Lulesh data structures (array-of-structs or struct-of-arrays) on Lulesh execution time

Figure 6: CG Algorithm

Figure 8: Distribution of L2 errors in vector x at the end of CG

time steps due to different types of injected errors

IMPLEMENTATION

The Sight tool and it source code are available at
https://github.com/bronevet/sight. This repository includes
examples of the AMG2013, Lulesh and miniFE modified with
Sight annotations.

REFERENCES

[1] AMG2013, https://asc.llnl.gov/CORAL-benchmarks/#amg2013

[2] I. Karlin, J. Keasler, R. Neely. LULESH 2.0 Updates and Changes.
August 2013.

[3] Mantevo benchmarks, http://mantevo.org/

Figure 9: Propagation of errors from x at the start of an iteration to x at the end

Figure 10: Propagation of errors from p at the start of an iteration to x at the end

