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Abstract 

As computer architectures become increasingly complex and diverse, application developers 
face difficult challenges to achieve high performance while maintaining code portability. The 
problem is especially acute for large ASC multiphysics codes. Efficient parallel execution 
often requires tuning algorithms and data access to match processor and memory system 
constraints. Changing compiler directives and parallel programming model constructs on 
thousands of individual loops in a large code is disruptive and unwieldy. RAJA is a 
programming approach that we have been developing at Lawrence Livermore National 
Laboratory to encapsulate platform-specific concerns, related to both hardware and parallel 
programming models. The RAJA abstraction layer simplifies porting C/C++ codes to various 
programming models and architectures by reducing effort and developer disruption. In this 
report, we motivate and describe key aspects of RAJA. We also present a preliminary 
assessment of RAJA based on exploration in three ASC hydrodynamics codes at LLNL, 
which was one part of a three-part ASC Level 2 milestone, completed in September 2014.  
 
Introduction 
Over the past couple of decades, HPC application performance has improved dramatically 
with advances in computer architectures and CPU clock rates. During this period, hardware 
platforms have remained relatively homogeneous and consistent. Thus, application scientists 
have been able to focus on algorithm development and coarse-grained parallelism (mostly 
MPI) with little concern for fine-grained parallelism and a detailed understanding of 
hardware variations across platforms. The performance and portability challenges now facing 
ASC codes are rooted in recent, disruptive changes to HPC node architectures. Exploiting the 
full range of hardware capabilities forces developers to express ample fine-grained 
parallelism in varied forms, such as SMT (Simultaneous Multithreading), SIMT (Single 
Instruction, Multiple Threads), and SIMD (Single Instruction, Multiple Data). Also, careful 
management of data locality and memory access is becoming paramount with the emergence 
of deeper memory and cache hierarchies with different sizes and access timing rules.  
 
To achieve high performance portably, ASC codes need to adopt algorithms and 
programming styles that can express various forms of parallelism, that do not overburden 
code maintainability, and which can be explored incrementally. RAJA is designed to 
integrate with legacy codes simply and to provide a model for development of new codes 
that are portable from inception. Basic insertion of RAJA in a code enables “zeroth-order” 
architecture portability. Once in place, a wide range of architecture-specific tuning 
optimizations can be pursued without substantial application code disruption. 
 
RAJA is based on standard C++ language features, which works well with LLNL ASC codes 
most of which use C/C++ as their main programming language. The fundamental conceptual 
abstraction in RAJA is an inner loop, where the overwhelming majority of computational 
work in most physics codes occurs. RAJA is lightweight, customizable, and based on 
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concepts used heavily in LLNL codes. It can be added incrementally and used selectively, 
which facilitates exploration of implementation alternatives. Finally, RAJA can encapsulate 
different programming models so a code need not be bound to a particular technology. 
 
The main goal of the RAJA portion of the ASC Level 2 milestone was to assess whether 
RAJA is a viable approach for architecture portability in LLNL ASC codes. To perform this 
assessment, we considered a variety of questions about RAJA related to several concerns: 
 

• Performance 
o Does RAJA benefit or hinder performance? By how much? 
o When does it work well and when does it not? 

• Portability 
o Does RAJA enable portability across current architectures? 
o Does it simplify access to various forms of parallelism? 

• Programmability 
o How easy is it to adapt a code to the RAJA model? 
o Does it provide the features we need? 
o Does it enhance or hinder code flexibility and maintenance? 

• Long-term viability 
o What are the benefits and limitations of adopting the RAJA approach, or a 

similar model? 
o What are the expectations to resolve issues that are not under our direct 

control? 
o What are the prospects for RAJA to adapt to future architectures and 

programming models? 
o Are there any showstoppers? 

 

Background and Motivation 
In this section, we provide background and motivation for RAJA. We begin by describing 
central, common, concepts employed in mesh-based numerical operations in LLNL ASC 
physics codes.  Then, we discuss challenges related to exposing high performance fine-
grained parallelism in physics algorithms. 
 

Data and algorithm organization in physics codes 
A typical ASC code has clearly-defined mesh and data abstractions. Generally, a problem is 
decomposed and distributed across the nodes on a partition of a parallel HPC platform. Each 
compute node is considered a distributed memory “locale” to which some number of MPI 
processes is assigned. A data structure, often called a “domain”, owns a description of part of 
the mesh and the field data for that mesh part. Exactly one MPI process owns each domain 
and each process may own multiple domains. The basic elements of a domain structure are 
illustrated in Figure 1. Data on a domain is disjoint from data on other domains; that is a 
domain is a “data locality context”, representing the finest level of data partitioning in a code 
typically. Each mesh field is associated with a fixed centering on the mesh, such as element 
or nodal, and the data for each field is held in a distinct array. Field arrays are 1-dimensional 
regardless of the problem dimension. Also, there usually exist other metadata on a domain, 
for example to map materials to elements, as well as non-mesh data, such as tables of 
physical data (e.g., material properties, equation of state, etc.) shared by domains on a node. 
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The mesh topology defines the organization of elements and nodes on the mesh. Generally, 
there are two fundamental mesh configurations, structured and unstructured. A structured 
mesh uses an N-dimensional Cartesian index space, which defines uniform node connectivity 
and a single element geometry. Structured mesh algorithms often use nested loops to traverse 
logically rectangular regions on a mesh. Such operations rely on zero-overhead implicit 
relationships between mesh entities, and allow a high level of compile-time optimization due 
to stride-1 data access patterns. An unstructured mesh is composed of arbitrarily connected 
node points that define the elements they surround; thus, an unstructured mesh admits 
arbitrary element geometries. Due to the irregular connectivity, relationships between 
unstructured mesh entities are defined using lists of array indices. For example, eight nodes 
define each element on a three-dimensional hexahedral mesh, so eight nodal-array indices 
are stored to access nodal field data for each element. Use of indirection arrays to manage 
relationships among mesh entities requires additional memory traffic, involves a much higher 
ratio of integer to floating point operations, and precludes many compiler optimizations. 
Regardless of the underlying mesh topology, most ASC physics codes employ algorithms 
involving regular, stride-1 memory accesses as well as those requiring indirection arrays. So, 
efficient implementations of both types of operations are important to every code.  
 
Mesh data is often organized into a hierarchy of contexts, typically, where a context 
represents a relationship between the mesh and data on the mesh. There will be multiple 
topological contexts, one for node-centered quantities, one for element-centered quantities, 
face-centered quantities, etc. An element context will have child contexts that enumerate the 
elements associated with each material region. Often, material region contexts are further 
partitioned into clean elements (single material) and “mixed” elements (containing multiple 

 
 

Figure 1. Basic organization of a typical domain structure in a mesh-based physics code. 
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materials). When contexts are nested, local indices are typically used within a child context 
to index into arrays associated with a parent context. 
 
The context hierarchy in an ASC code is designed to map the conceptual organization of 
physics operations to the underlying data structures. Most physics operations are encoded in 
loops; a large code will have tens of thousands of loops, typically. However, within a given 
code, there are relative few loop patterns. Common loop patterns involve: 

• Simple traversal within a context (e.g., loop over all elements, nodes, etc.) 
• “Parent-child” interactions within a topological context (e.g., loop over all elements 

containing material “A” and update values for some field defined over all elements) 
• Relations between fields in different topological contexts (e.g., difference stencils 

involving node- and element-centered quantities) 
Other operations may involve more elaborate data dependencies, but are less common. 
 

Fine-grained parallelism challenges 
Presently, numerical kernels in most LLNL ASC codes are usually serial and operate on data 
associated with an entire domain. However, efficient parallelism is tied closely to memory-
locality. One way to improve locality in a multithreaded environment is to use many small 
domains, allowing more threads to simultaneously share data caches without contention. 
Unfortunately, domain overhead measured in terms of additional memory needed for non-
shared data, and domain management operations that are hard to amortize away, can lead to 
space or performance problems on current multicore systems. Thus, an alternative to 
traditional domain partitioning will be required to exploit massive on-processor parallelism. 
 
A better option is to employ fine-grained data “chunking” within a domain where a chunk of 
data can be assigned to a work thread or passed to an algorithm kernel. Proper chunk size 
selection can balance both instruction and data cache usage so that neither cache becomes 
overly strained. For example, if an algorithm works on a single element at a time (typical for 
a complex material model), the amount of code executed may not fit into an instruction 
cache. So the algorithm is always streamed from main memory (as though there is no 
instruction cache), while the data may be perfectly cached, with room to spare. On the other 
hand, if the chunk size is larger than will fit into the highest level of processor data cache, 
then the data is always streamed from main memory (as though there is no data cache). 
 
Careful ordering of array accesses is also important to improve cache reuse, which is critical 
for good performance; e.g., ensuring that all entries in a cache line are used before the cache 
line must be reloaded. In a multi-material hydrodynamics code, a material model may likely 
be the primary work unit on a domain. Ordering elements so that data for elements with the 
same material are adjacent in memory can provide an optimal cache mapping. When 
materials move between mesh elements due to advection, it may be wise to periodically 
permute mesh data to retain memory adjacency. Optimal cache reuse will likely occur when 
data layout mirrors the needs of dominant numerical operations. However, which loops 
dominate runtime for a code is often highly problem-dependent. Flexibility to permute data 
could save an application from using poor memory access patterns for a given architecture. 
Reordering can also enable "lock-free" computations in a multithreaded environment. When 
using traditional programming language constructs, such as C-style for-loops, all execution 
and data access details are fixed in the application source code. Without some sort of 
abstraction layer, such as RAJA, altering implementation details is difficult and may require 
writing and maintaining multiple versions of individual loops. 
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Programming model concerns 
There has been a clear trend in HPC toward node-level parallel programming models that 
extend programming languages, like C and C++, via compiler directives and library routines. 
OpenMP [1, 2], CilkPlus [3], CUDA [4], and other models can support multithreading and/or 
processor heterogeneity where CPUs and accelerators are combined. These models are 
standardized and supported well by compiler vendors making them viable for ASC 
production codes. However, no existing programming model is a clear “best choice” for all 
architecture considerations. Moreover, each model has unique programming characteristics 
and models are not easily interchangeable. Yet, interchangeability is necessary to manage 
performance portability. RAJA enables the use of different programming models in an 
application without exposing their idiosyncrasies to application scientists and without 
requiring multiple versions of computational kernels to be coded to different models. 
 

RAJA Overview 
The RAJA model addresses many concerns discussed in the previous section by providing a 
means to encapsulate loop implementation details, such as data access and execution 
patterns. RAJA is designed to keep the look and feel of serial code at the application level, 
which greatly simplifies maintenance and reasoning about algorithms and implementation 
choices. RAJA shares concepts with other C++ abstraction approaches, such as Thrust [5], 
Bolt [6], Kokkos [7], etc. However, RAJA supports constructs used heavily in LLNL ASC 
codes that are absent in other models. 
 
RAJA has two main goals. The first is to insulate application developers from non-portable 
compiler and platform-specific directives, and parallel execution and programming model 
implementation details. The second is to simplify tuning of data layout and access patterns 
for diverse memory hierarchies. In this section, we describe the basic concepts in RAJA. 
 

Fundamental Concept: Separate loop body from loop traversal 
To encapsulate architecture-specific concerns and insulate them from application code, 
RAJA decouples a loop body from its traversal. Consider a "daxpy" operation implemented 
using a traditional C-style for-loop: 
 

double* x; double* y; 
double a; 
// ... 
for ( int i = begin; i < end; ++i ) { 
   y[i] += a * x[i]; 
} 

 
The corresponding RAJA form is: 
 

Real_ptr x; Real_ptr y; 
Real_type a; 
// ... 
forall< exec_policy >(IndexSet, [&] (Index_type i) { 
   y[i] += a * x[i]; 
} ); 
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There are several encapsulation aspects in the RAJA form shown here: 
 

• Data type encapsulation.  RAJA provides data and pointer types, seen here as 
“Real_type” and “Real_ptr”, to hide non-portable compiler directives and data 
attributes (such as alignment). These additional compiler-specific data decorations 
often enhance a compiler’s ability to optimize so that higher performance may be 
extracted from the underlying hardware. These types are not required to use RAJA, 
but are a good idea in general for HPC codes. 

• Traversal template and execution policy. The “forall()” template method and the 
specified template parameter encapsulate the details of loop execution; for example, 
run the loop sequentially or in parallel, enable SIMD, etc. 

• Indexsets. In the simple RAJA example above, “begin” and “end” integral loop 
bounds could have been passed to the iteration method. The RAJA Indexset 
abstraction is much more powerful and allows encapsulation of complex loop 
iteration patterns and memory access patterns based on data placement. 
 

Note that the loop body is identical in both the C-style and RAJA loop forms above. A key 
RAJA design point is to have a minimal impact on application source code. Using the 
standard C++11 lambda function language feature, the loop body and necessary variables are 
captured without modification and used within the iteration method [8].  C++ compiler 
support for lambda functions is new and still maturing. We believe that robust lambda 
support is essential for adoption of RAJA in LLNL codes.  
 
In the C-style loop all details of the loop execution (iteration sequence, data access pattern, 
etc.) are explicitly coded at the application level. Changing any aspect of execution requires 
direct modification of the loop source code. In the RAJA version, on the other hand, all loop 
execution details are hidden. This allows changing the execution of the loop by simply 
changing the execution policy type and/or iteration method. To make this more concrete, 
consider two potential RAJA OpenMP iteration templates (loop execution policy in red): 
 

// (A) typical OpenMP multithreaded execution 
template< typename LB > 
void forall(omp_exec, int begin, int end, LB loop_body) { 
    
#pragma omp parallel for 
    for ( int i = begin; i < end; ++i ) loop_body( i ); 
} 
 
// (B) OpenMP 4.0 accelerator execution 
template< typename LB > 
void forall(omp_acc_exec, int begin, int end, LB loop_body) { 
    
#pragma omp target  
#pragma omp parallel for 
    for ( int i = begin; i < end; ++i ) loop_body( i ); 
} 

 
Example (A) shows how the loop iterations could be launched using a standard OpenMP 
parallel for construct on a multi-core CPU, for example.  Example (B) shows how the loop 
could be launched on an accelerator device, such as a GPU, using OpenMP 4.0 standard 
device target directives [2]. Here, data mapping between the host and device is implicit. 
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In CUDA, the notion of a loop is fundamentally absent. A “loop iteration” is expressed in a 
CUDA kernel function that is launched over a thread block on a CUDA-enabled GPU 
device. Each iteration executes on a different CUDA thread. The code snippets below 
illustrate potential RAJA “back end” code for CUDA. So that application code looks like that 
for other parallelization approaches, we pass a loop body to a C++ template method (D), 
which has the same arguments as other iteration methods. This template launches a GPU 
kernel (C) that executes a loop iteration on a separate GPU thread. 

 
// (C) kernel function template 
template< typename LB > 
__global__ void loop_it(int begin, int N, LB loop_body) { 
   int i = blockIdx.x * blockDim.x + threadIdx.x ;  
   if ( i < N ) { 
      loop_body( begin + i ) ; 
   } 
} 
 
// (D) traversal template that launches GPU kernel 
template< typename LB > 
void forall(cuda_exec, int begin, int end, LB loop_body) { 
   const int blocks = (end – begin + 63)/64 ;  
   loop_it<<< blocks, 64 >>>(begin, end-begin), loop_body ) ; 
} 
 

It is important to note that support for C++ lambda functions in the NVIDIA nvcc compiler 
is under development. Early releases of CUDA 6.x support lambda functions in GPU kernels.  
However, it is still not possible to launch a lambda on a GPU when it is defined in code 
compiled for a host CPU. This functionality is needed for the RAJA model to encapsulate 
CUDA constructs and achieve full CPU-GPU portability. We have verified that the approach 
shown above works with current nvcc compilers when a loop body is expressed as a C++ 
functor object. We are actively involved in discussions with NVIDIA compiler developers on 
future expanded lambda support. 
 

Fundamental Concept: Partition iteration space into work units (Segments) 
For CPU-GPU portability, we need a single abstraction that makes it easy to manage both 
types of parallelism. Loop iterations map to threads differently on a multi-core CPU and a 
GPU. Figure 2 shows the key difference; on a CPU a contiguous block of loop iterations are 
mapped to each thread, while on a GPU adjacent iterations are mapped to adjacent threads 
within a thread warp. Each iteration of a loop is associated with a “footprint” of data array 

Figure 2. Loop iterations map to threads differently on CPUs and GPUs. 
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values in memory. In RAJA, we bundle loop iterations into Segments, which helps to manage 
data access patterns for different threading models. 

Earlier, we noted that multiphysics codes employ operations involving stride-1 array data 
access as well as unstructured accesses involving indirection arrays. Often, these different 
access patterns are used on the same data array and may even be combined in the same 
physics operation. Figure 3 shows two different segment types, “range” and “list”. A RAJA 
range segment defines a contiguous set of iteration indices. Constraints can be applied to the 
iteration bounds and also to their alignment with memory constructs. For example, range 

segments can be aligned multiples of a SIMD or a SIMT width, which helps compilers 
generate more efficient code. Iteration over a range segment usually involves a simple for-
loop: 

for ( int i = begin; i < end; ++i ) loop_body( i ); 

A list segment bundles iterations that do not meet range segment criteria. A typical iteration 
over a list segment involves a for-loop, with indirection applied: 

for ( int i = 0; i < seglen; ++i ) loop_body( segment[i] ); 

Runtime segment construction can impose constraints that complement compile-time 
pragmas and optimizations, which can be hidden in RAJA iteration templates.   

RAJA Segments can represent arbitrary loop iteration bundles that can be tuned and sized for 
specific architecture and memory configurations. Figure 4 shows two different element 
“tilings” on a domain that represent different data orderings (numbers) and iteration patterns 

(dashed arrows). When loop bounds are abstracted in a segment, instead of hard-coded in an 
application, data arrays can be permuted for locality and cache reuse. For example, the 
canonical tiling in the upper part of Figure 4 can be transformed into the “compact” tiling in 
the lower part of the figure.  

 
Figure 3. "Range" and "List" segments iterate over sets of array elements differently. 

 

 
Figure 4. RAJA Segments can represent arbitrary "tilings" of filed data on a domain. 
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Segments can also work together with data allocation to further enhance optimization. A 
typical ASC code centralizes data allocation in macros or functions for consistent usage 
throughout a code. Data allocation can be based on segment configurations to apply other 
optimization-enhancing allocation techniques, such as “first-touch”, which can result in 
improved NUMA behavior during multithreaded execution. 

 

Fundamental Concept: Segment dispatch and execution (Indexsets) 
A RAJA Indexset is an object that encapsulates a complete iteration space that is partitioned 
into a collection of segments, of the same or different types. To illustrate a simple use case, 
consider an array of indices to process; e.g., indices that enumerate elements on a domain 
containing a particular material: 

int elems[] = {0, 1, 2, 3, 4, 5, 6, 7, 14, 27, 36, 
               40, 41, 42, 43, 44, 45, 46, 47, 87, 117}; 

The indices may be assembled at runtime into an Indexset object by manually creating and 
adding segments to an Indexset object. A more powerful approach is to use a RAJA Indexset 
builder method that partitions the iteration space into a collection of “work segments” 
according to architecture-specific constraints. For example, 

Indexset segments = createIndexset( elems, num_elems ); 

In this example, the resulting Indexset object may contain two range segments ( {0,…,7}, 
{40,…,47} ) and two list segments ( {14, 27, 36}, {87, 117} ). The Indexset 
object can be passed to an iteration template, as in the RAJA code examples shown earlier, 
that automatically dispatches the segments to execute a loop body (i.e., lambda function): 

forall< exec_policy >( segments, loop_body ); 

A compile-time generated iteration template for each segment type executes portions of the 
loop associated with the segment type, possibly in parallel.  

Indexset builder methods can be customized to tailor segments to hardware features and 
execution patterns to balance compile-time and runtime considerations. Presently, Indexsets 
enable a two level hierarchy of scheduling and execution. A dispatch policy is applied to the 
collection of segments. An execution policy is applied to the iterations within each segment.  
Examples include: 

• Dispatch each segment to a CPU thread so segments run in parallel and execute 
range segments using SIMD vectorization. 

• Dispatch segments sequentially and use OpenMP within each segment to execute 
iterations in parallel. 

• Dispatch segments in parallel and launch each segment on either a CPU or GPU as 
appropriate. 

It is important to note that RAJA allows all aspects of execution to be tailored and optimized 
by developers. They can modify segment dispatch and execution mechanisms in traversal 
methods, or build their own to explore alternative “work-around” implementations that may 
overcome problems when execution performance does not match expectations. Such 
complete control is not found in monolithic programming models, typically. 

The RAJA indexset/traversal model also supports other more advanced features that we have 
recently begun to explore in the LULESH proxy-app. For example, indexset segments can be 
defined and arranged to encode dependence scheduling patterns to enable more efficient 
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parallelism. Key aspects of a “lock-free” segment scheduling mechanism in a RAJA iteration 
template are shown in the following code example: 

#pragma omp parallel for schedule(static, 1) 
for (int i = 0; i < num_seg; ++i) { 

         while (seg_semaphore[i] != 0) { 
      sched_yield(); 
   } 
 
   seg_dispatch(seg_type[i], seg_info[i], loop_body); 
 
   seg_semaphore[i] = seg_sem_reload_val[i]; 
   for (int j = 0; j < seg_num_dep_tasks[i]; ++j) { 
      int dep = seg_dep_task[i][j]; 
      __sync_fetch_and_sub(&seg_semaphore[dep], 1); 
   } 
} 
 

The dependence scheduling is controlled by a simple semaphore mechanism applied per 
segment. To manage dependencies in this fashion, three pieces of information are required. 
First, a “reload” value defines the number of external dependencies that must be satisfied 
before a segment can execute. As each dependency is satisfied the semaphore value is 
decremented; when it reaches zero, the segment can execute. Until then, the thread “yields” 
the CPU resource. After a segment is dispatched to execute, its semaphore value is reset to 
the reload value. Second, an “init” value is an override for the reload value. A subset of 
segments must be “primed” to execute; ideally, a number of segments at least as large as the 
maximum number of threads available segments should be able to execute immediately. The 
semaphore value for such segments is initialized to zero to indicate that they can execute 
from the start of the traversal. Semaphore values for all other segments are initialized to their 
reload values. Third, “forward dependencies” are the set of segments that must be notified 
when a segment execution completes. Here, notification means that the semaphore value in 
each forward segment is decremented by one. Later, we will show the performance benefit 
that can be achieved using this “lock-free” segment scheduling mechanism in LULESH. 
Such an approach could also be used to create “task graph” dependency scheduling for tile 
segments in wave-front algorithms, such as sweeps used in deterministic transport codes.  

Traversals can also potentially support a portable, transparent, fine-grained transient fault 
recovery mechanism. The simplified code example below shows the basic idea: 

#pragma omp parallel for schedule(static, 1) 
for (int i = 0; i < num_seg; ++i) { 
   bool done = false; 
   while (!done) { 
      try {  
         done = true; 
         seg_dispatch(seg_type[i], seg_info[i], loop_body); 
      } 
      catch (Transient_Fault) { 
         cache_invalidate(); 
         done = false; 
      } 
   } 
} 
 

This fault recovery mechanism, embedded in a loop iteration template, can potentially catch 
any transient error condition and allow a code to recover. The C++ try/catch mechanism tests 
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whether a transient fault has occurred. If so, the data cache is invalidated and the loop is re-
run with data values reloaded from memory. With such an approach, important aspects of 
transient fault recovery can be hidden and easily managed in a large code base. Also, the 
recovery cost for faults addressed by this method is commensurate with the scope of such 
faults. That is, a code can recover with minimal localized disruption and not need a full 
restart. Use of this approach would benefit from additional hardware and O/S support (i.e., 
the processor could emit specialized signals for fault conditions and the O/S could be more 
specialized to help process them), and language support (e.g., the C++ try/catch mechanism 
could be expanded to respond to O/S signals). In addition, each loop to which this 
mechanism is applied must be idempotent; i.e., it can be run an arbitrary number of times and 
produce the same result. This requires read-only and write-only arrays (no read-write arrays), 
which can increase memory usage and bandwidth requirements slightly. Later, we will show 
the software and performance impact of this RAJA-based fault recovery method in LULESH 
is acceptable. 
 

Exploring RAJA in LLNL ASC hydrodynamics codes 
To assess the viability of RAJA, we explored the approach in the Lagrange hydrodynamics 
portion of three ASC codes at LLNL: Ares, Kull, and ALE3D. Although preliminary and 
limited in scope, the explorations were adequate to determine whether RAJA is sufficiently 
flexible to serve as a loop-level abstraction layer across diverse code environments, to 
determine its impact on production source code, and evaluate its potential for performance 
portability. Performance evaluations were performed on TLCC2 and BG/Q platforms, the 
primary architectures used for production codes at LLNL. Also, on BG/Q, we compared the 
GNU 4.7.2 and the IBM xlc 12.1 compilers. Most LLNL codes use the xlc compiler on that 
platform. However, only the GNU compiler supports C++ lambda functions on that machine, 
which is needed for RAJA. This section summarizes our findings. 
 

Ares 
Ares is a multi-block, structured mesh code that uses little abstraction in its numerical 
kernels. Most physics algorithms in the code are written using traditional C-style for-loops 
with no encapsulation of data access or loop iteration patterns. Basic RAJA insertion enables 
encapsulation of these aspects of the code. We converted most of the loops executed during a 
single material Lagrange hydrodynamics computation to use RAJA. Performance 
experiments were done on LLNL BG/Q and TLCC2 platforms. 

Ares-RAJA integration 

To simplify RAJA integration into Ares, and minimize its impact on the look-and-feel of the 
source code, a lightweight C++ loop template API was constructed to encapsulate RAJA 
constructs. Loop templates were created to explicitly name each loop pattern in a way that is 
intuitive to Ares developers. An indexset collection was added to the Ares domain structure 
to hold the indexsets that were needed to run the loops. These were defined in existing setup 
routines where domain extents and indirection arrays are defined. Each named loop iteration 
method retrieves the appropriate index set from the collection when it is called.  For 
example, loops over “real” zones on a domain in the original code, such as: 
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for ( int ii = 0 ; ii < domain->numRealZones; ++ii ) { 
   int zone = domain->Zones[i]; 
   // loop body using “zone” as array index 
} 

and  

for ( int j = domain->jmin; j < domain->jmax; ++j ) { 
   for ( int i = domain->imin; i < domain->imax; ++i ) { 
      int zone = i + j * domain->jp; 
      // loop body using “zone” as array index 
   } 
} 
 

were transformed to the following form: 

forEachRealZone< exec_policy >( domain, [=] (int zone) { 
   // loop body using “zone” as array index 
} 

 
In total, we converted 421 loops in Ares to similar implementations and employed three loop 
execution policies, which we called “DPWork”, “DPStream”, and “Seq”. We applied the 
DPWork and DPStream policies to data parallel loops containing roughly ten FLOPS or 
more per loop iteration and those that contained less than that, respectively. This distinction 
was based on some high-level profiling; we wanted to distinguish loops where threading was 
a clear win and when it was not on current platforms. We used the Seq policy for sequential 
execution on loops that were not easily parallelized. Overall, we found the basic integration 
of RAJA to be straightforward. The most difficult work was localized to setting up and 
manipulating RAJA index sets. Replacing C-style for-loop headers with calls to iteration 
template methods and identifying the appropriate execution policy for each loop was not 
hard, but somewhat tedious.  
 
When the transformed code was presented to Ares developers, including code physicists, 
they identified several software engineering benefits related to improved code readability and 
maintenance. For example, named traversal methods clearly label iteration patterns in the 
code, and the named execution policies document how each loop will be run. Users also 
noted that encapsulating the loop logic would potentially eliminate coding errors. Finally, 
developers noted the potential to simplify porting to different architectures by parameterizing 
execution policies via typedef statements in header files. 
 
To demonstrate additional RAJA benefits, we explored a few more advanced code 
transformations in Ares. One example involves a deep loop nest in the mixed-zone advection 
algorithm that uses integer arrays for both control logic and indirection. The following 
simplified code example shows key aspects of the loop structure: 
 

for ( int iz = 0 ; iz < nmix_zones; ++iz ) { 
   if ( domain->mixzone_advect[ iz ] ) { 
      for ( int i = 0; i < numlocal_mat; ++i ) { 
         if ( mzreg[ domain->mat[i] ].ndx[iz] >= 0 ) { 
            var[ mzreg[ domain->mat[i] ].ndx[iz] ] = ...; 
            // etc. 
         } 
      } 
   } 
} 
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This loop nest is further nested within a loop over mesh field variables that are processed by 
the advection algorithm. Notice, however, that none of conditional tests or indirect data 
accesses depend on the variable involved, only whether a “mixed” zone is advected or if the 
zone contains a given material. Such complicated loop organization induces unnecessary 
memory bandwidth needs and hinders many compiler optimizations. 
 
To address these issues, we encoded conditional logic and indirection in RAJA index sets. 
We inverted the loop nest so that iteration over material regions was on the outside. The 
inner loop indirection and conditional logic is replaced with a call to an iteration method that 
iterates only over the advected zones with a given material. This allowed us to remove two 
levels of loop nesting. The resulting code is shown below:  
 
   for ( int i = 0; i < numlocal_mat; ++i ) { 

   // ... 
      forEachAdvectedMixedZoneInRegion< exec_policy >( domain, i,    

   [=] (int ndx) { 
      var[  ] = ...; 
      // etc. 
} ); 

   } 
 
This code is simpler and easier to understand and runs faster than the original. On a test 
problem that stresses these operations, we observed a 1.6x serial speedup on TLCC2 for this 
loop and a 1.99x serial speedup on BG/Q. Starting from the original code compiled with xlc 
and moving to the RAJA version compiled with GNU results in a total serial speedup of 
3.78x on BG/Q for the loop. Applying the transformation described here on just two loops 
yields ~8% speedup in the overall runtime on TLCC2 for the aforementioned test problem. 
 
RAJA can also be used to reorder loop iterations to enable parallelism in loops that are not 
parallelizable as currently written. The loops could be restructured to expose the available 
parallelism. However, using the RAJA abstraction layer, different loop orderings can be 
explored easily without modifying the application code. For example, a common operation in 
a staggered-mesh code, like Ares, sums values to nodes from surrounding zones. This is 
illustrated in the left image in Figure 5. Using indexsets to define independent groups of 
computation and reorder the loop iterations enables different parallel implementation 
possibilities. The middle and right images in the figure show two options, (A) and (B). 
Different colors indicate independent groups of computation, which can be represented as 
segments in the indexsets. For option A, we iterate over groups sequentially (group 1 
completes, then group 2, etc.) and operations within a group can be run in parallel. For option 
B, we process zones in each group (row) sequentially and dispatch rows of each color in 

 
Figure 5. Zone-to-node sum operation (left), ordering option A (middle) and B (right). 
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parallel. For a 3D problem run on BG/Q, option A gives ~8x speedup with 16 threads over 
the original serial implementation. Option B provides ~17% speedup over option A at 16 
threads. It is worth reiterating that no source code modifications are required to switch 
between these parallel iteration patterns with RAJA in place. 

Ares-RAJA performance assessment 

To evaluate the overall performance impact of RAJA on Ares, we ran multiple experiments 
with a single material 3D Sedov problem using various combinations of MPI tasks and 
OpenMP threads per task. Ares can partition a problem into any number of domains per MPI 
task and can run with or without OpenMP threading on loops over domains within an MPI 
rank. When OpenMP is used to parallelize loops over domains, we refer to this as coarse-
grained threading in the following discussion. The simple Sedov problem represents an 
extreme performance case for fine-grained inner loop threading since most loops do very 
little work compared to more realistic, multi-material problems. In particular, for this 
problem, no combination of MPI tasks and OpenMP threads runs faster than using 64 MPI 
tasks on BG/Q (one task per hardware thread), assigning one domain to each MPI rank. 
Figure 6 summarizes the comparison between MPI-only and MPI plus OpenMP threads.  

Fine-grained inner loop threading yields a performance benefit over running MPI-only in our 
study. Figure 7 shows strong-scaling speedup for Ares-RAJA compared to original Ares at 
each MPI task count. Ares is run with M MPI tasks and no threads. Ares-RAJA uses M MPI 
tasks and T OpenMP threads per task, where M x T = 64 in each case. Ares-RAJA shows a 
speedup over the original code at all MPI task counts, except M = 64. The performance 
benefit of fine-grained threading decreases as the number of MPI tasks increases, as expected 
based on the results shown in Figure 6. Nevertheless, the result leaves us optimistic about 

 
Figure 6. Summary of Ares Sedov problem performance run on a single BG/Q node for 
different combinations of MPI tasks and coarse-grained OpenMP threads per task. MPI-
only always outperforms MPI plus threads using the same number of resources. 
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future prospects for fine-grained threading in Ares since the Ares-RAJA version has 372 
inner loop OpenMP parallel sections per timestep. It is important to note that, due to per-core 
memory constraints, a typical Ares run on BG/Q cannot use more than 16 MPI tasks per 
node. At that task count, we see a roughly 50% performance boost with inner-loop threading 
over MPI-only (red oval in the figure). The overhead of the RAJA layer in the code, ~10%, is 
seen at 64 MPI tasks. We elaborate on this issue in the Appendix. 

For a more extreme evaluation of OpenMP thread performance, we performed a similar 
experiment that compared coarse-grained domain loop threading in the original code and 
fine-grained inner-loop in the Ares-RAJA version. Both versions of the code are run with M 
MPI tasks and T OpenMP threads per task on a BG/Q node, where M x T = 64 across the full 
range of MPI/OpenMP combinations. Ares uses 64 domains in each case and employs 
coarse-grained threading on 27 domain loops per timestep. Ares-RAJA uses M domains and 
T fine-grained threads on 372 inner loops per timestep. Figure 8 shows Ares-RAJA speedup 
compared to Ares with three different compiler options. In all cases, it is clear that a few 
coarse-grained thread parallel sections outperform many fine-grained thread parallel sections. 
The Ares-RAJA version gets to within 5-10% at 16 and 32 MPI tasks, depending on the 
compiler used for the Ares version. The conclusion to be drawn from this experiment is that 
OpenMP overheads are too high for fine-grained threading on many of the loops in our codes 
independent of RAJA. Clearly, vendors must address this. In a large multi-physics 
application, thousands of threaded regions will be required per time step to expose sufficient 
parallelism and run efficiently on future architectures. 

Lastly, we performed similar comparisons on the LLNL TLCC2 architecture (Intel ES-2670 
16 core “Sandy Bridge” node). In this case, we used the Intel C++ compiler, version 

 
Figure 7. Strong scaling speeup of Ares-RAJA vs. Ares on BG/Q with xlc and gnu compilers. 
Ares is run with M MPI tasks. Ares-RAJA is run with M MPI tasks and T OpenMP threads per task 
(M x T = 64 in each case). Both codes decompose the problem into M equal-sized domains.  
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14.0.174. As in the BG/Q experiments, M is the number of MPI tasks and T is the number of 
OpenMP threads per task. Again, the Ares version uses M x T domains, assigning T domains 
to each MPI rank (one domain per thread). The Ares-RAJA version uses M domains, with T 
threads applied per inner loop. Fine-grained OpenMP threading performs considerably worse 
on TLCC2 than on BG/Q and this was clear in our results, which are shown in Figure 9. The 
left plot show the scaling of each version of the code compared to a serial version (no MPI, 

Figure 9. Strong scaling speedup of Ares-RAJA vs. Ares on BG/Q with xlc (LOMP runtime 
and no-LOMP) and gnu compilers. Both versions of the code are run with M MPI tasks and T 
OpenMP threads per task (M x T = 64). Ares uses 64 domains in each case, and uses 
coarse-grained threading on domain loops (27 per timestep). Ares-RAJA uses M domains 
and T fine-grained threads on inner loops (372 per timestep). 

 
Figure 8. Fine-grained OpenMP inner loop threading (Ares-RAJA) shows considerable scaling 
and overhead issues when compared to coarse-grained domain loop threading (Ares) on 
TLCC2. 
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no OpenMP).  The right plot shows overall runtime of the Ares-RAJA version compared to 
the Ares version. Note that RAJA incurs serial overhead of 10-16% (points with 1 thread per 
MPI task). Relative performance degrades significantly as threads are added to each MPI 
task. After some analysis of compiler output, we have identified this as an issue involving the 
combination C++ template/lambda constructs and OpenMP directives, which we are working 
with the Intel compiler team to fix. Again, we elaborate more on this issue in the Appendix. 

 

Kull 
Kull is an unstructured mesh code that supports arbitrary polyhedral elements. It makes 
heavy use of C++ templates and all loops use custom iterators over entities on a mesh. 
Compared to Ares, a smaller number of loops in Kull were converted to use RAJA. 
However, enough loops in the Lagrange hydrodynamics portion of Kull were transformed to 
assess how well RAJA works with Kull iterators. 

Kull-RAJA integration 

Kull developers converted 129 loops to use RAJA-style traversals. Due to the custom nature 
of Kull iterator syntax, Kull-specific iteration templates were required for basic loop 
conversion. Also, no RAJA indexset concepts were used in the initial Kull exploration, as 
this would require non-trivial modification to Kull iterator and Field abstractions. Since C++ 
lambda functions are able to capture the bodies of Kull loops unchanged, RAJA insertion 
was straightforward, requiring 2-3 lines of code change per loop. To illustrate, a typical Kull 
loop over zones in a material region looks like the following: 

Field< Region, Zone, Scalar >& matRho = ...; 
Field< Region, Zone, Scalar >& oldMatRho = ...; 
// ... 
for ( typename Region::ZoneIterator zi = region.zoneBegin(); 
      zi != region.zoneEnd(); ++zi ) { 
   matRho[*zi] = oldMatRho[*zi] * oldZoneVolume[*zi] /  
                 newZoneVolume[*zi]; 
   // etc ... 
} 

The same loop converted to RAJA-style is: 
Field< Region, Zone, Scalar >& matRho = ...; 
Field< Region, Zone, Scalar >& oldMatRho = ...; 
// ... 
forall< exec_policy >( region.zoneBegin(), region.zoneEnd(), 
   [&] (typename Region::ZoneIterator zi) { 
   matRho[*zi] = oldMatRho[*zi] * oldZoneVolume[*zi] /  
                 newZoneVolume[*zi]; 
   // etc ... 
} ); 

As in Ares, only the loop header is changed. It is important to note that, in general, OpenMP 
will not parallelize a loop that contains the common C++ idiomatic use of an iterator operator 
“!=” in a loop conditional (as in the original Kull code example above). To work-around this, 
RAJA-style iteration templates for Kull use an appropriate OpenMP canonical loop by using 
“<” instead. 

Kull also uses multiple iteration variables for certain loop iteration patterns. OpenMP will 
not parallelize a loop with more than one iteration variable. For example, Kull “part loops” 
typically use two iteration variables, an integer for the part ID and an iterator over a part list. 
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For example, 
int partID = 0; 
// ... 
for ( typename PartList<MeshType>::ConstIterator pi =    
      partList.begin(); pi < partList.end(); ++pi, ++partID ) 
{ 
   Field< Region, Zone, Scalar >& eEDot = DEeDt[ partID ]; 
   // etc ... 
} 

RAJA can also work around this issue to enable parallelism in such a loop without major 
code restructuring. A possible RAJA-style iteration template for this is:  

template< typename ITER_T, typename LOOP_BODY >  
void forall_part( omp_parallel_for, 
                  const ITER_T& begin, const ITER_T& end, 
                  LOOP_BODY loop_body ) { 
   #pragma omp parallel 
   { 
      int num_threads = omp_get_num_threads(); 
      int partID = omp_get_thread_num(); 
 
      #pragma omp for schedule(static, 1); 
      for ( ITER_T i = begin; i < end; ++i ) { 
         loop_body( i , partID ); 
         partID += num_threads; 
      } 
   } 
} 

While this does enable parallelism over a part loop in Kull, we found that very little was 
gained by doing so. This is due to either a small number of parts on any given domain, or a 
significant imbalance in the number of zones in different parts, at least in the problems that 

 

Figure 10. Speedup with 4 OpenMP threads vs. serial across a range of loops executed in Kull 
for a Taylor-Green vort4ex problem. 
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were explored. We found that parallelizing inner loops over zones within a part yielded the 
most performance benefit. 

Kull-RAJA performance assessment 

The study of thread scaling performance in Kull was very limited, but showed notable 
promise for the viability of fine-grained loop threading in that code. Figure 10 shows 
speedups achieved with four OpenMP threads on BG/Q for individual loops across a range of 
loops executed during the run of a Taylor-Green vortex problem. Future effort profiling a 
variety of problems will help choose loops with the highest potential impact when 
parallelized. Also, execution policy alternatives should be explored, as well as in exercising 
other computer platforms, such as TLCC2, and higher OpenMP thread counts. 

 

LULESH 
LULESH is a proxy-app derived from the Lagrange hydrodynamics algorithm in ALE3D. 
ALE3D and LULESH are unstructured mesh codes. In contrast to Kull’s general polyhedral 
element capability, ALE3D/LULESH primarily employs hexahedral elements with arbitrary 
connectivity. ALE3D/LULESH has a data access abstraction layer via simple use of C++ 
features. Thus, LULESH provides an important use case for RAJA exploration that is distinct 
from Ares and Kull. Due to its relatively small size and simplicity, LULESH also allowed us 
to explore more advanced RAJA features such as: data reordering and loop iteration tiling, 
lock-free segment scheduling, and fault tolerance. 

LULESH-RAJA integration 

LULESH v1.0 was the first application we explored with RAJA, beyond a preliminary 
investigation of RAJA concepts in the LCALS benchmark. Our goal was to explore a 
complete physics kernel, without tackling a full multiphysics code. We started with a highly 
optimized serial implementation of LULESH using only C language features (i.e., we 
removed the C++ data access layer). This was our “baseline” version, which provided a 
reference point to evaluate the effect (performance and code disruption) of inserting RAJA 
into a code.  
 
Starting with the baseline LULESH, we performed several modifications to insert RAJA 
constructs. We replaced the single indirection array in the code for material indices with 
three RAJA indexset objects for element, node, and material indices, and replaced C-
language for-statements with calls to RAJA iteration template methods. This required us to 
modify numerous function parameters, replacing indirection array pointers and length 
arguments with indexset object references. Finally, we removed five arrays used to gather 
domain fields for material operations and associated copy logic. RAJA indexsets allow such 
data reordering to be done “in-place”. The overall conversion was straightforward and 
required modifications to roughly 4% of the total source code lines (LULESH is about 3000 
lines total). Similar to Ares and Kull, the major change involved replacing for-loop headers 
with RAJA-style iteration method calls. Once RAJA was in place, we added about 150 lines 
of initialization-only code to explore different data tiling options. No numerical operations in 
the code were changed to enable this capability. 
 
Error! Reference source not found. shows a serial runtime comparison for the variants of 
RAJA we studied. The results shown were generated on an Intel TLCC2 node and the code 
was built with the Intel compiler at a level of optimization comparable to what is used at 
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LLNL for production codes. The baseline variant (with the data access layer removed) runs 5 
seconds faster than stock LULESH v1.0. The three RAJA variants use different indexsets. 
The “canonical” variant uses the same data layout as the baseline, represented as an index set 
with a single range segment. For the “order-tiled” variant, the mesh elements are permuted 
into stride-1 tile segments. This is encoded in an indexset as a collection of range segments. 
Finally, for the “index-tiled” variant, elements are left in canonical ordering with spatial tiles 
implemented in an index set as a collection of list segments. Run times for the first two 
RAJA variants are the same and slightly faster than the baseline. Recall that the RAJA 
versions have reduced memory movement resulting from the removal of “gather” operations 
mentioned above. The “index-tiled” variant is a bit slower since all data array accesses use 
indirection; this is comparable to the stock v1.0 version, in which indirection is used in 
nearly all loops. Lastly, we generated a “Raw C” version of the code, in which all indirection 
was removed. We believe this variant yields a lower bound on overall runtime. It is worth 
noting that the number of page faults drops significantly in the RAJA and “Raw C” variants, 
compared to the stock v1.0 and baseline variants. This is related to the removal of the 
“gather” arrays. The primary take-away message from this study is that the RAJA layer does 
not degrade serial performance. The transformation of LULESH to use RAJA also revealed 
several notable portability and maintainability benefits: 

1. The kind of parallelism used for each loop is documented clearly by the template 
parameter associated with each loop iteration method call. 

2. The named index set passed to each loop iteration method makes clear to which 
entity-set the loop is applied (e.g. node, element, or material subset).  The original 
loop “begin” and “end” integer values were less clear. 

3. Tiling support was isolated to index set creation, with no algorithm modifications. 

4. There was no change to the core algorithms in inner-loops. 

LULESH-RAJA performance assessment 

We also compared the baseline version of LULESH v1.0 with OpenMP directives applied 
manually to each loop to a few different LULESH-RAJA variants to assess multithreading 
performance on BG/Q and TLCC2 platforms. To achieve loop-level multithreading in 
LULESH-RAJA, we simply altered one line of code to change the loop execution policy. 
The left plot in Figure 11 shows OpenMP thread speedup on BG/Q of LULESH-RAJA 
compiled with GNU (which supports C++ lambda functions) over LULESH compiled with 
the IBM xlc and GNU compilers. The right plot in the figure compares runtime relative to 
LULESH v1.0 compiled with xlc. The blue curve indicates that LULESH is only ~2% slower 

LULESH code version Serial wall time (sec) Page faults 
Stock v1.0 126 16.9M 
Baseline 121 16.9M 
RAJA “canonical” 118 12.7M 
RAJA “order-tiled” 118 12.7M 
RAJA “index-tiled” 127 12.7M 
Raw C – no indirection 114 12.7M 
 

Table 1. Summary of serial performance of LULESH default problem configuration for different 
variants of the code. All runs were done on a TLCC2 node (Intel ES-2670) with the Intel compiler. 
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when compiled with GNU than it is with xlc (until 32 threads, when the curve bumps up 
slightly). From this, we conclude that the GNU compiler is a reasonable alternative to xlc for 
the purposes of our study. The green and blue bars in the left plot show similar scaling with 
the two different compilers for LULESH. LULESH-RAJA scales much better (red bars), 
especially at higher thread counts. Runtime is also shorter at 16 or more threads (~70% of 
LULESH at 64 threads), as shown in the red curve in the right plot. However, LULESH-
RAJA is noticeably slower at smaller thread counts; e.g., ~15% slower at one thread. This is 
a similar overhead issue we pointed out when describing Ares-RAJA performance earlier. 
We will discuss this in more detail in the Appendix. 

We ran similar experiments on TLCC2 using different threading models in LULESH-RAJA 
(OpenMP, CilkPlus, and lock-free OpenMP). Figure 12 shows the results. Thread speedup 
(left plot) shows that each LULESH-RAJA variant strong scales better than LULESH with 
OpenMP. Comparing runtimes (right plot) reveals an overhead issue with LULESH-RAJA 
and OpenMP similar to BG/Q. As on BG/Q, the slowdown is ~15% for one thread, and 
again, runtime is ~70% of LULESH at the maximum node thread count (16 threads in this 
case). CilkPlus scaling is not as good as OpenMP, but CilkPlus does not exhibit the overhead 
issue at small thread counts. Finally, lock-free thread scheduling version of LULESH-RAJA 
is considerably faster at all thread counts than the other parallel variants presented here. At 
16 threads, it runs nearly twice as fast as LULESH with OpenMP directives applied directly 
on loops. Also, note that LULESH-RAJA with lock-free scheduling does not require extra 
data allocation and copying that is needed in the other variants to enable thread parallelism 
on all loops in the code. This efficiency overcomes the overhead at small thread counts. 

Lastly, we have also run preliminary experiments simulating transient fault injection to 
evaluate performance of the RAJA-based fault recovery mechanism described earlier in this 
report. We found the fault detection and recovery mechanism to have very low overhead; for 
example, a sample serial run with 47 randomly injected faults executes within ~0.5% of a run 
with no injected faults. The code runs in just over two minutes, so this is an extreme fault 
frequency. In the current implementation, an entire loop must complete before a fault is 
identified and the loop is re-run. Additional operating system and language support could 
enable the recovery process to begin immediately after the fault occurs. We did observe 
faults occurring outside of loop executions; such faults require another mechanism to be 
caught and handled properly. As we noted earlier, the RAJA-based fault recovery mechanism 

 
Figure 11. LULESH-RAJA shows good strong scaling vs. LULESH on BG/Q (left). However, 
runtime comparison (right) reveals compiler optimization issues, observed as overhead at low 
thread counts. 
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requires each loop to be idempotent. This can increase code runtime, due to increased 
memory allocation and data copy operations, which depends on how many loops must be 
changed to make them idempotent. Changing LULESH to make all loops idempotent 
increase total runtime 2-5% on TLCC2 depending on the number of OpenMP threads we 
used. We view these results as positive and demonstrate the RAJA can enable some degree 
of portable, transient fault tolerance to a code in a manner that is transparent to the 

application and with acceptable overhead. 

 

Conclusions and future work 
In this report, we have described some key challenges facing multiphysics codes as they are 
transitioned from an MPI-centric programming model to a model that adds massive fine-
grained multithreading. We introduced the main concepts in the RAJA portability model, and 
discussed initial explorations involving portions of three ASC multiphysics codes at LLNL. 
We discussed both qualitative and quantitative advantages of RAJA to give the reader a 
broad view of how RAJA might impact their own multiphysics application. 

Given the diversity and complexity of emerging architectures, RAJA can potentially enable a 
high level of optimization and performance, while encapsulating architecture-specific 
constructs in a large application. Loop traversal optimizations are instantiated at compile-
time, while indexsets defining the iteration space are generated at runtime. Indexsets can help 
reduce data motion, place arrays in memory to reduce cache conflicts, and align arrays for 
better hardware efficiency. Much of the memory movement in vector-related gather/scatter 
operations can also be avoided with judicious use of RAJA, while still achieving many of the 
compiler optimizations that gather/scatter provides. 

Multithreading programming models such as OpenMP and Cilk are currently supported. We 
expect that switching between CPU and GPU implementations can be done with RAJA 
without disrupting application code. However, concrete verification of this claim requires 
additional compiler support for OpenMP 4 and/or CUDA that is in development. RAJA 
should be able to encapsulate the essential features of the parallel programming models being 
considered for ASC code development at LLNL in the foreseeable future. Application 
scientists should be able to write source code cleanly and achieve a high level of portability 
without being required to possess detailed knowledge of non-portable code annotations and 

 
Figure 12. LULESH-RAJA with OpenMP, CilkPlus, and OpenMP lock-free threading models scales 
better than LULESH with OpenMP. Runtime comparison (right) shows a similar overhead issue 
with LULESH-RAJA and OpenMP at small thread counts to BG/Q (Figure 11). Lock-free scheduling 
overcomes the issue to run faster than LULESH at all thread counts. 
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constructs. Execution policy types passed to traversal methods are a self-documenting way to 
describe parallelism in each loop, while allowing the behavior of an equivalence class of 
similarly structured loops to be controlled from a single code site (e.g., a header file). At 
present, many of the drawbacks we have seen with RAJA are due to missing features in 
either compiler or run-time layers – drawbacks that exist with or without RAJA.  

Recall the questions we set out to answer about RAJA that we stated in the introduction of 
this report. With respect to the previously stated concerns, we can conclude the following at 
this point: 
 

• Programmability 
We have learned that it is easy to insert RAJA into legacy codes at LLNL. We have 
shown that RAJA supports distinct loop patterns in major ASC codes at LLNL by 
integrating it directly in a subset of Ares, Kull, and ALE3D (via LULESH). Basic 
insertion of the model is straightforward and non-disruptive, requiring code changes 
that are small and simple. Code transformations can be tedious, and we are exploring 
ways to guide and automate the process with the ROSE compiler team at LLNL. 
Application developers, who did the bulk of RAJA integration described in this 
report, found that the approach provides a variety of software engineering benefits 
that potentially make code easier to read, write, and maintain.  
 

• Portability 
Our exploration of RAJA portability was limited to the BG/Q and TLCC2 platforms 
and multi-core threading models as these are the primary targets for inner loop 
threading in our codes, currently. We have shown that it is straightforward to control 
a variety of aspects of fine-grained parallelism once RAJA is in place. RAJA allows 
loop-level execution control to be centralized in a large code base, which enables 
manageable platform portability.  
 
Indexsets and iteration templates allow abstraction of many important concepts as 
we move toward future advanced architectures. These include, but are not limited to: 

o SIMD instruction-level parallelism 
o Loop-level multithreading and GPU device dispatch 
o Exploration of data permutations to increase locality/cache reuse and/or 

reduce synchronization dependencies 
o Asynchronous task-level parallelism and lock-free loop ordering 
o Fine-grained loop execution rollback for transient fault recovery 

A code can be parameterized to employ different execution mechanisms at compile-
time to run efficiently on different machines by placing loop iteration templates and 
execution policies in header files. RAJA also provides a bridge between code-
specific and programming model constraints, and simplifies the development of 
“work-arounds” to improve compiler/runtime-system performance. 
 

• Performance 
Introduction of fine-grained loop threading via RAJA has been shown to yield 
performance benefits over the current MPI-only parallelism model employed in 
LLNL production codes. For example, introducing 4-way OpenMP threading on 
inner loops in Ares led to a 50% overall speedup over the typical 1 MPI task/core run 
strategy on BG/Q. We studied the OpenMP threading performance impact in Kull on 
a loop-by-loop basis and observed that many loops showed speedup; for example, 2x 
to more than 3x speedup using 4 cores on BG/Q. While similar performance gains 
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could be obtained from applying OpenMP directives directly in these codes, by using 
a model like RAJA, we hope to ensure that we have a platform for further 
improvements and/or programming model options without unworkable application 
code disruption. 
 
On TLCC2, on the other hand, the introduction of inner loop threading showed no 
real advantage or even performance degradation, except for LULESH, which is 
much more highly-tuned for fine-grained parallelization than production application 
codes. This is not unexpected, because fine-grained threading on standard multi-core 
CPUs, with out-of-order instructions, does not show significant benefit in most 
cases. More importantly, current OpenMP runtime overheads are too high to make 
fine-grained inner loop threading viable. As the overheads are reduced in the future, 
we hope that such fine-grained loop threading will become advantageous. 
 

• Long-term viability 
We believe that RAJA has the potential to enable new and legacy codes to be 
portable across the range of hardware node architectures we anticipate in the 
foreseeable future. However, the variety of alternatives vendors are exploring leaves 
us with some uncertainty and concerns about RAJA. Support for the C++11 standard 
(lambda functions, in particular) is not ubiquitous or robust at this point. We are 
working with compiler vendors to resolve key issues (see Appendix), and we believe 
that optimization and performance will improve as compiler support matures. Other 
efforts such as Kokkos, Thrust, etc. will also benefit from improved lambda support. 
Also, it is unclear at this point how well RAJA will work with other programming 
models that we have not tried yet, and those, like the OpenMP 4 device model, that 
are being developed. Thus far, we have explored only a few of the more common 
options applicable to the current main platforms at LLNL. Our goal has been to “do 
no harm” to code maintainability and performance while achieving a modest level of 
portability. A compelling demonstration of performance benefits in production codes 
has not been achieved yet. Independent of RAJA, OpenMP overheads are still too 
high for fine-grained multithreading in production codes without significant code 
and algorithm restructuring. Furthermore, we have observed that when C++ 
templates and lambda functions are combined with OpenMP directives, compilers 
tend to shut down many optimizations that are accessed when OpenMP pragmas are 
placed directly on traditional for-loops. We describe our findings in the Appendix 
and are working with compiler vendors to address the problems. 

 
In the future, we will explore RAJA in new programming model (OpenMP 4, CUDA, etc.) 
and hardware (GPUs, Intel MIC) environments. We will also broaden our explorations of 
LLNL codes to include additional physics algorithms and problems of interest. Lessons 
learned from applying RAJA to production codes so far is driving future development and 
code transformations that will be beneficial for future architectures, independent of RAJA.  
 
We are continuing to explore features of RAJA that could enable a physics application 
coding style that looks increasingly like serial code, while exposing more parallelism through 
encapsulation of loop execution details. We are exploring ways to expand memory-layout 
and placement choices that are not possible without a model like RAJA. Our overarching 
goal is to allow multiphysics code developers to easily tailor implementation choices to 
different architectures, compilers, and programming models with minimal code disruption as 
these concerns are encapsulated completely within the RAJA layer.



 

  25 

 
Acknowledgements 
We thank Esteban Pauli for doing most of the RAJA integration and performance 
experiments in Ares, and Koushik Ghosh, Aaron Black, et al. for initial explorations of 
RAJA integration in Kull. 

This work was performed under the auspices of the U.S. Department of Energy by Lawrence 
Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-TR-661403. 

  



 

  26 

Appendix 
From the start of our RAJA development, we observed numerous unexpected performance 
issues. After considerable investigation, we identified specific compiler deficiencies as root 
causes and discovered “work-arounds” that resolved some issues. Then, we engaged several 
vendor compiler teams and made concrete recommendations to fix the problems and 
provided evidence of their feasibility. The issues are described in a LLNL technical report 
[10]. We also created the LCALS: Livermore Compiler Analysis Loop Suite benchmark to 
study and monitor the issues [11]. This benchmark is a suite of loops (“Livermore Loops” 
modernized and expanded, essentially) implemented in C++ that uses various software 
constructs, including RAJA. The suite has formed the basis for much of our dialogue with 
compiler vendors. It is used to:  

• Generate simple test cases for vendors showing specific optimization and language 
support issues 

• Try solution suggested and provided by vendors and report findings 
• Introduce and motivate RAJA-like encapsulation concepts not previously on 

vendors’ “RADAR” 
• Track version-to-version compiler performance 

The performance issues we have observed are due to deficiencies in compilers, runtimes, and 
programming language/model standards. For example, the C++11 standard is relatively new, 
especially lambda functions that we view as essential for RAJA adoption in production 
codes. Ideally, RAJA-style traversal templates should be inlined and optimized at each loop 

 

Figure 13. Working with the Intel compiler team, we have resolved SIMD optimization issues involving 
C++ lambda variable-capture and the Intel compiler. This speedup comparison plot shows that the 
RAJA-style loops perform as well as C-style loops with restrict applied to data pointers via a typedef 
meachanism with the v14 Intel compiler (red and purple bars, respectively). With the v13 version of 
the compiler, the restrict semantics were not enforced and so RAJA-style performance was the same 
as C-style loops without restrict applied (green and blue bars, respectively). 
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site where they are used. A key issue we identified was that compiler hints we provided on 
data pointers were not being propagated through the lambda variable-capture mechanism in 
many cases. Effectively this prevented most SIMD vectorization optimizations. We worked 
this issue with the Intel compiler team and it was resolved over the course of a couple of 
recent major compiler releases. Figure 13 illustrates this for a subset of LCALS. We 
believe that other issues like this can be resolved if adequate attention is given to them. We 
are optimistic this will happen as lambda use expands and matures. 
 
Another key deficiency we have observed is that compilers do not optimize aggressively 
when OpenMP directives are used. For example, we have shown that SIMD is often 
disabled. Also, we see little evidence that compilers optimize across adjacent parallel 
regions. This has potentially grave implications for fine-grained use of “#pragma omp 
parallel for” in HPC codes.  The most troubling issue we have encountered is that 
when OpenMP is combined with C++ language features, such as templates, many 
optimizations are not applied. That is, optimizations that are applied when OpenMP 
directives are used on C-style for-loops are absent when a RAJA-style abstraction layer is 
used. Moreover, the observed performance differences can be huge and vary by loop and 
compiler. Figure 14 compares runtimes on BG/Q for RAJA-style loops using C++ lambda 
functions to represent the loop bodies and the GNU compiler (left), and RAJA-style loops 
using C++ functors to represent the loop bodies and the IBM xlc compiler (right). The 
baselines for comparison in either case are the same loop kernels with OpenMP directives 
placed on C-style (“Raw”) for-loops for the given compiler. Note that relative performance 
difference in each case is roughly the same across the range of threads shown; i.e., each 
curve is effectively flat. In the left plot (GNU compiler) the runtime difference among the 
loops only spans 0 –20 %. However, in the right plot, runtime differences are as large as 15 – 
20 times for some loops. It is interesting to note that order of loop kernels, with respect to 
which differs least/most, is completely different between the two plots. It is also interesting 
to note that if one looks at thread scaling for this study, it appears that all loops scale well 
achieving speedup factors of 12 – 16 times at 16 threads. Similar behavior is observed on 

 

Figure 14. Loop runtimes can be vastly different when OpenMP directives are used on "Raw" C-style 
for-loops vs. applied within RAJA-style traversal templates. These plots compare relative runtime for a 
subset of LCALS, RAJA-style vs. C-style, from 1 to 16 threads on BG/Q. In the left plot, RAJA loops 
use C++ lambda functions and the code is built with the GNU compiler. Loop runtime differences vary 
~ 0 – 20%. On the right, RAJA loops use C++ functors and the code is built with the IBM xlc compiler. 
Loop runtime differences are 15 – 20 X in some cases. 
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TLCC2 platforms with the Intel compiler. We are currently working with the Intel team to 
resolve the issue. 
 
Small additions and clarifications in the C++ and OpenMP standards could have a large, 
positive performance impact on HPC codes by making it possible to develop techniques, like 
RAJA, for portability, by way of complete encapsulation of platform-specific concerns, 
without adversely affecting performance. Other efforts we have mentioned in this report are 
exploring C++ abstractions to encapsulate hardware-specific concerns. Resolving the issues 
would benefit a broad community.  
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