

The RAJA Portability Layer:
Overview and Status

R. D. Hornung, J. A. Keasler

September 24, 2014

LLNL-TR-661403

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

 1

(U) The RAJA Portability Layer: Overview and Status
Richard D. Hornung, Jeffrey A. Keasler, et al.

Lawrence Livermore National Laboratory, Livermore, CA

Abstract

As computer architectures become increasingly complex and diverse, application developers
face difficult challenges to achieve high performance while maintaining code portability. The
problem is especially acute for large ASC multiphysics codes. Efficient parallel execution
often requires tuning algorithms and data access to match processor and memory system
constraints. Changing compiler directives and parallel programming model constructs on
thousands of individual loops in a large code is disruptive and unwieldy. RAJA is a
programming approach that we have been developing at Lawrence Livermore National
Laboratory to encapsulate platform-specific concerns, related to both hardware and parallel
programming models. The RAJA abstraction layer simplifies porting C/C++ codes to various
programming models and architectures by reducing effort and developer disruption. In this
report, we motivate and describe key aspects of RAJA. We also present a preliminary
assessment of RAJA based on exploration in three ASC hydrodynamics codes at LLNL,
which was one part of a three-part ASC Level 2 milestone, completed in September 2014.

Introduction
Over the past couple of decades, HPC application performance has improved dramatically
with advances in computer architectures and CPU clock rates. During this period, hardware
platforms have remained relatively homogeneous and consistent. Thus, application scientists
have been able to focus on algorithm development and coarse-grained parallelism (mostly
MPI) with little concern for fine-grained parallelism and a detailed understanding of
hardware variations across platforms. The performance and portability challenges now facing
ASC codes are rooted in recent, disruptive changes to HPC node architectures. Exploiting the
full range of hardware capabilities forces developers to express ample fine-grained
parallelism in varied forms, such as SMT (Simultaneous Multithreading), SIMT (Single
Instruction, Multiple Threads), and SIMD (Single Instruction, Multiple Data). Also, careful
management of data locality and memory access is becoming paramount with the emergence
of deeper memory and cache hierarchies with different sizes and access timing rules.

To achieve high performance portably, ASC codes need to adopt algorithms and
programming styles that can express various forms of parallelism, that do not overburden
code maintainability, and which can be explored incrementally. RAJA is designed to
integrate with legacy codes simply and to provide a model for development of new codes
that are portable from inception. Basic insertion of RAJA in a code enables “zeroth-order”
architecture portability. Once in place, a wide range of architecture-specific tuning
optimizations can be pursued without substantial application code disruption.

RAJA is based on standard C++ language features, which works well with LLNL ASC codes
most of which use C/C++ as their main programming language. The fundamental conceptual
abstraction in RAJA is an inner loop, where the overwhelming majority of computational
work in most physics codes occurs. RAJA is lightweight, customizable, and based on

 2

concepts used heavily in LLNL codes. It can be added incrementally and used selectively,
which facilitates exploration of implementation alternatives. Finally, RAJA can encapsulate
different programming models so a code need not be bound to a particular technology.

The main goal of the RAJA portion of the ASC Level 2 milestone was to assess whether
RAJA is a viable approach for architecture portability in LLNL ASC codes. To perform this
assessment, we considered a variety of questions about RAJA related to several concerns:

• Performance
o Does RAJA benefit or hinder performance? By how much?
o When does it work well and when does it not?

• Portability
o Does RAJA enable portability across current architectures?
o Does it simplify access to various forms of parallelism?

• Programmability
o How easy is it to adapt a code to the RAJA model?
o Does it provide the features we need?
o Does it enhance or hinder code flexibility and maintenance?

• Long-term viability
o What are the benefits and limitations of adopting the RAJA approach, or a

similar model?
o What are the expectations to resolve issues that are not under our direct

control?
o What are the prospects for RAJA to adapt to future architectures and

programming models?
o Are there any showstoppers?

Background and Motivation
In this section, we provide background and motivation for RAJA. We begin by describing
central, common, concepts employed in mesh-based numerical operations in LLNL ASC
physics codes. Then, we discuss challenges related to exposing high performance fine-
grained parallelism in physics algorithms.

Data and algorithm organization in physics codes
A typical ASC code has clearly-defined mesh and data abstractions. Generally, a problem is
decomposed and distributed across the nodes on a partition of a parallel HPC platform. Each
compute node is considered a distributed memory “locale” to which some number of MPI
processes is assigned. A data structure, often called a “domain”, owns a description of part of
the mesh and the field data for that mesh part. Exactly one MPI process owns each domain
and each process may own multiple domains. The basic elements of a domain structure are
illustrated in Figure 1. Data on a domain is disjoint from data on other domains; that is a
domain is a “data locality context”, representing the finest level of data partitioning in a code
typically. Each mesh field is associated with a fixed centering on the mesh, such as element
or nodal, and the data for each field is held in a distinct array. Field arrays are 1-dimensional
regardless of the problem dimension. Also, there usually exist other metadata on a domain,
for example to map materials to elements, as well as non-mesh data, such as tables of
physical data (e.g., material properties, equation of state, etc.) shared by domains on a node.

 3

The mesh topology defines the organization of elements and nodes on the mesh. Generally,
there are two fundamental mesh configurations, structured and unstructured. A structured
mesh uses an N-dimensional Cartesian index space, which defines uniform node connectivity
and a single element geometry. Structured mesh algorithms often use nested loops to traverse
logically rectangular regions on a mesh. Such operations rely on zero-overhead implicit
relationships between mesh entities, and allow a high level of compile-time optimization due
to stride-1 data access patterns. An unstructured mesh is composed of arbitrarily connected
node points that define the elements they surround; thus, an unstructured mesh admits
arbitrary element geometries. Due to the irregular connectivity, relationships between
unstructured mesh entities are defined using lists of array indices. For example, eight nodes
define each element on a three-dimensional hexahedral mesh, so eight nodal-array indices
are stored to access nodal field data for each element. Use of indirection arrays to manage
relationships among mesh entities requires additional memory traffic, involves a much higher
ratio of integer to floating point operations, and precludes many compiler optimizations.
Regardless of the underlying mesh topology, most ASC physics codes employ algorithms
involving regular, stride-1 memory accesses as well as those requiring indirection arrays. So,
efficient implementations of both types of operations are important to every code.

Mesh data is often organized into a hierarchy of contexts, typically, where a context
represents a relationship between the mesh and data on the mesh. There will be multiple
topological contexts, one for node-centered quantities, one for element-centered quantities,
face-centered quantities, etc. An element context will have child contexts that enumerate the
elements associated with each material region. Often, material region contexts are further
partitioned into clean elements (single material) and “mixed” elements (containing multiple

Figure 1. Basic organization of a typical domain structure in a mesh-based physics code.

 4

materials). When contexts are nested, local indices are typically used within a child context
to index into arrays associated with a parent context.

The context hierarchy in an ASC code is designed to map the conceptual organization of
physics operations to the underlying data structures. Most physics operations are encoded in
loops; a large code will have tens of thousands of loops, typically. However, within a given
code, there are relative few loop patterns. Common loop patterns involve:

• Simple traversal within a context (e.g., loop over all elements, nodes, etc.)
• “Parent-child” interactions within a topological context (e.g., loop over all elements

containing material “A” and update values for some field defined over all elements)
• Relations between fields in different topological contexts (e.g., difference stencils

involving node- and element-centered quantities)
Other operations may involve more elaborate data dependencies, but are less common.

Fine-grained parallelism challenges
Presently, numerical kernels in most LLNL ASC codes are usually serial and operate on data
associated with an entire domain. However, efficient parallelism is tied closely to memory-
locality. One way to improve locality in a multithreaded environment is to use many small
domains, allowing more threads to simultaneously share data caches without contention.
Unfortunately, domain overhead measured in terms of additional memory needed for non-
shared data, and domain management operations that are hard to amortize away, can lead to
space or performance problems on current multicore systems. Thus, an alternative to
traditional domain partitioning will be required to exploit massive on-processor parallelism.

A better option is to employ fine-grained data “chunking” within a domain where a chunk of
data can be assigned to a work thread or passed to an algorithm kernel. Proper chunk size
selection can balance both instruction and data cache usage so that neither cache becomes
overly strained. For example, if an algorithm works on a single element at a time (typical for
a complex material model), the amount of code executed may not fit into an instruction
cache. So the algorithm is always streamed from main memory (as though there is no
instruction cache), while the data may be perfectly cached, with room to spare. On the other
hand, if the chunk size is larger than will fit into the highest level of processor data cache,
then the data is always streamed from main memory (as though there is no data cache).

Careful ordering of array accesses is also important to improve cache reuse, which is critical
for good performance; e.g., ensuring that all entries in a cache line are used before the cache
line must be reloaded. In a multi-material hydrodynamics code, a material model may likely
be the primary work unit on a domain. Ordering elements so that data for elements with the
same material are adjacent in memory can provide an optimal cache mapping. When
materials move between mesh elements due to advection, it may be wise to periodically
permute mesh data to retain memory adjacency. Optimal cache reuse will likely occur when
data layout mirrors the needs of dominant numerical operations. However, which loops
dominate runtime for a code is often highly problem-dependent. Flexibility to permute data
could save an application from using poor memory access patterns for a given architecture.
Reordering can also enable "lock-free" computations in a multithreaded environment. When
using traditional programming language constructs, such as C-style for-loops, all execution
and data access details are fixed in the application source code. Without some sort of
abstraction layer, such as RAJA, altering implementation details is difficult and may require
writing and maintaining multiple versions of individual loops.

 5

Programming model concerns
There has been a clear trend in HPC toward node-level parallel programming models that
extend programming languages, like C and C++, via compiler directives and library routines.
OpenMP [1, 2], CilkPlus [3], CUDA [4], and other models can support multithreading and/or
processor heterogeneity where CPUs and accelerators are combined. These models are
standardized and supported well by compiler vendors making them viable for ASC
production codes. However, no existing programming model is a clear “best choice” for all
architecture considerations. Moreover, each model has unique programming characteristics
and models are not easily interchangeable. Yet, interchangeability is necessary to manage
performance portability. RAJA enables the use of different programming models in an
application without exposing their idiosyncrasies to application scientists and without
requiring multiple versions of computational kernels to be coded to different models.

RAJA Overview
The RAJA model addresses many concerns discussed in the previous section by providing a
means to encapsulate loop implementation details, such as data access and execution
patterns. RAJA is designed to keep the look and feel of serial code at the application level,
which greatly simplifies maintenance and reasoning about algorithms and implementation
choices. RAJA shares concepts with other C++ abstraction approaches, such as Thrust [5],
Bolt [6], Kokkos [7], etc. However, RAJA supports constructs used heavily in LLNL ASC
codes that are absent in other models.

RAJA has two main goals. The first is to insulate application developers from non-portable
compiler and platform-specific directives, and parallel execution and programming model
implementation details. The second is to simplify tuning of data layout and access patterns
for diverse memory hierarchies. In this section, we describe the basic concepts in RAJA.

Fundamental Concept: Separate loop body from loop traversal
To encapsulate architecture-specific concerns and insulate them from application code,
RAJA decouples a loop body from its traversal. Consider a "daxpy" operation implemented
using a traditional C-style for-loop:

double* x; double* y;
double a;
// ...
for (int i = begin; i < end; ++i) {
 y[i] += a * x[i];
}

The corresponding RAJA form is:

Real_ptr x; Real_ptr y;
Real_type a;
// ...
forall< exec_policy >(IndexSet, [&] (Index_type i) {
 y[i] += a * x[i];
});

 6

There are several encapsulation aspects in the RAJA form shown here:

• Data type encapsulation. RAJA provides data and pointer types, seen here as
“Real_type” and “Real_ptr”, to hide non-portable compiler directives and data
attributes (such as alignment). These additional compiler-specific data decorations
often enhance a compiler’s ability to optimize so that higher performance may be
extracted from the underlying hardware. These types are not required to use RAJA,
but are a good idea in general for HPC codes.

• Traversal template and execution policy. The “forall()” template method and the
specified template parameter encapsulate the details of loop execution; for example,
run the loop sequentially or in parallel, enable SIMD, etc.

• Indexsets. In the simple RAJA example above, “begin” and “end” integral loop
bounds could have been passed to the iteration method. The RAJA Indexset
abstraction is much more powerful and allows encapsulation of complex loop
iteration patterns and memory access patterns based on data placement.

Note that the loop body is identical in both the C-style and RAJA loop forms above. A key
RAJA design point is to have a minimal impact on application source code. Using the
standard C++11 lambda function language feature, the loop body and necessary variables are
captured without modification and used within the iteration method [8]. C++ compiler
support for lambda functions is new and still maturing. We believe that robust lambda
support is essential for adoption of RAJA in LLNL codes.

In the C-style loop all details of the loop execution (iteration sequence, data access pattern,
etc.) are explicitly coded at the application level. Changing any aspect of execution requires
direct modification of the loop source code. In the RAJA version, on the other hand, all loop
execution details are hidden. This allows changing the execution of the loop by simply
changing the execution policy type and/or iteration method. To make this more concrete,
consider two potential RAJA OpenMP iteration templates (loop execution policy in red):

// (A) typical OpenMP multithreaded execution
template< typename LB >
void forall(omp_exec, int begin, int end, LB loop_body) {

#pragma omp parallel for
 for (int i = begin; i < end; ++i) loop_body(i);
}

// (B) OpenMP 4.0 accelerator execution
template< typename LB >
void forall(omp_acc_exec, int begin, int end, LB loop_body) {

#pragma omp target
#pragma omp parallel for
 for (int i = begin; i < end; ++i) loop_body(i);
}

Example (A) shows how the loop iterations could be launched using a standard OpenMP
parallel for construct on a multi-core CPU, for example. Example (B) shows how the loop
could be launched on an accelerator device, such as a GPU, using OpenMP 4.0 standard
device target directives [2]. Here, data mapping between the host and device is implicit.

 7

In CUDA, the notion of a loop is fundamentally absent. A “loop iteration” is expressed in a
CUDA kernel function that is launched over a thread block on a CUDA-enabled GPU
device. Each iteration executes on a different CUDA thread. The code snippets below
illustrate potential RAJA “back end” code for CUDA. So that application code looks like that
for other parallelization approaches, we pass a loop body to a C++ template method (D),
which has the same arguments as other iteration methods. This template launches a GPU
kernel (C) that executes a loop iteration on a separate GPU thread.

// (C) kernel function template
template< typename LB >
__global__ void loop_it(int begin, int N, LB loop_body) {
 int i = blockIdx.x * blockDim.x + threadIdx.x ;
 if (i < N) {
 loop_body(begin + i) ;
 }
}

// (D) traversal template that launches GPU kernel
template< typename LB >
void forall(cuda_exec, int begin, int end, LB loop_body) {
 const int blocks = (end – begin + 63)/64 ;
 loop_it<<< blocks, 64 >>>(begin, end-begin), loop_body) ;
}

It is important to note that support for C++ lambda functions in the NVIDIA nvcc compiler
is under development. Early releases of CUDA 6.x support lambda functions in GPU kernels.
However, it is still not possible to launch a lambda on a GPU when it is defined in code
compiled for a host CPU. This functionality is needed for the RAJA model to encapsulate
CUDA constructs and achieve full CPU-GPU portability. We have verified that the approach
shown above works with current nvcc compilers when a loop body is expressed as a C++
functor object. We are actively involved in discussions with NVIDIA compiler developers on
future expanded lambda support.

Fundamental Concept: Partition iteration space into work units (Segments)
For CPU-GPU portability, we need a single abstraction that makes it easy to manage both
types of parallelism. Loop iterations map to threads differently on a multi-core CPU and a
GPU. Figure 2 shows the key difference; on a CPU a contiguous block of loop iterations are
mapped to each thread, while on a GPU adjacent iterations are mapped to adjacent threads
within a thread warp. Each iteration of a loop is associated with a “footprint” of data array

Figure 2. Loop iterations map to threads differently on CPUs and GPUs.

 8

values in memory. In RAJA, we bundle loop iterations into Segments, which helps to manage
data access patterns for different threading models.

Earlier, we noted that multiphysics codes employ operations involving stride-1 array data
access as well as unstructured accesses involving indirection arrays. Often, these different
access patterns are used on the same data array and may even be combined in the same
physics operation. Figure 3 shows two different segment types, “range” and “list”. A RAJA
range segment defines a contiguous set of iteration indices. Constraints can be applied to the
iteration bounds and also to their alignment with memory constructs. For example, range

segments can be aligned multiples of a SIMD or a SIMT width, which helps compilers
generate more efficient code. Iteration over a range segment usually involves a simple for-
loop:

for (int i = begin; i < end; ++i) loop_body(i);

A list segment bundles iterations that do not meet range segment criteria. A typical iteration
over a list segment involves a for-loop, with indirection applied:

for (int i = 0; i < seglen; ++i) loop_body(segment[i]);

Runtime segment construction can impose constraints that complement compile-time
pragmas and optimizations, which can be hidden in RAJA iteration templates.

RAJA Segments can represent arbitrary loop iteration bundles that can be tuned and sized for
specific architecture and memory configurations. Figure 4 shows two different element
“tilings” on a domain that represent different data orderings (numbers) and iteration patterns

(dashed arrows). When loop bounds are abstracted in a segment, instead of hard-coded in an
application, data arrays can be permuted for locality and cache reuse. For example, the
canonical tiling in the upper part of Figure 4 can be transformed into the “compact” tiling in
the lower part of the figure.

Figure 3. "Range" and "List" segments iterate over sets of array elements differently.

Figure 4. RAJA Segments can represent arbitrary "tilings" of filed data on a domain.

 9

Segments can also work together with data allocation to further enhance optimization. A
typical ASC code centralizes data allocation in macros or functions for consistent usage
throughout a code. Data allocation can be based on segment configurations to apply other
optimization-enhancing allocation techniques, such as “first-touch”, which can result in
improved NUMA behavior during multithreaded execution.

Fundamental Concept: Segment dispatch and execution (Indexsets)
A RAJA Indexset is an object that encapsulates a complete iteration space that is partitioned
into a collection of segments, of the same or different types. To illustrate a simple use case,
consider an array of indices to process; e.g., indices that enumerate elements on a domain
containing a particular material:

int elems[] = {0, 1, 2, 3, 4, 5, 6, 7, 14, 27, 36,
 40, 41, 42, 43, 44, 45, 46, 47, 87, 117};

The indices may be assembled at runtime into an Indexset object by manually creating and
adding segments to an Indexset object. A more powerful approach is to use a RAJA Indexset
builder method that partitions the iteration space into a collection of “work segments”
according to architecture-specific constraints. For example,

Indexset segments = createIndexset(elems, num_elems);

In this example, the resulting Indexset object may contain two range segments ({0,…,7},
{40,…,47}) and two list segments ({14, 27, 36}, {87, 117}). The Indexset
object can be passed to an iteration template, as in the RAJA code examples shown earlier,
that automatically dispatches the segments to execute a loop body (i.e., lambda function):

forall< exec_policy >(segments, loop_body);

A compile-time generated iteration template for each segment type executes portions of the
loop associated with the segment type, possibly in parallel.

Indexset builder methods can be customized to tailor segments to hardware features and
execution patterns to balance compile-time and runtime considerations. Presently, Indexsets
enable a two level hierarchy of scheduling and execution. A dispatch policy is applied to the
collection of segments. An execution policy is applied to the iterations within each segment.
Examples include:

• Dispatch each segment to a CPU thread so segments run in parallel and execute
range segments using SIMD vectorization.

• Dispatch segments sequentially and use OpenMP within each segment to execute
iterations in parallel.

• Dispatch segments in parallel and launch each segment on either a CPU or GPU as
appropriate.

It is important to note that RAJA allows all aspects of execution to be tailored and optimized
by developers. They can modify segment dispatch and execution mechanisms in traversal
methods, or build their own to explore alternative “work-around” implementations that may
overcome problems when execution performance does not match expectations. Such
complete control is not found in monolithic programming models, typically.

The RAJA indexset/traversal model also supports other more advanced features that we have
recently begun to explore in the LULESH proxy-app. For example, indexset segments can be
defined and arranged to encode dependence scheduling patterns to enable more efficient

 10

parallelism. Key aspects of a “lock-free” segment scheduling mechanism in a RAJA iteration
template are shown in the following code example:

#pragma omp parallel for schedule(static, 1)
for (int i = 0; i < num_seg; ++i) {

 while (seg_semaphore[i] != 0) {
 sched_yield();
 }

 seg_dispatch(seg_type[i], seg_info[i], loop_body);

 seg_semaphore[i] = seg_sem_reload_val[i];
 for (int j = 0; j < seg_num_dep_tasks[i]; ++j) {
 int dep = seg_dep_task[i][j];
 __sync_fetch_and_sub(&seg_semaphore[dep], 1);
 }
}

The dependence scheduling is controlled by a simple semaphore mechanism applied per
segment. To manage dependencies in this fashion, three pieces of information are required.
First, a “reload” value defines the number of external dependencies that must be satisfied
before a segment can execute. As each dependency is satisfied the semaphore value is
decremented; when it reaches zero, the segment can execute. Until then, the thread “yields”
the CPU resource. After a segment is dispatched to execute, its semaphore value is reset to
the reload value. Second, an “init” value is an override for the reload value. A subset of
segments must be “primed” to execute; ideally, a number of segments at least as large as the
maximum number of threads available segments should be able to execute immediately. The
semaphore value for such segments is initialized to zero to indicate that they can execute
from the start of the traversal. Semaphore values for all other segments are initialized to their
reload values. Third, “forward dependencies” are the set of segments that must be notified
when a segment execution completes. Here, notification means that the semaphore value in
each forward segment is decremented by one. Later, we will show the performance benefit
that can be achieved using this “lock-free” segment scheduling mechanism in LULESH.
Such an approach could also be used to create “task graph” dependency scheduling for tile
segments in wave-front algorithms, such as sweeps used in deterministic transport codes.

Traversals can also potentially support a portable, transparent, fine-grained transient fault
recovery mechanism. The simplified code example below shows the basic idea:

#pragma omp parallel for schedule(static, 1)
for (int i = 0; i < num_seg; ++i) {
 bool done = false;
 while (!done) {
 try {
 done = true;
 seg_dispatch(seg_type[i], seg_info[i], loop_body);
 }
 catch (Transient_Fault) {
 cache_invalidate();
 done = false;
 }
 }
}

This fault recovery mechanism, embedded in a loop iteration template, can potentially catch
any transient error condition and allow a code to recover. The C++ try/catch mechanism tests

 11

whether a transient fault has occurred. If so, the data cache is invalidated and the loop is re-
run with data values reloaded from memory. With such an approach, important aspects of
transient fault recovery can be hidden and easily managed in a large code base. Also, the
recovery cost for faults addressed by this method is commensurate with the scope of such
faults. That is, a code can recover with minimal localized disruption and not need a full
restart. Use of this approach would benefit from additional hardware and O/S support (i.e.,
the processor could emit specialized signals for fault conditions and the O/S could be more
specialized to help process them), and language support (e.g., the C++ try/catch mechanism
could be expanded to respond to O/S signals). In addition, each loop to which this
mechanism is applied must be idempotent; i.e., it can be run an arbitrary number of times and
produce the same result. This requires read-only and write-only arrays (no read-write arrays),
which can increase memory usage and bandwidth requirements slightly. Later, we will show
the software and performance impact of this RAJA-based fault recovery method in LULESH
is acceptable.

Exploring RAJA in LLNL ASC hydrodynamics codes
To assess the viability of RAJA, we explored the approach in the Lagrange hydrodynamics
portion of three ASC codes at LLNL: Ares, Kull, and ALE3D. Although preliminary and
limited in scope, the explorations were adequate to determine whether RAJA is sufficiently
flexible to serve as a loop-level abstraction layer across diverse code environments, to
determine its impact on production source code, and evaluate its potential for performance
portability. Performance evaluations were performed on TLCC2 and BG/Q platforms, the
primary architectures used for production codes at LLNL. Also, on BG/Q, we compared the
GNU 4.7.2 and the IBM xlc 12.1 compilers. Most LLNL codes use the xlc compiler on that
platform. However, only the GNU compiler supports C++ lambda functions on that machine,
which is needed for RAJA. This section summarizes our findings.

Ares
Ares is a multi-block, structured mesh code that uses little abstraction in its numerical
kernels. Most physics algorithms in the code are written using traditional C-style for-loops
with no encapsulation of data access or loop iteration patterns. Basic RAJA insertion enables
encapsulation of these aspects of the code. We converted most of the loops executed during a
single material Lagrange hydrodynamics computation to use RAJA. Performance
experiments were done on LLNL BG/Q and TLCC2 platforms.

Ares-RAJA integration

To simplify RAJA integration into Ares, and minimize its impact on the look-and-feel of the
source code, a lightweight C++ loop template API was constructed to encapsulate RAJA
constructs. Loop templates were created to explicitly name each loop pattern in a way that is
intuitive to Ares developers. An indexset collection was added to the Ares domain structure
to hold the indexsets that were needed to run the loops. These were defined in existing setup
routines where domain extents and indirection arrays are defined. Each named loop iteration
method retrieves the appropriate index set from the collection when it is called. For
example, loops over “real” zones on a domain in the original code, such as:

 12

for (int ii = 0 ; ii < domain->numRealZones; ++ii) {
 int zone = domain->Zones[i];
 // loop body using “zone” as array index
}

and

for (int j = domain->jmin; j < domain->jmax; ++j) {
 for (int i = domain->imin; i < domain->imax; ++i) {
 int zone = i + j * domain->jp;
 // loop body using “zone” as array index
 }
}

were transformed to the following form:

forEachRealZone< exec_policy >(domain, [=] (int zone) {
 // loop body using “zone” as array index
}

In total, we converted 421 loops in Ares to similar implementations and employed three loop
execution policies, which we called “DPWork”, “DPStream”, and “Seq”. We applied the
DPWork and DPStream policies to data parallel loops containing roughly ten FLOPS or
more per loop iteration and those that contained less than that, respectively. This distinction
was based on some high-level profiling; we wanted to distinguish loops where threading was
a clear win and when it was not on current platforms. We used the Seq policy for sequential
execution on loops that were not easily parallelized. Overall, we found the basic integration
of RAJA to be straightforward. The most difficult work was localized to setting up and
manipulating RAJA index sets. Replacing C-style for-loop headers with calls to iteration
template methods and identifying the appropriate execution policy for each loop was not
hard, but somewhat tedious.

When the transformed code was presented to Ares developers, including code physicists,
they identified several software engineering benefits related to improved code readability and
maintenance. For example, named traversal methods clearly label iteration patterns in the
code, and the named execution policies document how each loop will be run. Users also
noted that encapsulating the loop logic would potentially eliminate coding errors. Finally,
developers noted the potential to simplify porting to different architectures by parameterizing
execution policies via typedef statements in header files.

To demonstrate additional RAJA benefits, we explored a few more advanced code
transformations in Ares. One example involves a deep loop nest in the mixed-zone advection
algorithm that uses integer arrays for both control logic and indirection. The following
simplified code example shows key aspects of the loop structure:

for (int iz = 0 ; iz < nmix_zones; ++iz) {
 if (domain->mixzone_advect[iz]) {
 for (int i = 0; i < numlocal_mat; ++i) {
 if (mzreg[domain->mat[i]].ndx[iz] >= 0) {
 var[mzreg[domain->mat[i]].ndx[iz]] = ...;
 // etc.
 }
 }
 }
}

 13

This loop nest is further nested within a loop over mesh field variables that are processed by
the advection algorithm. Notice, however, that none of conditional tests or indirect data
accesses depend on the variable involved, only whether a “mixed” zone is advected or if the
zone contains a given material. Such complicated loop organization induces unnecessary
memory bandwidth needs and hinders many compiler optimizations.

To address these issues, we encoded conditional logic and indirection in RAJA index sets.
We inverted the loop nest so that iteration over material regions was on the outside. The
inner loop indirection and conditional logic is replaced with a call to an iteration method that
iterates only over the advected zones with a given material. This allowed us to remove two
levels of loop nesting. The resulting code is shown below:

 for (int i = 0; i < numlocal_mat; ++i) {

 // ...
 forEachAdvectedMixedZoneInRegion< exec_policy >(domain, i,

 [=] (int ndx) {
 var[] = ...;
 // etc.
});

 }

This code is simpler and easier to understand and runs faster than the original. On a test
problem that stresses these operations, we observed a 1.6x serial speedup on TLCC2 for this
loop and a 1.99x serial speedup on BG/Q. Starting from the original code compiled with xlc
and moving to the RAJA version compiled with GNU results in a total serial speedup of
3.78x on BG/Q for the loop. Applying the transformation described here on just two loops
yields ~8% speedup in the overall runtime on TLCC2 for the aforementioned test problem.

RAJA can also be used to reorder loop iterations to enable parallelism in loops that are not
parallelizable as currently written. The loops could be restructured to expose the available
parallelism. However, using the RAJA abstraction layer, different loop orderings can be
explored easily without modifying the application code. For example, a common operation in
a staggered-mesh code, like Ares, sums values to nodes from surrounding zones. This is
illustrated in the left image in Figure 5. Using indexsets to define independent groups of
computation and reorder the loop iterations enables different parallel implementation
possibilities. The middle and right images in the figure show two options, (A) and (B).
Different colors indicate independent groups of computation, which can be represented as
segments in the indexsets. For option A, we iterate over groups sequentially (group 1
completes, then group 2, etc.) and operations within a group can be run in parallel. For option
B, we process zones in each group (row) sequentially and dispatch rows of each color in

Figure 5. Zone-to-node sum operation (left), ordering option A (middle) and B (right).

 14

parallel. For a 3D problem run on BG/Q, option A gives ~8x speedup with 16 threads over
the original serial implementation. Option B provides ~17% speedup over option A at 16
threads. It is worth reiterating that no source code modifications are required to switch
between these parallel iteration patterns with RAJA in place.

Ares-RAJA performance assessment

To evaluate the overall performance impact of RAJA on Ares, we ran multiple experiments
with a single material 3D Sedov problem using various combinations of MPI tasks and
OpenMP threads per task. Ares can partition a problem into any number of domains per MPI
task and can run with or without OpenMP threading on loops over domains within an MPI
rank. When OpenMP is used to parallelize loops over domains, we refer to this as coarse-
grained threading in the following discussion. The simple Sedov problem represents an
extreme performance case for fine-grained inner loop threading since most loops do very
little work compared to more realistic, multi-material problems. In particular, for this
problem, no combination of MPI tasks and OpenMP threads runs faster than using 64 MPI
tasks on BG/Q (one task per hardware thread), assigning one domain to each MPI rank.
Figure 6 summarizes the comparison between MPI-only and MPI plus OpenMP threads.

Fine-grained inner loop threading yields a performance benefit over running MPI-only in our
study. Figure 7 shows strong-scaling speedup for Ares-RAJA compared to original Ares at
each MPI task count. Ares is run with M MPI tasks and no threads. Ares-RAJA uses M MPI
tasks and T OpenMP threads per task, where M x T = 64 in each case. Ares-RAJA shows a
speedup over the original code at all MPI task counts, except M = 64. The performance
benefit of fine-grained threading decreases as the number of MPI tasks increases, as expected
based on the results shown in Figure 6. Nevertheless, the result leaves us optimistic about

Figure 6. Summary of Ares Sedov problem performance run on a single BG/Q node for
different combinations of MPI tasks and coarse-grained OpenMP threads per task. MPI-
only always outperforms MPI plus threads using the same number of resources.

 15

future prospects for fine-grained threading in Ares since the Ares-RAJA version has 372
inner loop OpenMP parallel sections per timestep. It is important to note that, due to per-core
memory constraints, a typical Ares run on BG/Q cannot use more than 16 MPI tasks per
node. At that task count, we see a roughly 50% performance boost with inner-loop threading
over MPI-only (red oval in the figure). The overhead of the RAJA layer in the code, ~10%, is
seen at 64 MPI tasks. We elaborate on this issue in the Appendix.

For a more extreme evaluation of OpenMP thread performance, we performed a similar
experiment that compared coarse-grained domain loop threading in the original code and
fine-grained inner-loop in the Ares-RAJA version. Both versions of the code are run with M
MPI tasks and T OpenMP threads per task on a BG/Q node, where M x T = 64 across the full
range of MPI/OpenMP combinations. Ares uses 64 domains in each case and employs
coarse-grained threading on 27 domain loops per timestep. Ares-RAJA uses M domains and
T fine-grained threads on 372 inner loops per timestep. Figure 8 shows Ares-RAJA speedup
compared to Ares with three different compiler options. In all cases, it is clear that a few
coarse-grained thread parallel sections outperform many fine-grained thread parallel sections.
The Ares-RAJA version gets to within 5-10% at 16 and 32 MPI tasks, depending on the
compiler used for the Ares version. The conclusion to be drawn from this experiment is that
OpenMP overheads are too high for fine-grained threading on many of the loops in our codes
independent of RAJA. Clearly, vendors must address this. In a large multi-physics
application, thousands of threaded regions will be required per time step to expose sufficient
parallelism and run efficiently on future architectures.

Lastly, we performed similar comparisons on the LLNL TLCC2 architecture (Intel ES-2670
16 core “Sandy Bridge” node). In this case, we used the Intel C++ compiler, version

Figure 7. Strong scaling speeup of Ares-RAJA vs. Ares on BG/Q with xlc and gnu compilers.
Ares is run with M MPI tasks. Ares-RAJA is run with M MPI tasks and T OpenMP threads per task
(M x T = 64 in each case). Both codes decompose the problem into M equal-sized domains.

 16

14.0.174. As in the BG/Q experiments, M is the number of MPI tasks and T is the number of
OpenMP threads per task. Again, the Ares version uses M x T domains, assigning T domains
to each MPI rank (one domain per thread). The Ares-RAJA version uses M domains, with T
threads applied per inner loop. Fine-grained OpenMP threading performs considerably worse
on TLCC2 than on BG/Q and this was clear in our results, which are shown in Figure 9. The
left plot show the scaling of each version of the code compared to a serial version (no MPI,

Figure 9. Strong scaling speedup of Ares-RAJA vs. Ares on BG/Q with xlc (LOMP runtime
and no-LOMP) and gnu compilers. Both versions of the code are run with M MPI tasks and T
OpenMP threads per task (M x T = 64). Ares uses 64 domains in each case, and uses
coarse-grained threading on domain loops (27 per timestep). Ares-RAJA uses M domains
and T fine-grained threads on inner loops (372 per timestep).

Figure 8. Fine-grained OpenMP inner loop threading (Ares-RAJA) shows considerable scaling
and overhead issues when compared to coarse-grained domain loop threading (Ares) on
TLCC2.

 17

no OpenMP). The right plot shows overall runtime of the Ares-RAJA version compared to
the Ares version. Note that RAJA incurs serial overhead of 10-16% (points with 1 thread per
MPI task). Relative performance degrades significantly as threads are added to each MPI
task. After some analysis of compiler output, we have identified this as an issue involving the
combination C++ template/lambda constructs and OpenMP directives, which we are working
with the Intel compiler team to fix. Again, we elaborate more on this issue in the Appendix.

Kull
Kull is an unstructured mesh code that supports arbitrary polyhedral elements. It makes
heavy use of C++ templates and all loops use custom iterators over entities on a mesh.
Compared to Ares, a smaller number of loops in Kull were converted to use RAJA.
However, enough loops in the Lagrange hydrodynamics portion of Kull were transformed to
assess how well RAJA works with Kull iterators.

Kull-RAJA integration

Kull developers converted 129 loops to use RAJA-style traversals. Due to the custom nature
of Kull iterator syntax, Kull-specific iteration templates were required for basic loop
conversion. Also, no RAJA indexset concepts were used in the initial Kull exploration, as
this would require non-trivial modification to Kull iterator and Field abstractions. Since C++
lambda functions are able to capture the bodies of Kull loops unchanged, RAJA insertion
was straightforward, requiring 2-3 lines of code change per loop. To illustrate, a typical Kull
loop over zones in a material region looks like the following:

Field< Region, Zone, Scalar >& matRho = ...;
Field< Region, Zone, Scalar >& oldMatRho = ...;
// ...
for (typename Region::ZoneIterator zi = region.zoneBegin();
 zi != region.zoneEnd(); ++zi) {
 matRho[*zi] = oldMatRho[*zi] * oldZoneVolume[*zi] /
 newZoneVolume[*zi];
 // etc ...
}

The same loop converted to RAJA-style is:
Field< Region, Zone, Scalar >& matRho = ...;
Field< Region, Zone, Scalar >& oldMatRho = ...;
// ...
forall< exec_policy >(region.zoneBegin(), region.zoneEnd(),
 [&] (typename Region::ZoneIterator zi) {
 matRho[*zi] = oldMatRho[*zi] * oldZoneVolume[*zi] /
 newZoneVolume[*zi];
 // etc ...
});

As in Ares, only the loop header is changed. It is important to note that, in general, OpenMP
will not parallelize a loop that contains the common C++ idiomatic use of an iterator operator
“!=” in a loop conditional (as in the original Kull code example above). To work-around this,
RAJA-style iteration templates for Kull use an appropriate OpenMP canonical loop by using
“<” instead.

Kull also uses multiple iteration variables for certain loop iteration patterns. OpenMP will
not parallelize a loop with more than one iteration variable. For example, Kull “part loops”
typically use two iteration variables, an integer for the part ID and an iterator over a part list.

 18

For example,
int partID = 0;
// ...
for (typename PartList<MeshType>::ConstIterator pi =
 partList.begin(); pi < partList.end(); ++pi, ++partID)
{
 Field< Region, Zone, Scalar >& eEDot = DEeDt[partID];
 // etc ...
}

RAJA can also work around this issue to enable parallelism in such a loop without major
code restructuring. A possible RAJA-style iteration template for this is:

template< typename ITER_T, typename LOOP_BODY >
void forall_part(omp_parallel_for,
 const ITER_T& begin, const ITER_T& end,
 LOOP_BODY loop_body) {
 #pragma omp parallel
 {
 int num_threads = omp_get_num_threads();
 int partID = omp_get_thread_num();

 #pragma omp for schedule(static, 1);
 for (ITER_T i = begin; i < end; ++i) {
 loop_body(i , partID);
 partID += num_threads;
 }
 }
}

While this does enable parallelism over a part loop in Kull, we found that very little was
gained by doing so. This is due to either a small number of parts on any given domain, or a
significant imbalance in the number of zones in different parts, at least in the problems that

Figure 10. Speedup with 4 OpenMP threads vs. serial across a range of loops executed in Kull
for a Taylor-Green vort4ex problem.

 19

were explored. We found that parallelizing inner loops over zones within a part yielded the
most performance benefit.

Kull-RAJA performance assessment

The study of thread scaling performance in Kull was very limited, but showed notable
promise for the viability of fine-grained loop threading in that code. Figure 10 shows
speedups achieved with four OpenMP threads on BG/Q for individual loops across a range of
loops executed during the run of a Taylor-Green vortex problem. Future effort profiling a
variety of problems will help choose loops with the highest potential impact when
parallelized. Also, execution policy alternatives should be explored, as well as in exercising
other computer platforms, such as TLCC2, and higher OpenMP thread counts.

LULESH
LULESH is a proxy-app derived from the Lagrange hydrodynamics algorithm in ALE3D.
ALE3D and LULESH are unstructured mesh codes. In contrast to Kull’s general polyhedral
element capability, ALE3D/LULESH primarily employs hexahedral elements with arbitrary
connectivity. ALE3D/LULESH has a data access abstraction layer via simple use of C++
features. Thus, LULESH provides an important use case for RAJA exploration that is distinct
from Ares and Kull. Due to its relatively small size and simplicity, LULESH also allowed us
to explore more advanced RAJA features such as: data reordering and loop iteration tiling,
lock-free segment scheduling, and fault tolerance.

LULESH-RAJA integration

LULESH v1.0 was the first application we explored with RAJA, beyond a preliminary
investigation of RAJA concepts in the LCALS benchmark. Our goal was to explore a
complete physics kernel, without tackling a full multiphysics code. We started with a highly
optimized serial implementation of LULESH using only C language features (i.e., we
removed the C++ data access layer). This was our “baseline” version, which provided a
reference point to evaluate the effect (performance and code disruption) of inserting RAJA
into a code.

Starting with the baseline LULESH, we performed several modifications to insert RAJA
constructs. We replaced the single indirection array in the code for material indices with
three RAJA indexset objects for element, node, and material indices, and replaced C-
language for-statements with calls to RAJA iteration template methods. This required us to
modify numerous function parameters, replacing indirection array pointers and length
arguments with indexset object references. Finally, we removed five arrays used to gather
domain fields for material operations and associated copy logic. RAJA indexsets allow such
data reordering to be done “in-place”. The overall conversion was straightforward and
required modifications to roughly 4% of the total source code lines (LULESH is about 3000
lines total). Similar to Ares and Kull, the major change involved replacing for-loop headers
with RAJA-style iteration method calls. Once RAJA was in place, we added about 150 lines
of initialization-only code to explore different data tiling options. No numerical operations in
the code were changed to enable this capability.

Error! Reference source not found. shows a serial runtime comparison for the variants of
RAJA we studied. The results shown were generated on an Intel TLCC2 node and the code
was built with the Intel compiler at a level of optimization comparable to what is used at

 20

LLNL for production codes. The baseline variant (with the data access layer removed) runs 5
seconds faster than stock LULESH v1.0. The three RAJA variants use different indexsets.
The “canonical” variant uses the same data layout as the baseline, represented as an index set
with a single range segment. For the “order-tiled” variant, the mesh elements are permuted
into stride-1 tile segments. This is encoded in an indexset as a collection of range segments.
Finally, for the “index-tiled” variant, elements are left in canonical ordering with spatial tiles
implemented in an index set as a collection of list segments. Run times for the first two
RAJA variants are the same and slightly faster than the baseline. Recall that the RAJA
versions have reduced memory movement resulting from the removal of “gather” operations
mentioned above. The “index-tiled” variant is a bit slower since all data array accesses use
indirection; this is comparable to the stock v1.0 version, in which indirection is used in
nearly all loops. Lastly, we generated a “Raw C” version of the code, in which all indirection
was removed. We believe this variant yields a lower bound on overall runtime. It is worth
noting that the number of page faults drops significantly in the RAJA and “Raw C” variants,
compared to the stock v1.0 and baseline variants. This is related to the removal of the
“gather” arrays. The primary take-away message from this study is that the RAJA layer does
not degrade serial performance. The transformation of LULESH to use RAJA also revealed
several notable portability and maintainability benefits:

1. The kind of parallelism used for each loop is documented clearly by the template
parameter associated with each loop iteration method call.

2. The named index set passed to each loop iteration method makes clear to which
entity-set the loop is applied (e.g. node, element, or material subset). The original
loop “begin” and “end” integer values were less clear.

3. Tiling support was isolated to index set creation, with no algorithm modifications.

4. There was no change to the core algorithms in inner-loops.

LULESH-RAJA performance assessment

We also compared the baseline version of LULESH v1.0 with OpenMP directives applied
manually to each loop to a few different LULESH-RAJA variants to assess multithreading
performance on BG/Q and TLCC2 platforms. To achieve loop-level multithreading in
LULESH-RAJA, we simply altered one line of code to change the loop execution policy.
The left plot in Figure 11 shows OpenMP thread speedup on BG/Q of LULESH-RAJA
compiled with GNU (which supports C++ lambda functions) over LULESH compiled with
the IBM xlc and GNU compilers. The right plot in the figure compares runtime relative to
LULESH v1.0 compiled with xlc. The blue curve indicates that LULESH is only ~2% slower

LULESH code version Serial wall time (sec) Page faults
Stock v1.0 126 16.9M
Baseline 121 16.9M
RAJA “canonical” 118 12.7M
RAJA “order-tiled” 118 12.7M
RAJA “index-tiled” 127 12.7M
Raw C – no indirection 114 12.7M

Table 1. Summary of serial performance of LULESH default problem configuration for different
variants of the code. All runs were done on a TLCC2 node (Intel ES-2670) with the Intel compiler.

 21

when compiled with GNU than it is with xlc (until 32 threads, when the curve bumps up
slightly). From this, we conclude that the GNU compiler is a reasonable alternative to xlc for
the purposes of our study. The green and blue bars in the left plot show similar scaling with
the two different compilers for LULESH. LULESH-RAJA scales much better (red bars),
especially at higher thread counts. Runtime is also shorter at 16 or more threads (~70% of
LULESH at 64 threads), as shown in the red curve in the right plot. However, LULESH-
RAJA is noticeably slower at smaller thread counts; e.g., ~15% slower at one thread. This is
a similar overhead issue we pointed out when describing Ares-RAJA performance earlier.
We will discuss this in more detail in the Appendix.

We ran similar experiments on TLCC2 using different threading models in LULESH-RAJA
(OpenMP, CilkPlus, and lock-free OpenMP). Figure 12 shows the results. Thread speedup
(left plot) shows that each LULESH-RAJA variant strong scales better than LULESH with
OpenMP. Comparing runtimes (right plot) reveals an overhead issue with LULESH-RAJA
and OpenMP similar to BG/Q. As on BG/Q, the slowdown is ~15% for one thread, and
again, runtime is ~70% of LULESH at the maximum node thread count (16 threads in this
case). CilkPlus scaling is not as good as OpenMP, but CilkPlus does not exhibit the overhead
issue at small thread counts. Finally, lock-free thread scheduling version of LULESH-RAJA
is considerably faster at all thread counts than the other parallel variants presented here. At
16 threads, it runs nearly twice as fast as LULESH with OpenMP directives applied directly
on loops. Also, note that LULESH-RAJA with lock-free scheduling does not require extra
data allocation and copying that is needed in the other variants to enable thread parallelism
on all loops in the code. This efficiency overcomes the overhead at small thread counts.

Lastly, we have also run preliminary experiments simulating transient fault injection to
evaluate performance of the RAJA-based fault recovery mechanism described earlier in this
report. We found the fault detection and recovery mechanism to have very low overhead; for
example, a sample serial run with 47 randomly injected faults executes within ~0.5% of a run
with no injected faults. The code runs in just over two minutes, so this is an extreme fault
frequency. In the current implementation, an entire loop must complete before a fault is
identified and the loop is re-run. Additional operating system and language support could
enable the recovery process to begin immediately after the fault occurs. We did observe
faults occurring outside of loop executions; such faults require another mechanism to be
caught and handled properly. As we noted earlier, the RAJA-based fault recovery mechanism

Figure 11. LULESH-RAJA shows good strong scaling vs. LULESH on BG/Q (left). However,
runtime comparison (right) reveals compiler optimization issues, observed as overhead at low
thread counts.

 22

requires each loop to be idempotent. This can increase code runtime, due to increased
memory allocation and data copy operations, which depends on how many loops must be
changed to make them idempotent. Changing LULESH to make all loops idempotent
increase total runtime 2-5% on TLCC2 depending on the number of OpenMP threads we
used. We view these results as positive and demonstrate the RAJA can enable some degree
of portable, transient fault tolerance to a code in a manner that is transparent to the

application and with acceptable overhead.

Conclusions and future work
In this report, we have described some key challenges facing multiphysics codes as they are
transitioned from an MPI-centric programming model to a model that adds massive fine-
grained multithreading. We introduced the main concepts in the RAJA portability model, and
discussed initial explorations involving portions of three ASC multiphysics codes at LLNL.
We discussed both qualitative and quantitative advantages of RAJA to give the reader a
broad view of how RAJA might impact their own multiphysics application.

Given the diversity and complexity of emerging architectures, RAJA can potentially enable a
high level of optimization and performance, while encapsulating architecture-specific
constructs in a large application. Loop traversal optimizations are instantiated at compile-
time, while indexsets defining the iteration space are generated at runtime. Indexsets can help
reduce data motion, place arrays in memory to reduce cache conflicts, and align arrays for
better hardware efficiency. Much of the memory movement in vector-related gather/scatter
operations can also be avoided with judicious use of RAJA, while still achieving many of the
compiler optimizations that gather/scatter provides.

Multithreading programming models such as OpenMP and Cilk are currently supported. We
expect that switching between CPU and GPU implementations can be done with RAJA
without disrupting application code. However, concrete verification of this claim requires
additional compiler support for OpenMP 4 and/or CUDA that is in development. RAJA
should be able to encapsulate the essential features of the parallel programming models being
considered for ASC code development at LLNL in the foreseeable future. Application
scientists should be able to write source code cleanly and achieve a high level of portability
without being required to possess detailed knowledge of non-portable code annotations and

Figure 12. LULESH-RAJA with OpenMP, CilkPlus, and OpenMP lock-free threading models scales
better than LULESH with OpenMP. Runtime comparison (right) shows a similar overhead issue
with LULESH-RAJA and OpenMP at small thread counts to BG/Q (Figure 11). Lock-free scheduling
overcomes the issue to run faster than LULESH at all thread counts.

 23

constructs. Execution policy types passed to traversal methods are a self-documenting way to
describe parallelism in each loop, while allowing the behavior of an equivalence class of
similarly structured loops to be controlled from a single code site (e.g., a header file). At
present, many of the drawbacks we have seen with RAJA are due to missing features in
either compiler or run-time layers – drawbacks that exist with or without RAJA.

Recall the questions we set out to answer about RAJA that we stated in the introduction of
this report. With respect to the previously stated concerns, we can conclude the following at
this point:

• Programmability
We have learned that it is easy to insert RAJA into legacy codes at LLNL. We have
shown that RAJA supports distinct loop patterns in major ASC codes at LLNL by
integrating it directly in a subset of Ares, Kull, and ALE3D (via LULESH). Basic
insertion of the model is straightforward and non-disruptive, requiring code changes
that are small and simple. Code transformations can be tedious, and we are exploring
ways to guide and automate the process with the ROSE compiler team at LLNL.
Application developers, who did the bulk of RAJA integration described in this
report, found that the approach provides a variety of software engineering benefits
that potentially make code easier to read, write, and maintain.

• Portability
Our exploration of RAJA portability was limited to the BG/Q and TLCC2 platforms
and multi-core threading models as these are the primary targets for inner loop
threading in our codes, currently. We have shown that it is straightforward to control
a variety of aspects of fine-grained parallelism once RAJA is in place. RAJA allows
loop-level execution control to be centralized in a large code base, which enables
manageable platform portability.

Indexsets and iteration templates allow abstraction of many important concepts as
we move toward future advanced architectures. These include, but are not limited to:

o SIMD instruction-level parallelism
o Loop-level multithreading and GPU device dispatch
o Exploration of data permutations to increase locality/cache reuse and/or

reduce synchronization dependencies
o Asynchronous task-level parallelism and lock-free loop ordering
o Fine-grained loop execution rollback for transient fault recovery

A code can be parameterized to employ different execution mechanisms at compile-
time to run efficiently on different machines by placing loop iteration templates and
execution policies in header files. RAJA also provides a bridge between code-
specific and programming model constraints, and simplifies the development of
“work-arounds” to improve compiler/runtime-system performance.

• Performance
Introduction of fine-grained loop threading via RAJA has been shown to yield
performance benefits over the current MPI-only parallelism model employed in
LLNL production codes. For example, introducing 4-way OpenMP threading on
inner loops in Ares led to a 50% overall speedup over the typical 1 MPI task/core run
strategy on BG/Q. We studied the OpenMP threading performance impact in Kull on
a loop-by-loop basis and observed that many loops showed speedup; for example, 2x
to more than 3x speedup using 4 cores on BG/Q. While similar performance gains

 24

could be obtained from applying OpenMP directives directly in these codes, by using
a model like RAJA, we hope to ensure that we have a platform for further
improvements and/or programming model options without unworkable application
code disruption.

On TLCC2, on the other hand, the introduction of inner loop threading showed no
real advantage or even performance degradation, except for LULESH, which is
much more highly-tuned for fine-grained parallelization than production application
codes. This is not unexpected, because fine-grained threading on standard multi-core
CPUs, with out-of-order instructions, does not show significant benefit in most
cases. More importantly, current OpenMP runtime overheads are too high to make
fine-grained inner loop threading viable. As the overheads are reduced in the future,
we hope that such fine-grained loop threading will become advantageous.

• Long-term viability
We believe that RAJA has the potential to enable new and legacy codes to be
portable across the range of hardware node architectures we anticipate in the
foreseeable future. However, the variety of alternatives vendors are exploring leaves
us with some uncertainty and concerns about RAJA. Support for the C++11 standard
(lambda functions, in particular) is not ubiquitous or robust at this point. We are
working with compiler vendors to resolve key issues (see Appendix), and we believe
that optimization and performance will improve as compiler support matures. Other
efforts such as Kokkos, Thrust, etc. will also benefit from improved lambda support.
Also, it is unclear at this point how well RAJA will work with other programming
models that we have not tried yet, and those, like the OpenMP 4 device model, that
are being developed. Thus far, we have explored only a few of the more common
options applicable to the current main platforms at LLNL. Our goal has been to “do
no harm” to code maintainability and performance while achieving a modest level of
portability. A compelling demonstration of performance benefits in production codes
has not been achieved yet. Independent of RAJA, OpenMP overheads are still too
high for fine-grained multithreading in production codes without significant code
and algorithm restructuring. Furthermore, we have observed that when C++
templates and lambda functions are combined with OpenMP directives, compilers
tend to shut down many optimizations that are accessed when OpenMP pragmas are
placed directly on traditional for-loops. We describe our findings in the Appendix
and are working with compiler vendors to address the problems.

In the future, we will explore RAJA in new programming model (OpenMP 4, CUDA, etc.)
and hardware (GPUs, Intel MIC) environments. We will also broaden our explorations of
LLNL codes to include additional physics algorithms and problems of interest. Lessons
learned from applying RAJA to production codes so far is driving future development and
code transformations that will be beneficial for future architectures, independent of RAJA.

We are continuing to explore features of RAJA that could enable a physics application
coding style that looks increasingly like serial code, while exposing more parallelism through
encapsulation of loop execution details. We are exploring ways to expand memory-layout
and placement choices that are not possible without a model like RAJA. Our overarching
goal is to allow multiphysics code developers to easily tailor implementation choices to
different architectures, compilers, and programming models with minimal code disruption as
these concerns are encapsulated completely within the RAJA layer.

 25

Acknowledgements
We thank Esteban Pauli for doing most of the RAJA integration and performance
experiments in Ares, and Koushik Ghosh, Aaron Black, et al. for initial explorations of
RAJA integration in Kull.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-TR-661403.

 26

Appendix
From the start of our RAJA development, we observed numerous unexpected performance
issues. After considerable investigation, we identified specific compiler deficiencies as root
causes and discovered “work-arounds” that resolved some issues. Then, we engaged several
vendor compiler teams and made concrete recommendations to fix the problems and
provided evidence of their feasibility. The issues are described in a LLNL technical report
[10]. We also created the LCALS: Livermore Compiler Analysis Loop Suite benchmark to
study and monitor the issues [11]. This benchmark is a suite of loops (“Livermore Loops”
modernized and expanded, essentially) implemented in C++ that uses various software
constructs, including RAJA. The suite has formed the basis for much of our dialogue with
compiler vendors. It is used to:

• Generate simple test cases for vendors showing specific optimization and language
support issues

• Try solution suggested and provided by vendors and report findings
• Introduce and motivate RAJA-like encapsulation concepts not previously on

vendors’ “RADAR”
• Track version-to-version compiler performance

The performance issues we have observed are due to deficiencies in compilers, runtimes, and
programming language/model standards. For example, the C++11 standard is relatively new,
especially lambda functions that we view as essential for RAJA adoption in production
codes. Ideally, RAJA-style traversal templates should be inlined and optimized at each loop

Figure 13. Working with the Intel compiler team, we have resolved SIMD optimization issues involving
C++ lambda variable-capture and the Intel compiler. This speedup comparison plot shows that the
RAJA-style loops perform as well as C-style loops with restrict applied to data pointers via a typedef
meachanism with the v14 Intel compiler (red and purple bars, respectively). With the v13 version of
the compiler, the restrict semantics were not enforced and so RAJA-style performance was the same
as C-style loops without restrict applied (green and blue bars, respectively).

 27

site where they are used. A key issue we identified was that compiler hints we provided on
data pointers were not being propagated through the lambda variable-capture mechanism in
many cases. Effectively this prevented most SIMD vectorization optimizations. We worked
this issue with the Intel compiler team and it was resolved over the course of a couple of
recent major compiler releases. Figure 13 illustrates this for a subset of LCALS. We
believe that other issues like this can be resolved if adequate attention is given to them. We
are optimistic this will happen as lambda use expands and matures.

Another key deficiency we have observed is that compilers do not optimize aggressively
when OpenMP directives are used. For example, we have shown that SIMD is often
disabled. Also, we see little evidence that compilers optimize across adjacent parallel
regions. This has potentially grave implications for fine-grained use of “#pragma omp
parallel for” in HPC codes. The most troubling issue we have encountered is that
when OpenMP is combined with C++ language features, such as templates, many
optimizations are not applied. That is, optimizations that are applied when OpenMP
directives are used on C-style for-loops are absent when a RAJA-style abstraction layer is
used. Moreover, the observed performance differences can be huge and vary by loop and
compiler. Figure 14 compares runtimes on BG/Q for RAJA-style loops using C++ lambda
functions to represent the loop bodies and the GNU compiler (left), and RAJA-style loops
using C++ functors to represent the loop bodies and the IBM xlc compiler (right). The
baselines for comparison in either case are the same loop kernels with OpenMP directives
placed on C-style (“Raw”) for-loops for the given compiler. Note that relative performance
difference in each case is roughly the same across the range of threads shown; i.e., each
curve is effectively flat. In the left plot (GNU compiler) the runtime difference among the
loops only spans 0 –20 %. However, in the right plot, runtime differences are as large as 15 –
20 times for some loops. It is interesting to note that order of loop kernels, with respect to
which differs least/most, is completely different between the two plots. It is also interesting
to note that if one looks at thread scaling for this study, it appears that all loops scale well
achieving speedup factors of 12 – 16 times at 16 threads. Similar behavior is observed on

Figure 14. Loop runtimes can be vastly different when OpenMP directives are used on "Raw" C-style
for-loops vs. applied within RAJA-style traversal templates. These plots compare relative runtime for a
subset of LCALS, RAJA-style vs. C-style, from 1 to 16 threads on BG/Q. In the left plot, RAJA loops
use C++ lambda functions and the code is built with the GNU compiler. Loop runtime differences vary
~ 0 – 20%. On the right, RAJA loops use C++ functors and the code is built with the IBM xlc compiler.
Loop runtime differences are 15 – 20 X in some cases.

 28

TLCC2 platforms with the Intel compiler. We are currently working with the Intel team to
resolve the issue.

Small additions and clarifications in the C++ and OpenMP standards could have a large,
positive performance impact on HPC codes by making it possible to develop techniques, like
RAJA, for portability, by way of complete encapsulation of platform-specific concerns,
without adversely affecting performance. Other efforts we have mentioned in this report are
exploring C++ abstractions to encapsulate hardware-specific concerns. Resolving the issues
would benefit a broad community.

 29

References

1. Chapman, B., G. Jost, and R. Van Der Pas, “Using OpenMP: Portable Shared Memory

Parallel Programming”, MIT Press, Scientific and Engineering Computation Series,
Cambridge, MA (2008).

2. OpenMP Application Program Interface, version 4.0, OpenMP Architecture Review
Board (2013).

3. Intel Cilk Plus website, www.cilkplus.org.

4. CUDA C Programming Guide,
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf (2014).

5. Thrust website, https://developer.nvidia.com/thrust.

6. Bolt website, http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-libraries/bolt-
c-template-library/.

7. Edwards, H. C., and D. Sunderland, “Kokkos Array Performance-portable Manycore
Programming Model”, in Proceedings of the 2012 International Workshop on
Programming Models and Applications for Multicores and Manycores (PMAM ’12),
ACM, New York, NY, pp. 1—10 (2012).

8. C++ language reference website, http://en.cppreference.com/w/cpp/language/lambda.

9. ROSE Compiler Project website: www.rosecompiler.org.

10. Hornung, Richard D., and Jeffrey A. Keasler, “A Case for Improved C++ Support to
Enable Performance Portability in Large Physics Simulation Codes”, LLNL-TR-653681
(2013). Available online: https://codesign.llnl.gov/codesign-papers-presentations.php.

11. Hornung, Richard D., LCALS: Livermore Compiler Analysis Loop Suite. Available at
https://codesign.llnl.gov/LCALS.php.

