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We report the development of a simple error analysis sampling method for identifying intersections and inflec-
tion points to reduce total uncertainty in experimental data. This technique was used to reduce uncertainties
in sound speed measurements by 80% over conventional methods. Here, we focussed on its impact on a pre-
viously published set of Mo sound speed data and possible implications for phase transition and geophysical
studies. However, this technique’s application can be extended to a wide range of experimental data.

PACS numbers: 47.40.-x, 47.80.Cb, 62.50.-p, 62.50.Ef, 64.60.A-7

I. INTRODUCTION8

A light gas-gun experiment can produce equation of9

state (EOS) data, such as pressure and density (P,ρ), at10

extreme conditions with precision better than 0.5%.1,211

The gas-gun based Pt EOS, for instance, has been used12

as a pressure scale for many high pressure experiments13

to date.1,3–10 EOS data must be supplemented by phase14

information to understand important material behaviors,15

such as the melting of Fe alloys at the boundary between16

the solid, inner and molten, outer regions of the Earth’s17

core.11 Identifying a phase transition in an opaque ma-18

terial requires either a direct measurement such as x-ray19

diffraction (which presents its own challenges) or indirect20

measurements.21

Longitudinal sound speed (CL) measurements play a22

major role in constraining key phase transitions and23

hence constructing phase diagrams at extreme condi-24

tions.11–17 CL is directly related to the bulk and shear25

moduli. Structural changes that alter the P- or ρ-26

dependence of either modulus can therefore be identi-27

fied through a discontinuity or change in slope of CL.28

However, these changes may be subtle, on the order of a29

few percent, and so require high-precision, high-accuracy30

data. Experimental precision and accuracy depend on31
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sample purity, data quantity, inherent data precision, and32

the sophistication of the data analysis methods.11,1733

In 2004, one of us published a new measurement of34

Fe sound speed at Earth’s core conditions.11 The results35

changed the community’s interpretation of the Fe phase36

diagram and temperature at the inner-outer core bound-37

ary. Its impact is most evident in the study of core chem-38

istry, the mechanism through which sound waves from39

earthquakes travel through the core, and phase transi-40

tions at extreme conditions.18,19 These studies point to41

a need for more precise CL measurements. These ex-42

periments have pushed the limits of data measurements43

and are often prohibitively expensive to repeat, so the44

greatest gains are from improved analysis methods.45

In the course of analyzing recent Mo sound speed46

data17 based on a similar experimental design, we de-47

veloped a Monte-Carlo based analysis technique to sig-48

nificantly reduce uncertainties on these data consistently49

to below the 1.5% level. (However, very poor signal/noise50

leads to larger uncertainties.) The technique reduces bi-51

ases often introduced by the experimenters. It also allows52

one to quantitatively estimate and account for the qual-53

ity of each data channel in the final error calculations,54

while our previous analytical technique did not.1155

Here we present this technique as applied to the Mo CL56

data17 and data from our ongoing study of Ta CL. We57

describe our new method, with details on its strengths58

and weaknesses as well as analysis of the method it-59

self, which we believe is broadly applicable to any sys-60

tem where quantitative identification of trend deviation61

is desired. No a priori processing of raw data is required,62

and only basic statistics,20 which we find advantageous in63

our work. A future paper will present a reanalysis of the64

Fe data11 with revised uncertainties using the method65

discussed in this paper.66
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FIG. 1: A 3 mm thick, 32 mm diameter molybdenum
disc was counter-bored to create a stepped target. The

thicknesses of these steps are flat and parallel to 2
micrometers across the pocket’s entire surface. These

pockets are arranged to minimize side releases and
other interactions. Reprinted with permission from

Phys. Rev. B 89 174109 (2014).17 Copyright American
Physical Society 2014.

II. METHODS67

A. Experimental Design and Motivation68

These experiments indirectly measure the speed of69

sound through optically opaque materials such as Fe, Mo,70

Ta, and Cu.11–15,17,21 Particle velocity, Up, is measured71

once the shock and sound waves pass through a sample72

interface (Fig. 1). The measurements are made either by73

recording Up-dependent light emissions from an optical74

analyzer22 (Fig. 2), or by recording Up directly through75

Photon Doppler Velocimetry (PDV)24 (Fig. 3). The anal-76

ysis principles are the same for both methods, so we dis-77

cuss optical analyzer data17 from CH3Br (Figs. 2 and 4)78

here. Emitted light intensity varies as u7.6p ,23 and so is79

quite sensitive. We use the less-sensitive PDV (Fig. 3) in80

experiments where emission is too low for fast photomul-81

tipliers, or at analyzer pressures <300 kbar.82

In these experiments, impact launches shock fronts for-83

ward into the target material and backward into the im-84

pactor. When the backward-traveling shock front reaches85

the impactor’s plastic sabot, a release wave is launched,86

which travels forward at the local sound speed in the com-87

pressed material. Because the material is compressed,88

the head of the forward-traveling release wave moves89

faster than the forward-traveling shock front. As a result,90

the release wave at first chases and then overtakes the91

forward-moving shock front. Prior to the release wave’s92

arrival, the sample is in a steady state, and Up is con-93

stant. The arrival of the release wave causes Up and the94

emission to decrease, allowing overtake to be determined.95

The time difference between the arrivals of the shock96

and release waves is the catchup time t,97

t[x] = c− o (1)

where o is the onset of shock breakout and c the catchup98

of the release wave (shown in Figs. 2-3). It is linearly99
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FIG. 2: Bromoform emission showing the onset,
catchup, and subsequent decrease in emission. As the
shock moves through the bromoform, less unshocked
bromoform is available to absorb light, leading to a

shallow negative slope between -200 and 30 ns. Slopes
are negative because the detector is negatively biased;

more negative signal indicates a greater amount of light.
At ∼30 ns the release wave launched from the impactor

catches up to the shock front, decreasing its strength
and thus the bromoform emission; this is seen as the

sharp increase in voltage beginning around 34 ns.
Inset: A histogram of 2000 randomly sampled catchup
times for this channel, as calculated using the algorithm
described in this paper. The catchup time is determined
as the mean of the Gaussian fit; the standard deviation

of the fit is used as the overall uncertainty in the
catchup time. Endpoints for the fits were randomly

selected in the ranges shown in Fig. 2. In this case, the
onset is at -205.6 ±0.2 ns and the catchup was

calculated to be 33.9±0.6 ns, for an emission time of
239.5±0.7 ns. It is this 239.5 ns emission time that is
plotted against the step thickness (in this case, 1.0057

mm).

dependent on the target thickness x. By measuring the100

catchup times for multiple thicknesses, we can extrapo-101

late to find the ideal catchup distance D, where the shock102

and release waves would arrive simultaneously (t[D] = 0).103

D cannot be uniquely identified through measurement.104

By determining D, the longitudinal sound speed, CL,105

is calculated for symmetric impact (that is, the impactor106

and target are the same material) as shown:107

CL =

(
1 − Up

Us

)(
D + h

D − h

)
Us (2)

where Us is the shock speed, and h the impactor thick-108

ness. Of these variables, D is the most difficult to de-109

termine and contributes the most to error. Us, Up, and110

h are known to better than 0.5%, and uncertainty in o111

is set by oscilloscope resolution (<100 ps with modern112
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FIG. 3: Representative PDV data from ongoing Ta
sound speed studies. Image is scaled to focus on catchup
and release region; the sharp rise indicating breakout is
not shown. The particle velocity at the sample/vacuum

interface is measured and transformed according to
standard PDV methods. No windows are used.

oscilloscopes). Like others,22 we find the identification113

and uncertainty of c to drive most of the uncertainty in114

D and CL.115

B. Origin of error and uncertainty in c116

Many factors influence the determination of c and117

its uncertainty ∆c. These effects are exacerbated in118

poorer quality data or in thicker samples with a shorter119

t (Fig. 4). In Fig. 4, endpoint selection strongly affects120

catchup calculations, shifting t. Using only a single fit to121

calculate c, and its corresponding fit uncertainty (δic) as122

∆c, underestimates ∆c, as typical δic for these data are123

1 ns. In the example shown in Figure 4, the difference124

between different fits of c were up to 30 ns. Instead, we125

use the standard deviation σc, calculated as discussed in126

this paper, as ∆c.127

Other factors include noise in the data and user-driven128

bias. Instrumental noise can be a few percent or more,129

and makes it difficult for experimenters to pinpoint c.130

Bias in initial fit estimates can also shift the results. Our131

previous method,11 and by extension, methods used in132

earlier studies, did not provide a way to weight channels133

by data quality or δic, or to estimate the role of user bias.134

In these cases, channels with bad or multiple fits would135

have been excluded from the extrapolation, increasing136

D’s overall uncertainty. Measuring the population of fits137

and c by varying the endpoints and the initial fit variables138

is one solution to all of these issues. The population’s139
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FIG. 4: Examples of different fits that can result from
variations in endpoint selection. As the shock front

enters the bromoform near 0 ns, the data signal drops
to a large negative value. In this case, the sample is

almost thick enough for the release wave to catch up to
the shock front within the target. As a result there is
<50 ns where the emission is constant. The “catchup”

or “breakpoint,” c, is the point at which emission
decreases and the signal voltage becomes less negative,
indicating that the release wave has arrived. In the fits

shown here (dashed and solid black lines), endpoint
selection varies c by 30 ns, doubling t[x]. With the new
technique a distribution of c can be determined, which
can be used to reduce the weighting of this point while

still including the data in extrapolation to find D.

standard deviation σc also provides quantitative means140

to weight data in fitting to find D.141

We chose to use random sampling instead of testing all142

possible combinations of endpoints for two reasons. First,143

sampling is much faster but yields statistically identical144

results. Second, proceeding through all endpoints in se-145

quence can lead to biases. We observed small variations146

in calculated fits based on the initial guess for the catchup147

variable c. As a conceptual example, seeding a fit of the148

same data subset with c=240 ns vs. c=260 ns will lead149

to differing final fit values of 249 and 251 ns respectively.150

When sampling, each fit is seeded from the previous fit,151

and this initial bias is assumed to be averaged due to152

the random nature of the fitting algorithm. Results of153

sampled data sets where the seed values were fixed (i.e.,154

set to 240 ns in the example above), instead of being155

seeded from the previous fit, are consistent with this as-156

sumption. The initial researcher-provided fit need only157

approximate the estimated catchup point. This reduces158

researcher bias in the fitting and endpoint selection.159
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C. Determination of D and CL160

To determine the release arrival,11,17 we constructed161

a simple model function of two intersecting indepen-162

dent line segments. We use a standard χ2 minimization163

algorithm26 to identify the intersection point, which is164

c. (Fig. 2). We chose this model because it is simple,165

returns a single variable of interest (c), and is consistent166

with the previous analysis of the Fe study.167

For each of the n channels per shot (6-14 channels,168

depending on target design), we first estimate initial fit169

variables, including c, for our model. We then define end-170

point ranges. These are selected to avoid limiting possi-171

ble solutions for c and maximize the number of possible172

fits. A typical range (i.e., the pool of possible endpoints)173

is between 150 and 400 points wide, leading to roughly174

50,000 possible fits per channel. In cases where the sam-175

ple thickness xn is nearly equal to D, these ranges may176

be reduced.177

The fitting algorithm then randomly selects endpoints178

and samples 1000-3000 fits to generate a histogram for179

c. The mean c̄ and σc by are found by fitting a normal180

distribution to the histogram. The onset o is found and181

we solve182

t[xn] = on − c̄n (3)

and183

∆t[xn] =
√

(∆o2n + σ2
c,n). (4)

Then for each shot we plot all t[xn] against x, and184

linearly fit, using ∆t[xn] as the weighting, to find185

t[x] = (a± ∆a)x+ (b± ∆b) (5)

We then solve for D:186

D =
−b
a

(6)

187

∆D = D

√(
∆b

b

)2

+

(
∆a

a

)2

(7)

We apply the results to Eqn. 2 to solve for CL and ∆CL.188

In cases where the data include sinusoidal noise, fits189

of both the noisy and filtered data were performed and190

compared with the clean paired channel. In all cases the191

fits to filtered data had better agreement with the non-192

noisy twin and were used in the final analysis for the193

shot.194

D. Synthetic Data195

To test and validate the fitting algorithm, artificial196

data sets were created with known origin, and then ana-197

lyzed using the same method used for experimental data.198

Six data forms, or test cases, were created by combining199

a line segment (Curve 1) with different curves, shown in200

Fig. 5a. While the analyzer is in a steady shocked state,201

the constant Up leads to constant emission. The opti-202

cal depth of the analyzer is << 1, so (using Beer’s Law)203

one can approximate the emitted light absorption by the204

unshocked analyzer as linearly dependent upon the thick-205

ness of the unshocked analyzer. This thickness steadily206

decreases in time as the shock front progresses through207

the analyzer, leading to an apparent linear increase in208

emission. This is the physical basis for selecting a linear209

fit in the first half of our fitting model and as Curve 1210

in our synthetic data. There is, however, no reason why211

our method could not be applied to non-linear models.212

Forms 1 and 2 are the intersection of two line segments;213

these differ mainly by the intersection angle. Forms 3-214

6 were based on the intersection of a line segment with215

a quadratic curve. The curvature and direction of the216

quadratic segments were varied to examine their effect217

upon the fit. The equations used to generate each of218

these forms are shown in Table I. Gaussian noise was219

added to each of these perfect (i.e., ΣN = 0) forms at220

three different noise levels (ΣN ) to simulate detector and221

digitizer noise. Fig. 5b shows form 1 at the different noise222

levels. Each of the “perfect” and noisy forms was then223

analyzed using the fitting method.224

III. RESULTS AND DISCUSSION225

A. Synthetic Data: Algorithm sensitivity to data form and226

noise levels227

Results of the analysis using synthetic data are shown228

in Table II. In cases 1 and 2 the noise-free data returned229

a single value for the breakpoint (i.e., the standard de-230

viation σc=0), which matched the calculated “perfect”231

value, as expected. The uncertainty of a single fit, δic,232

for each fit was small (10−8 units). The difference be-233

tween σc and δic is due to a combination of floating point234

precision, round off errors in calculations, and the min-235

imization algorithm of IgorPro,27,28 which stops after a236

specified minimum change in χ2 or a set number of iter-237

ations.238

As the noise levels increase, the mean c̄ deviates from239

the perfect c, and the calculated error and uncertainty240

increase. Regardless of the noise level, σc is smaller241

than the typical δic, and captures the true c within 2σc242

(Figs. 6a and 6b and Table II). As shown in Figs. 6a243

and 6b, the calculated fits cluster into a distribution that244

can be reasonably fit by a Gaussian. Note that in both245

Fig. 6a and Fig. 6b, the perfect case has a peak value of246

10,000, which was the number of fits made; this has been247

truncated in the figures to better show the distributions248

of the noisier cases.249

When some curvature is added to the data, as was250

done in Cases 3-6, the fits became poorer in quality, and251

the mean c̄ deviated further from the “perfect” c. In252
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FIG. 5: Plots of the curves used to generate synthetic
data. Subfig. A shows the non-noisy “perfect” curves,
with σN = 0. In all cases, curve 1 is identical. Subfig.
B shows the effects of the different noise levels used to
generate noisy synthetic data for Case 1. The different

noise levels have been offset vertically for clarity.

forms 5 and 6, including all data beyond the inflection253

points led to extremely poor distributions. In these cases,254

the range of endpoints was truncated to exclude points255

occurring after the inflection point of the second curve.256

However, the true c remained within 2σc of the mean257

c̄ for each distribution, even though a linear model was258

used to analyze data with known curvature.259

For these higher curvature cases, the typical uncer-260

tainty found in a single fit underestimates the error as-261

sociated with the data. As can be seen in Fig. 6c, the262

distribution of calculated breakpoints is not Gaussian,263

and shows both a sharp edge and a long tail. If a boxcar264

distribution is assumed instead of a Gaussian, the un-265

derestimation of the uncertainty worsens. These distri-266

butions are very unusual in cases of real data, implying267

curvature is minimal, and consistent with our observa-268

tions that most of the data channels resemble Figure 2.269
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FIG. 6: The distribution of calculated breakpoints c for
a.) Case 1 b.) Case 2 and c.) Case 3 at each noise level.
Legend is the same for each subfigure. Increased noise

leads to a broader distribution and increased
uncertainty (σc). Cases 1 and 2: Note that the

zero-noise distribution has only a single value, which
peaks at a count of 10000, the sample size. It has been
truncated in these graphs to improve visibility of the
other histograms. Case 3: The histograms for Cases
4-6 have similar structures. This distribution shows a

sharp edge, and is poorly fit by a Gaussian distribution.
Increased noise in the data appears to have little effect
on the resulting distribution other than to decrease the

peak value and lead to a more box-like distribution.
These non-Gaussian distributions are unusual in the

calculated breakpoints of real data.
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Future work on applications to non-linear data is dis-270

cussed later in the text.271

B. Model Performance with Experimental Data272

Sample histograms of the fitted catchup times, c, from273

our recent Mo study,17 are shown in Figs. 7a-7c, as well as274

the inset of Fig. 2. As can be seen, a variety of distribu-275

tions result. Most histograms are fit well by a Gaussian276

distribution similar to those shown in Fig. 2, inset, and277

Fig. 7a. In these cases, the mean of single Gaussian dis-278

tribution c̄ was used to determine the fit value, with the279

standard deviation as the uncertainty σc.280

Histograms of c were weighted by the uncertainty of281

each individual fit (δic), which we used as a goodness-of-282

fit estimator. We found that this made little to no differ-283

ence in c̄ and σc when compared to the first method,284

which was to equally weight each fitted value for c.285

Therefore we discarded such weighting as an unnecessary286

extra step and used equal weighting instead. σc is almost287

always larger than δic, which, based on the performance288

of the synthetic data, suggests some curvature is present289

in the experimental data. However, a Gaussian distribu-290

tion is sufficient in most cases, indicating the curvature291

is small enough to use our model. In the cases where σc292

was smaller than δic, we argue by the rule of large num-293

bers that the narrow distribution is a better indicator of294

the true catchup time c.295

Fig. 7a shows a special subset of experimental data.296

One in twelve channels suffered from 13.1 MHz sinusoidal297

noise, which originated in the oscilloscope. For each of298

these channels, a sine wave was fit to the noise, which299

is present prior to the shock breakout, and used to filter300

the data. The sampling algorithm would then be done on301

both the unfiltered and filtered data to calculate c̄ and302

σc. Each step had two probes, allowing the filtered and303

unfiltered data to be compared to the result of the unaf-304

fected “non-noisy” paired probe. The result of filtering,305

on all shots, was improved agreement with the non-noisy306

twin channel from the same step. This led to improved307

uncertainty in D, which was used in the calculation of308

CL.309

Not all histograms result in normal distributions, as310

shown in Figs. 7b and 7c. The differences in these distri-311

butions arise from the data. In the case of bimodal distri-312

butions like Fig. 7b, the choice of one peak over another313

affects the final calculation ofD. These distributions may314

arise if there is a small slope change in the data, but are315

generally not obvious in their origin. There is no clear316

way to choose one value over another. We chose instead a317

single broad distribution to overestimate σc, and reduce318

this channel’s weighting in the calculation of D, rather319

than exclude the point. We also considered the box-like320

distribution of this histogram, which used one-third the321

width of the box as the estimate for σc. However, we322

prefer the most conservative uncertainty estimate, which323

in this case was the wide Gaussian distribution.324
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FIG. 7: Combined comprehensive fits for different
channels from Mo sound speed studies, showing

variations in distributions. Subfig. A: Distributions of
fits to data affected by 13.1 MHz sinusoidal noise before

(dashed blue) and after (solid red) filtering. Filtering
improved agreement with the non-noisy twin signal

(solid black) collected at the same spot. This improved
agreement reduced the uncertainty in the catchup
distance D, despite typically larger σ in filtered

channels. Subfig. B: Endpoint ranges were chosen
such that catchup c could fall between 200 and 291 ns.

Fitted values fell between 237 and 252 ns. The
multi-modal structure arises from the data. In the final

calculation, a single Gaussian fit (heavy, blue) which
spans the full range of the histogram was used to

calculate the uncertainties; this method overestimates
the uncertainty due to the fit. Subfig. C: Endpoint
ranges were chosen such that 196 < c < 271 ns. The

fitted values fell between 229 and 243 ns. For simplicity
and consistency a broad Gaussian (blue) which

overestimates the uncertainty was chosen for the fit. An
asymmetric fit can be extracted but yields a D that is

statistically identical to that for the broadened
Gaussian fit.
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A similar approach was taken for the data in Fig. 7c,325

which can be treated as an asymmetric Gaussian distri-326

bution, with c̄ ∼232 ns, a lower σc of ∼.8 ns, and an up-327

per σc of 5 ns. Doing so did not significantly change the328

extrapolated D compared to using a single broad Gaus-329

sian distribution with larger σc, while requiring a good330

deal more effort, so in these cases we use the single larger331

σc. If such distributions were more common, it would be332

worthwhile to develop an alternate fitting model.333

This estimation of σc provides a means to weight the334

extrapolation, resulting inD with smaller propagated un-335

certainties than determined by previous methods. As a336

result, the typical 1σ uncertainty in the Mo CL is 0.5%.337

By comparison, analysis of the same data using the pre-338

vious algorithm had typical uncertainties of ∼2% and a339

maximum uncertainty of 7%. This method, flawed as340

it is and designed to overestimate the uncertainties, re-341

duces those uncertainties by roughly 80%, a significant342

improvement.343

We tested and rejected several alternate algorithms.344

One alternate method of choosing the endpoint range,345

which looked for inflection points in the χ2 value with346

time, was found to artificially narrow the possible range347

of catchup points, reducing estimated σc. We also used348

a one-sided linear fit instead of our two-segment model,349

and looked for the point where the signal appeared to de-350

viate from that fit. This method led to consistent biases351

associated with the data noise level and the fitted region,352

but was useful estimating the data range that must be353

included in every fit.354

Future work could further improve the results by355

switching to a linear-quadratic, quadratic-linear, or356

quadratic-quadratic model. Trend analysis could also357

be improved through estimation of noise variance in the358

data prior to shock breakout, and calculation of mod-359

els and fitting parameters to minimize observed varia-360

tion (maximize trend stationarity) following breakout.361

This method would likely yield a set of suitable func-362

tions, which would not need to be constrained to linear-363

linear or linear-quadratic models, from which a range of364

breakpoints would be determined. However, this would365

require additional assumptions regarding noise behavior366

and greater complexity.367
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TABLE I: Forms chosen to generate artificial data for
testing. Curve 1 was the same in all cases,

y = −4t− .64, while Curve 2 was varied as listed in the
table. Three fixed noise levels (ΣN = 3, 15, or 45, or
cases b, c, and d, respectively) were applied to the
analytically calculated (ΣN = 0, or case a) data to

examine the effect of noise on the analysis. The “perfect
breakpoint” given in the table below is the intersection

of the two curves; results of each case should be
compared to this number. The intersections are chosen

to be approximately the same (but not tuned to be
identical) in cases 3-6.

noise level curve 1: y = −4t− .64 c, perfect
Case ΣN = 0 ΣN = 3 ΣN = 15 ΣN = 45 curve 2: breakpoint

1 1a 1b 1c 1d y = 58.8t− 3984 67.2865
2 2a 2b 2c 2d y = 5t− 500 92.4741
3 3a 3b 3c 3d y = .233x2 + 10.026x− 1760 67.3566
4 4a 4b 4c 4d y = −.233x2 + 107.57x− 6208 67.2518
5 5a 5b 5c 5d y = 2.33x2 − 428.94x+ 18258 67.0502
6 6a 6b 6c 6d y = −2.33x2 + 546.54x− 26226 67.1696

TABLE II: Results of analysis of artificial data. The
perfect breakpoint c is calculated from the intersection
of the curves listed in Table I. The curves of Table I
were fitted using our sampling algorithm, with the

results plotted as histograms. The calculated
breakpoints shown in this table are calculated from the
mean of the Gaussian fit of the histogram of fits at each
of the different noise levels. The calculated uncertainties
of the breakpoint are the standard deviation of the fit

to the histogram of calculated breakpoints. The
uncertainty of each fit was also tabulated, and the most

common uncertainty is given in the table below.

c, perfect c̄, calculated breakpoints calc. std. dev. σc typical single fit uncertainty δic
Case breakpoint ΣN = 0 ΣN = 3 ΣN = 15 ΣN = 45 ΣN = 0 ΣN = 3 ΣN = 15 ΣN = 45 ΣN = 0 ΣN = 3 ΣN = 15 ΣN = 45

1 67.2865 67.2865 67.284 67.286 67.299 1.91E-10 1.96E-3 0.0124 0.0328 4.13E-08 2.9E-3 0.0146 0.0434
2 92.4741 92.4741 92.473 92.419 92.672 1.49E-11 0.0190 0.152 0.177 9.38E-09 0.0313 0.153 0.466
3 67.3566 68.645 68.392 68.425 68.184 1.997 1.488 1.525 1.325 0.0675 0.0514 0.0719 0.0828
4 67.2518 66.735 66.375 66.537 66.624 0.690 1.36 1.07 1.03 0.0119 0.0051 0.0181 0.0541
5 67.0502 66.7177 66.737 66.910 66.868 0.348 0.342 0.158 0.120 7.71E-3 4.83E-3 0.0195 0.0555
6 67.1696 66.9619 66.997 67.026 67.147 0.297 0.237 0.183 0.0122 6.37E-3 2.66E-3 8.98E-3 0.0238


