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Abstract—Building feature extraction approaches that can
effectively characterize natural environment sounds is challenging
due to the dynamic nature. In this paper, we develop a framework
for feature extraction and obtaining semantic inferences from
such data. In particular, we propose a new pooling strategy
for deep architectures, that can preserve the temporal dynamics
in the resulting representation. By constructing an ensemble
of semantic embeddings, we employ an `1-reconstruction based
prediction algorithm for estimating the relevant tags. We evaluate
our approach on challenging environmental sound recognition
datasets, and show that the proposed features outperform
traditional spectral features.

I. INTRODUCTION

Building concise representations for multimedia is crucial
for applications ranging from scene recognition, retrieval and
personal life-logging systems to field robot navigation. A
convenient approach to representing the content of multimedia
data is to associate textual tags that can describe the underlying
semantics. However, the effectiveness of semantic inference
completely relies on the richness of the data, and there
is an increasing need to utilize multiple data modalities to
understand a physical process. For example, short time events
such as an explosion can be effectively captured in the audio
data, while the visual data from this event may be incomplete
or unavailable due to the limited view or slow response of
the camera. Consequently, research efforts have been focused
on building tools that are specifically adapted for obtaining
inferences from each data modality.

In this paper, we consider the use of novel machine learning
tools to model and obtain semantic inferences from natural
environment sounds. The growing interest in technologies for
wearable computing, automatic life logging, and predictive
inferences in robotics presents a huge potential for algorithms
that characterize environmental sounds. A commonly adopted
pipeline for processing such data involves extracting features
to succinctly describe them, modeling the statistics of the
features, and deriving predictors that reveal the underlying
semantics. The quality of the extracted features is intimately
tied to the subsequent stages for obtaining inferences.

A common modus operandi for audio feature extraction
is to divide the signal into frames, and extract appropriate
features from each frame. Features that reveal the Fourier
domain characteristics, and those built on psycho-acoustic
principles are typically adopted for representing audio
data. However, these features do not often work well for
environment sounds. This is evident from the unsatisfactory
performance of features such as MFCCs (Mel-frequency

cepstral coefficients) and psycho-acoustic features such
as pitch, loudness, timbre, etc. in environmental sound
recognition [1]. This can be attributed to the differences
in the characteristics of natural sounds when compared to
conventional specch and audio data. For example, unlike
speech signals, which can be modeled as a sequence of
phonemes, environmental sounds cannot be atomized into a
small set of structures. Similarly, environmental sounds often
lack any rhythmic patterns found in music data. On the other
hand, methods such as Spectral Dynamic Features (SDF)
which attempt to model the temporal behavior of the signals
have been shown to provide an improved performance [2].
Alternately, learning features directly from data has been a
recent and exciting approach when dealing with large-scale
data [3]. For example, deep learning techniques, that can infer
a hierarchy of features with increasing complexity, have been
successful in modeling natural images [4]. This data-driven
approach can be particularly suitable to our case since it can
effectively capture the multitudes of variation in the data.

Proposed Approach Overview: In this paper, we develop
a new approach for extracting hierarchical features that can
be very effective in characterizing natural environmental
sounds. Furthermore, we present an approach based on
sparse representations to predict tags for novel test samples
using the proposed features. In general, data-driven feature
learning methods attempt to build meaningful representations
by transforming data to a new domain in which the factors
relevant to the task in hand are emphasized. This process of
adapting features is computationally intensive for large-scale
data, and can be severe when learning is carried out in
multiple layers. Furthermore, these methods ensure that the
representations are invariant to transformations that are not
relevant to the desired application. For example, the spatial
location of objects in images might not significantly affect
the behavior of an object recognition system, and hence it
is common to perform spatial aggregation (pooling) of local
features using histograms, spatial pyramids etc. [5]. Existing
strategies for pooling (e.g. max-pooling) do not work for
environmental sounds, since capturing the signal dynamics, in
both time and frequency, is crucial.

The proposed pipeline for feature extraction and semantic
inference is illustrated in Figure I. Instead of using standard
audio features, we provide spectrograms as the input to
our algorithm. In addition to being effective for modeling
environmental sounds, spectrograms enable us to build a
more robust pooling strategy. In a deep learning approach,
at each layer, filters are inferred from the input, and the



Fig. 1. (Left) An overview of the Proposed System. Each layer in the deep feature learning architecture involves a Mapper function that infers filters and
evaluates responses, and a Pooling function that partitions the feature space and aggregates the responses. By constructing an ensemble of semantic embeddings,
the underlying tags can be effectively estimated. (Right) A subset of layer-1 filters (dictionary atoms) learned from the dyadic binned spectrograms of the AASP
challenge dataset, where the x- and y-axes correspond to time and dyadic frequency bins respectively.

sparse filter responses are evaluated [6]. We refer to this
two step process as the Mapper in Figure I. We propose
a pooling strategy, correlation-pooling, which can preserve
the temporal dynamics in the resulting representation. To
address the challenges pertinent to scalability, we propose to
employ a mini-batch, damped K-hyperline clustering algorithm
for inferring filters at each layer. The filters learned are
atomic in nature and promote distributed representation of
the data-points. Furthermore, we perform partitioning of the
feature space based on their temporal similarity so that it
is computationally tractable to learn filters in the subsequent
layers. Interestingly, the partitioning provides a multi-view
representation of the data and we exploit this by building an
ensemble of topic models using the pooled features.

Finally, to perform semantic predictions, we construct
low-dimensional semantic embeddings for the tag vectors,
using graphs based on the topic models. For a test data
sample, tag prediction is performed using `1 reconstruction
with the low-dimensional embeddings corresponding to each
of the topic models in the ensemble. The final predicted tag
vector is obtained as the average of the individual predictions.
Experiments with challenging datasets show that the proposed
features outperform conventional spectral features used for
audio classification. Furthermore, partitioning of the feature
space to build an ensemble of representations enables the tag
prediction algorithm to capture multiple, possibly unrelated,
semantics in the data, simultaneously.

II. PROPOSED FEATURE EXTRACTION

In this section, we present a multi-layer feature extraction
approach, in which the bottom level consists of building
a structure-preserving representation by learning filters from
the spectrograms of audio clips (frames). Since preserving
temporal dynamics is crucial to characterizing environmental
sounds, we will use auto-correlation sequences of the filter
responses as the feature for each frame. However, this can
be a very high-dimensional vector and hence we perform
partitioning of the feature space, based on the temporal
structure of the corresponding filter responses. Futhermore,
we obtain random projections of the pooled sequences and
use the resulting features to train the subsequent layer of the
architecture.

Learning Filters: At each layer of the hierarchy, we learn a
set of filters, also referred as dictionary atoms, using which
the data samples are encoded and subsequently aggregated
to generate a succinct representation. We develop a modified
version of the K-hyperline clustering algorithm (Section 2.2.2,
[7]), referred to as mini-batch damped K-hyperline, to infer
the dictionary atoms in each level. The input to the first
layer of the hierarchy is the dyadic binned spectrograms of
frames collected from all audio clips, denoted by the matrix
Y1 ∈ RM1×N1 matrix. The filter responses in a level ` are
appropriately aggregated to generate the inputs for the next
level. The initial dictionary for a level, D0

` , is obtained as K`

randomly chosen input samples (normalized to unit `2 norm).
To combat the challenges with performing clustering on large
datasets, we propose to use only a random subset of the input
samples for updating the cluster centers during each iteration



TABLE I. MINI-BATCH DAMPED K-HYPERLINE CLUSTERING FOR
INFERRING FILTERS IN EACH LAYER OF THE HIERARCHY.

Input:
Y` - Input matrix of size M` × N`

K` - Desired number of clusters
T - Number of iterations
B - Size of the mini-batch

Algorithm:
For t = 1 to T

Draw a random subset Yt
` = [yt

i ]
B
i=1 from the input matrix Y`.

Loop for G iterations
For i = 1 to B

- Compute hi = (Dt−1
` )Tyt

i .
- Compute j = argmaxj(hij), where j = 1 · · ·K`.
- Set uj = hijyi + uj .
- Set vj = (hij)

2 + vj .
end
For i = 1 to K`

- Set dt
`,j =

uj
vj

+ dt−1
`,j .

- Normalize dt
`,j to unit `2 norm.

end
end

end

of the algorithm. This procedure is summarized in Table I.

Feature Space Partitioning: Following the dictionary design,
we encode all frames using the soft thresholding operator,
f`,i = max{0,DT

` y`,i − α}, where α is a tuned parameter.
Since the filter responses {f`,i}N`

i=1 will be used to construct
the input vectors for the subsequent layer, a large K` can
make dictionary learning computationally challenging in the
next layer. Consequently, it will be beneficial to partition the
feature space into multiple (possibly overlapping) subspaces,
and learn an ensemble of filters in the next layer. Though a
natural choice is to perform random partitioning of the space, it
can be highly suboptimal in describing the temporal dynamics.
We propose a greedy partitioning technique that builds multiple
R−dimensional (possibly overlapping) subspaces, where each
subspace is constructed using filters whose responses exhibit
similar temporal correlation structures. Let us denote the
number of subspaces in layer ` as G`. At a layer `, an audio
file indexed by j contains N j

` frames. Hence, the total number
of frames at level `, in the dataset with S clips, can be obtained
as N` =

∑S
j=1N

j
` . The filter responses can now be denoted

by the matrix F` ∈ RK`×N` .

In order to partition the feature space, we devise a
novel similarity metric for comparing the temporal correlation
structures of the filter responses. Let us consider the responses
of all N j

` frames from sound clip j to the filter d`,p, denoted
by the vector Fp,j

` ∈ RNj
` . We compute L−dimensional

autocorrelation sequences for N j
`+1 overlapping windows of

Fp,j
` . By stacking the correlation matrices Cp,j

` ∈ RL×Nj
`+1 ,

∀j = 1 · · ·S, we construct the overall correlation matrix
Cp

` ∈ RL×N`+1 , where N`+1 =
∑S

j=1N
j
`+1. The affinity

between the correlation structures Cp
` and Cr

` corresponding
to the filters d`,p and d`,r is measured as

A(p, r) =
Tr((Cp

` )
TCr

`)

Tr((Cp
` )

TCp
` ) +Tr((Cr

`)
TCr

`)
. (1)

We adopt a greedy approach to partition the feature space
into multiple overlapping subspaces. We begin by randomly

choosing a filter and picking R − 1 filters with the highest
similarity measures (from (1)) to form a subspace. Following
this, we randomly choose another filter, that has not been used
in the earlier step, and construct the second subspace. We
repeat this process until all filters are included in atleast one
of the subspaces.

Pooling: Since we consider only partially overlapping
windows while computing the auto-correlation sequences,
the number of frames in a clip j is reduced from N j

` to
N j

`+1. However, each new frame is now represented by a
set of G` vectors of dimensions R ∗ L each, instead of a
single K` dimensional response vector. Hence, we perform
dimensionality reduction on each of the G` vectors using
Random Projections (RP), where the resulting dimension
M`+1 << R ∗ L. According to the Johnson-Lindenstrauss
lemma [8], RP can approximately preserve isometry in
O(log(N)/ε2) dimensions for N samples, where ε bounds
the approximation error. The use of random projections is
applicable here as we will further cluster the aggregated
representations for learning filters in layer ` + 1. The pooled
responses, at level `, can now be denoted as {Yg

`+1 ∈
RM`+1×N`+1}G`

g=1, which are the inputs to the next layer.

In the `+1th layer, we learn filters, independently, in each
of the G` subspaces identified in the previous layer. The feature
space partitioning and the pooling operations significantly
reduce the computational cost for the mini-batch clustering.
Let Kg

`+1 denote the number of filters learned in the subspace
indexed by g (g = 1 · · ·G`). The total number of filters at level
` + 1 is K`+1 =

∑G`

g=1K
g
`+1 and the filter response matrix,

F`+1 ∈ RK`+1×N`+1 , is obtained by stacking responses from
all G` subspaces. We can then repeat the process of feature
partitioning and pooling exactly as the previous layer. In our
experiments, we employ a 2−layer architecture, and the output
of our feature extraction process are the matrices denoted
by {Yg

3 ∈ RM3×N3}G2
g=1. Long duration signals can benefit

from more number of layers to further reduce the number of
frames in the signal. More depth in the architecture can also
be achieved by increasing the overlap length in the windowing
operation during pooling. This reduces the rate of decrease in
the number of frames for each clip across layers.

III. PREDICTING SEMANTIC LABELS

In this section, we develop an algorithm for predicting
semantic tags for environmental sounds based on the features
extracted using the proposed approach. Using the pooled
features in the multiple partitions, we will learn an ensemble
of latent topic models and build topical representations for the
audio clips. Following this, we employ a novel strategy based
on sparse representations for tag prediction.

Ensemble Topic Models: In order to generate effective
representations for audio clips that will enable semantic
predictions, we build an ensemble of Replicated Softmax
Models (RSM) topic models on the pooled features. Note that,
we infer a topic model for each of the subspaces from the
feature partitioning. RSM belongs to the family of undirected,
energy-based models known as restricted Boltzmann machines
(RBM). The visible unit is modeled as a softmax variable
instead of a Bernoulli variable as in a conventional RBM.
Further details on this technique and its convergence properties



can be found in [9]. Since RSM requires a histogram of words
as input, we construct a bag-of-words model based histogram
for the audio clips in each of the subspaces. Each of these
models can be interpreted of as a local topic model based on
a limited set of words, and can reliably predict a subset of
tags or categories. Such an ensemble can provide a richer and
robust information, and we show that it is particularly suitable
for environment sounds which can manifest from numerous
categories in real scenarios.

Ensemble Tag Embedding: In order to explore the
relationships between the inferred topic models and the
ground truth tag vectors (in training data), we compute
low-dimensional semantic embeddings for the tag vectors
based on graphs constructed using the corresponding topic
models. In particular, we assume that the topic features
follow a union-of-subspaces model, wherein samples in a
subspace can be effectively reconstructed using other samples
in that subspace, and construct graphs based on sparse
representations. Each of the topic models in the ensemble
provides a different semantic embedding that improves the
predictability of some tags more than others. Furthermore, we
assume that the tag vector for any audio clip is sparse, and
that the `1 reconstruction of a test sample in both the topic
feature space and the embedded tag space are similar.

We begin by considering one topic model in the ensemble,
and let us denote the set of topic features using the matrix
X ∈ RP×S , where P indicates number of topics. The tag
(label) vectors for all sound clips are stored in the matrix
U ∈ RT×S , where T denotes the total number of labels in
the collection used to describe the training set. For the jth

clip, the entry Ui,j is set to 1 if the ith tag is associated with
that clip. We are interested in computing a linear projection
matrix V ∈ RT×d, where d� T , which will result in similar
low-dimensional embeddings for tag vectors with similar topic
distributions. The projection directions are estimated using an
approach similar to Locality Preserving Projections (LPP) [10],
with a sparse coding graph obtained from the topic features.
The edge weights in the graph correspond to sparse codes
obtained for each feature vector using all other features as
the dictionary. This approach is found to be more effective
than Euclidean distance based neighborhood in identifying the
semantic relationships.

Sparse coding of a topic feature xi can be performed as

min
αi

‖xi −Bαi‖+ λ‖αi‖1 (2)

where the dictionary B ∈ RP×S−1 is designed using all
features except xi and ‖.‖1 denotes the `1 norm. Denoting
the sparse coefficient matrix by A ∈ RS×S , we construct the
adjacency matrix for the graph as W = |A|+ |AT |.

Given the affinity matrix W ∈ RS×S , we compute the
degree matrix D with each diagonal element containing the
sum of the corresponding row or column of W. The d
projection directions for LPP are then computed by optimizing

min
V

S∑
i,j=1

‖VTui −VTuj‖22wij s.t.
S∑

i=1

‖VTui‖22dii = 1.

where wij and dii are the corresponding elements of the
affinity and the degree matrices. This optimization ensures that

TABLE II. CONFUSION MATRIX FOR THE AASP SCENE
CLASSIFICATION DATASET AVERAGED OVER 100 RUNS.

Estimated: A B C D E F G H I J
A (bus) 82 0 11 2 0 0 2 0 2 0
B (busy-street) 0 100 0 0 0 0 0 0 0 0
C (office) 5 0 91 0 0 1 1 2 0 0
D (open-market) 0 2 0 87 0 0 8 2 0 2
E (park) 10 10 36 0 24 12 6 0 0 1
F (quiet-street) 2 3 4 8 4 72 2 1 2 1
G (restaurant) 6 2 0 17 1 0 66 5 0 2
H (supermarket) 18 13 3 5 2 3 15 20 1 20
I (tube) 16 12 0 1 0 6 2 1 56 8
J (tube-station) 0 12 0 4 1 0 4 9 1 68

TABLE III. RECOGNITION PERFORMANCE OF THE PROPOSED
APPROACH ON THE PUBLICLY AVAILABLE AASP DEVELOPMENT DATASET

IN COMPARISON TO A FEW RELEVANT ENTRIES IN THE AASP SCENE
CLASSIFICATION CHALLENGE [11].

Method Average Accuracy (%)
Baseline MFCC + GMM 52
Cochleogram + Tonelikeness 55
Spectral and Temporal and Spatial Features 69
SparseRBM + Uniform Max-pooling 68
SparseRBM + Selective Max-pooling 75
i-vector analysis of MFCC + pLDA 65
Spectral and Temporal features + HMM 72
RQA features + MFCC 71
Our Method 71

the embedding preserves the structure defined by the sparse
coding based graph. Defining the graph Laplacian L = D−W,
this optimization problem can be rewritten as

min
trace(VTUDUTV)=I

trace(VTULUTV). (3)

and this can be solved using generalized eigen-value
decomposition.

Tag Reconstruction: Assuming that our deep architecture
for feature extraction contains h levels, for a test audio clip,
we extract the features, and construct the Gh (size of the
ensemble) topic distribution vectors {zg}Gh

g=1. The goal here
is to predict the tag vector for the test data using the topic
features. For a test clip, we compute the similarity with training
clips in terms of features using reconstruction coefficients as

βg = argmin
β
‖zg −Xgβ‖22 + λ‖β‖1. (4)

Let us denote the low-dimensional embeddings of the training
tags corresponding to the gth topic model as Eg = VT

g U.
We perform out-of-sample extension for the test sample by
estimating its embedding in the semantic space as, etestg =
Egβg . Since we know that the tag vector utest

g is sparse, we
solve the following inverse problem to predict the tag vector:

utest
g = argmin

u
‖etestg −Vgu‖22 + λ‖u‖1 (5)

Finally, we average the predictions from all models in the
ensemble to estimate the tag vector: utest = 1

Gh

∑Gh

g=1 u
test
g .

IV. EXPERIMENTS

IEEE AASP D-CASE Dataset: This dataset was created
for the recently organised IEEE AASP D-CASE scene
classification challenge [11]. The dataset consists of 30
seconds long audio clips, recorded using a Soundman binaural
microphone (PCM 44.1kHz 16 bit). The publicly available
development dataset contains 100 clips with 10 samples from



TABLE IV. ILLUSTRATION OF TAG PREDICTION BEHAVIOR IN THE
SUBSPACES FOUND. TABLE SHOWS THE TOP PREDICTED TAGS IN A FEW

SUBSPACES FOR A PARTICULAR CLIP. RELATED CONCEPTS ARE
CLUSTERED IN A SUBSPACE.

Ground Truth street-sounds, traffic-noise, sidewalk-conversations, city-streets
SubSpace 1 male, voice, female, vocal, speech
SubSpace 2 traffic, driving, cars, roar, motorbike
SubSpace 3 city, voices, wind, male, station
SubSpace 4 voices, children, screeching, steps, child
SubSpace 5 racing, radio, accelerating, motor, car

Fig. 2. Effect of using an ensemble of semantic embeddings on the
classification performance for a particular run on the AASP challenge dataset.
A majority vote classifier outperforms the individual classifiers learned using
the corresponding RSM topic models.

each of the following 10 classes: bus, busy street, office,
open market, park, quiet street, restaurant, supermarket, tube,
tubestation. It has an equal balance of indoor and outdoor
scenes. We achieve a recognition accuracy of 71%, averaged
over 100 runs, when compared to the baseline of 56% obtained
using MFCCs. Figure 2 shows the recognition accuracies
of each of the RSM topic models, and that of a majority
vote classifier combining all of them. Table II shows the
confusion matrix summed over 100 runs. The performance can
be improved by using a larger dataset to learn filters compared
to this dataset. Table III compares our performance to a few
related entries from the challenge. The details on the methods
used for comparison can be found in [11].

FreeField2010 Dataset: We will demonstrate tag prediction on
this, recently released, large dataset containing 7960 audio files
(10s long) [12]. These are mostly field recordings, and the total
number of tags in the dataset is 7729. The tag field-recording
was used as the search term to build the database from the
freesound website. We use linear SVM for classification, and
we report the performance for a subset of tags that have
sufficient number of examples in the dataset. The accuracies
and f1-scores are illustrated in in Figure 3. The tag prediction
behavior of our system in the total space of 7729 tags is
illustrated in Table IV. It can be observed that the semantically
similar tags have been clustered in subspaces.

V. CONCLUSIONS

To generate features suitable for environment sound
recognition we need a pooling method which builds invariance
with respect to their dynamic nature. Environment sounds can
pack complex semantics in a short time duration. For example,
a short clip can comprise of a bird chirping, moving traffic,
and people talking. We showed that, it is beneficial to partition
the filters into groups, and learn topic models for each group.
This ensemble representation provides more flexibility and

Fig. 3. Prediction performance (accuracy and F1-score) of the proposed
approach on a subset of the freefield1010 dataset. This subset was chosen
such that it contained a sufficient number of examples for each tag.

robustness to the feature extraction algorithm. By incorporating
this novel pooling strategy into a deep architecture, we
obtained features that outperform other commonly adopted
audio features. Extending this work, it can be beneficial
to further understand the complex relationships between the
multiple feature subspaces and appropriate semantic concepts.
We will also investigate methods to effectively fuse predictions
from the ensemble of semantic embeddings.
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