
LLNL-TH-663256

Load Balancing Scientific
Applications

O. T. Pearce

October 23, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

LOAD BALANCING SCIENTIFIC APPLICATIONS

A Dissertation

by

OLGA TKACHYSHYN PEARCE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Nancy M. Amato
Committee Members, Marvin L. Adams

Bronis R. de Supinski
Lawrence Rauchwerger
Valerie E. Taylor

Head of Department, Dilma Da Silva

December 2014

Major Subject: Computer Science

Copyright 2014 Olga Tkachyshyn Pearce

ABSTRACT

The largest supercomputers have millions of independent processors, and concurrency

levels are rapidly increasing. For ideal efficiency, developers of the simulations that

run on these machines must ensure that computational work is evenly balanced among

processors. Assigning work evenly is challenging because many large modern parallel

codes simulate behavior of physical systems that evolve over time, and their workloads

change over time. Furthermore, the cost of imbalanced load increases with scale because

most large-scale scientific simulations today use a Single Program Multiple Data (SPMD)

parallel programming model, and an increasing number of processors will wait for the

slowest one at the synchronization points.

To address load imbalance, many large-scale parallel applications use dynamic load

balance algorithms to redistribute work evenly. The research objective of this dissertation

is to develop methods to decide when and how to load balance the application, and to

balance it effectively and affordably. We measure and evaluate the computational load of

the application, and develop strategies to decide when and how to correct the imbalance.

Depending on the simulation, a fast, local load balance algorithm may be suitable, or a

more sophisticated and expensive algorithm may be required. We developed a model for

comparison of load balance algorithms for a specific state of the simulation that enables the

selection of a balancing algorithm that will minimize overall runtime.

Dynamic load balancing of parallel applications becomes more critical at scale, while

also being expensive. To make the load balance correction affordable at scale, we propose a

lazy load balancing strategy that evaluates the imbalance and computes the new assignment

of work to processes asynchronously to the main application computation. We decouple

the load balance algorithm from the application and run it on potentially fewer, separate

ii

processors. In this Multiple Program Multiple Data (MPMD) configuration, the load

balance algorithm can execute concurrently with the application and with higher parallel

efficiency than if it were run on the same processors as the simulation. Work is reassigned

lazily as directions become available, and the application need not wait for the load balance

algorithm to complete. We show that we can save resources by running a load balance

algorithm at higher parallel efficiency on a smaller number of processors. Using our

framework, we explore the trade-offs of load balancing configurations and demonstrate a

performance improvement of up to 46%.

iii

DEDICATION

To those who raised me, for instilling in me the value of purposeful search for knowledge.

To Roger, for your unwavering support.

To Zhanna, for showing me the joys of a child’s curiosity.

iv

ACKNOWLEDGEMENTS

I am fortunate to have many supportive people who have helped me throughout my

graduate school years.

I would like to thank my advisor, Dr. Nancy M. Amato, for her continual guidance

during my graduate and undergraduate studies. She provided an environment where I could

explore many different research interests. I would like to thank my committee members,

Dr. Lawrence Rauchwerger, Dr. Marvin Adams, Dr. Bjarne Stroustrup, Dr. Valerie Taylor,

and Dr. Bronis de Supinski, for their guidance and suggestions throughout this work.

I would like to thank many people at Lawrence Livermore National Laboratory, where

I was a student intern and Lawrence Scholar. Dr. Bronis de Supinski provided significant

guidance on my research and future career paths. Dr. Todd Gamblin and Dr. Martin Schulz

invested many hours into mentoring and research discussions. The Kull, ParaDiS, and

ddcMD teams helped me apply my research to their applications, the DEG team formed a

great working environment, Dr. Kathryn Mohror and Dr. John Gyllenhaal provided moral

support, and Tony Baylis taught me how to network.

I would like to thank the members of the Parasol Lab. Dr. Gabriel Tanase, Dr. Nathan

Thomas, and Dr. Timmie Smith were my graduate student mentors as I was starting my

research as an undergraduate and subsequently graduate student. Dr. Shawna Thomas, Dr.

Roger Pearce, Dr. Yuriy Solodkyy, Dr. Damian Dechev, Dr. Bonnie Kirkpatrick, and Dr.

Mauro Bianco formed the backbone of a strong research environment, and encouraged

open collaboration.

I would like to thank the students and faculty of Western Oregon University. Dr. Bob

Broeg, Dr. Scott Morse, Dr. Mike Ward, and Dr. Hamid Behmard provided guidance and

encouraged my thirst for knowledge. Luke Friedrichsen, Justin Hoeckle, Josh James, Becci

v

Randall Buenau, and Ron Wessels encouraged camaraderie, Rick Knechtel helped secure

funding for my undergraduate studies, and the Callen family helped me integrate in the

U.S.

Also, many thanks to the vast (anonymous) women in science blogging community, for

advice and moral support.

Finally, I would like to thank my family for their constant support.

This work was partially performed under the auspices of the U.S. Department of

Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

(LLNL-TH-663256).

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xii

1. INTRODUCTION . 1

1.1 Contributions . 2
1.1.1 Model for Comparison of Load Balance Algorithms 3
1.1.2 Lazy Load Balancing . 3
1.1.3 Load Balancing N-body Simulations 4
1.1.4 Summary . 5

1.2 Outline . 5

2. PRELIMINARIES AND RELATED WORK 7

2.1 Work Assignment and Load Balancing 7
2.2 Load Balance Definition and Metrics . 9
2.3 Load Balancing Strategies . 11

2.3.1 Centralized and Distributed Strategies 11
2.3.2 Application Load Balancing . 13
2.3.3 Graph Partitioning . 19
2.3.4 Overdecomposition, Scheduling, Work-Stealing 20
2.3.5 Comparison Table . 22

2.4 Tools for Measuring Load Imbalance . 22
2.5 Lazy Evaluation and Its Use for Optimizing Parallel Performance 24
2.6 Benchmarks and Applications . 25

2.6.1 Load Balance Benchmark . 25
2.6.2 ddcMD . 26
2.6.3 Barnes-Hut . 28

vii

2.6.4 ParaDiS . 30

3. MODELING LOAD BALANCE . 32

3.1 Overview of Approach . 34
3.2 Element-Aware Load Model . 35

3.2.1 Applying Element-Aware Load Model to Scientific Applications . 37
3.3 Load Balance Cost Model . 39

3.3.1 Types of Load Balancing Algorithms 39
3.3.2 Cost Model for Balancing Algorithms 40

3.4 Evaluation . 44
3.4.1 Evaluating Application Abstractions 48
3.4.2 Cost Model Case Study . 50

3.5 Summary . 54

4. LOAD BALANCING N-BODY SIMULATIONS 56

4.1 An Interaction-Based Load Balance Algorithm 58
4.1.1 Selecting Work Units . 59
4.1.2 Assigning Work Units to Processes 62
4.1.3 Interaction-Based Load Balance Algorithm Using

Sampling and Hypergraph Partitioning 64
4.2 Applications and Implementation . 65

4.2.1 Barnes-Hut . 68
4.2.2 ParaDiS . 68

4.3 Performance Evaluation . 69
4.3.1 Distribution of Work Unit Sizes and Impact on Performance . . . 69
4.3.2 Impact on Barnes-Hut Performance 76
4.3.3 Impact on ParaDiS Performance 77

4.4 Summary . 79

5. LAZY LOAD BALANCING . 80

5.1 Graph Partitioning is Useful but Scales Poorly 82
5.2 Application Drift . 83

5.2.1 Assignment Validity . 86
5.2.2 Assignment Efficiency . 86
5.2.3 Empirical Evaluation of Drift Metrics 87

5.3 The Lazy Load Balancing Approach . 88
5.3.1 Decoupling the Load Balance Algorithm 88
5.3.2 Asynchronous, Concurrent Load Balance Algorithm 91

5.4 Performance Model for Allocating Resources 93
5.4.1 Modeling the Application . 94
5.4.2 Modeling the Load Balance Algorithm 95

viii

5.4.3 Modeling Overall Runtime . 96
5.5 Lazy Load Balancing Implementation 99

5.5.1 Transparently Splitting Existing Application Partitions 99
5.5.2 Asynchronous Interaction Protocol Between Application and Load

Balancing Processes . 100
5.6 Performance Evaluation . 101

5.6.1 Evaluating Overhead of Lazy Load Balancing 101
5.6.2 Model Validation . 104

5.7 Conclusions . 106

6. CONCLUSIONS . 108

REFERENCES . 110

ix

LIST OF FIGURES

FIGURE Page

2.1 A Partitioned Graph of Vertices and Edges 8

2.2 Statistical Moments . 10

2.3 NBody Simulation Terminology . 14

2.4 Particle Decomposition in N-Body Applications 16

2.5 Force Decomposition in N-Body Applications 16

2.6 Geometric Decomposition in N-Body Applications 17

2.7 A Partitioned Hypergraph of Vertices and Hyperedges 19

2.8 Domain Decomposition in ddcMD and ParaDiS 27

2.9 Octree in Barnes-Hut Benchmark . 28

3.1 Application Element-Aware Load Model 36

3.2 Evaluation of Three ddcMD Models . 45

3.3 ParaDiS Model Evaluation . 46

3.4 Evaluation of Our Load Model on Benchmark and ddcMD 51

4.1 Defining Interaction Subsets . 61

4.2 Imbalance over Time in ParaDiS with Built-in Recursive Bisection Load
Balancer . 66

4.3 ParaDiS Computation as a Hypergraph 66

4.4 Effect of Sample Size and Sampling Strategy on Work Unit Size Variability
in Barnes-Hut . 67

4.5 Impact of Sampling Strategy on Resulting Imbalance and Cost of Load
Balancing Algorithm . 70

x

4.6 Impact of Sampling Rate on Performance of Graph Partitioner and Barnes-
Hut Application . 71

4.7 Effect of Sample Size and Technique on Work Unit Size Variability in
ParaDiS . 72

4.8 Impact of Sampling on Load Balance and Application Performance 73

4.9 Total Computation Time of ParaDiS . 77

5.1 Graph Partitioner Runtime . 82

5.2 Application Drift in Barnes-Hut . 84

5.3 Application Drift in ParaDiS . 85

5.4 Inline vs. Asynchronous Load Balancing 89

5.5 Resource Diagram of Load Balancing Configurations 94

5.6 Asynchronous Load Balancing Infrastructure and Interaction Between the
Components . 97

5.7 Valid State Transitions . 98

5.8 Application State Machine . 98

5.9 Load Balance Algorithm State Machine 98

5.10 Lazy Load Balance Algorithm Overhead 102

5.11 Model Parameters Obtained via Curve Fitting 103

5.12 Runtime of Load Balance Configurations and Model Selection 105

xi

LIST OF TABLES

TABLE Page

2.1 Example Load Distributions and Their Moments 11

2.2 Comparison with Other Load Balancing Frameworks 23

3.1 Applications and Their Representation in Our Load Model 38

3.2 Cost Model Variables . 40

3.3 RMSE for Plots in Figure 3.2 . 49

3.4 Sample ddcMD Imbalance Scenarios . 53

5.1 Break Down of Execution Time for Standard, Decoupled, and Asyn-
chronous Approaches to Load Balancing 91

xii

1. INTRODUCTION

The largest supercomputers have millions of independent processors, and concurrency

levels are rapidly increasing. Most large-scale scientific simulations today use a Single

Program Multiple Data (SPMD) parallel programming model, computing simultaneously

on multiple processors in order to obtain results faster. Scientific simulations often use

mesh cells, particles, or other logical elements to represent their domains, and divide

work between processes by assigning these logical elements to processes. When different

processes are assigned different amounts of work, a subset of them will wait during a

synchronizing operation for the slowest one to finish. This uneven assignment of work to

processes is called load imbalance. The performance penalty of load imbalance increases

with scale. Specifically, a simulation with more processes will waste more resources than

a smaller-scale simulation when waiting on a single slow process. We must therefore

fix even small imbalances at scale. Moreover, assigning computational work evenly

becomes increasingly difficult in an application’s strong-scaling limit, as the available

parallelism becomes more and more coarse-grained with respect to the number of processes.

Furthermore, many large modern parallel codes simulate behavior of physical systems that

evolve over time. In such simulations, the computational work per logical element may

change as the physical system evolves, causing a balanced assignment of work to processes

to become imbalanced over time. Thus, the dynamic behavior of these simulations can lead

to temporal imbalances in computational load among processes.

To address load imbalance, applications use dynamic load balance algorithms to

reassign work to processes evenly at runtime. Current load balance mechanisms are often

application-specific and make implicit assumptions about the computational load [24,

91]. Some strategies place the burden of providing accurate load information, including

1

the decision on when to balance, on the application [36, 80, 97]. Existing application-

independent mechanisms simply measure the application load without any knowledge

of the migratable tasks in the application [52, 93], which limits them to identifying the

imbalance without correcting it.

1.1 Contributions

The broad goal of this work is to develop general load balancing strategies that will

optimize the performance of a diverse set of dynamic parallel applications with temporal

imbalance by reassigning work to processes evenly at runtime throughout application

execution. The research objective of this dissertation is to decide when and how to balance

the applications, and to balance them effectively and affordably. We develop strategies to

measure and evaluate the computational load of the application, and decide when and how to

correct the imbalance. To make the load balance correction affordable at scale, we evaluate

the imbalance and compute the new assignment of work to processes asynchronously to

the main application computation. Research challenges of our work include describing

the computation of a diverse set of applications in a uniform manner, allowing flexibility

in instrumentation, and reusing load balancing algorithms while providing a way to add

new ones. Efficiently evaluating load imbalance, regulating the frequency of load balance

correction, and computing assignment of work to processes is a challenging problem as

researchers seek to leverage modern supercomputers to answer scientific questions through

simulation. We propose strategies to guide the decisions on when and how to rebalance an

application, and to make load balancing affordable at scale.

This work makes the following contributions:

• A model enabling the comparison of and selection among balancing algorithms for a

specific state of a simulation;

• A framework for decoupling and offloading the load balance computation, enabling

2

lazy load balancing;

• An accurate and fast method to evaluate and balance the load in N-Body simulations

with highly non-uniform density, based on adaptive sampling.

1.1.1 Model for Comparison of Load Balance Algorithms

In large-scale physics simulations process loads reflect the underlying physics phe-

nomena, so groups of processes simulating neighboring domains are likely to be similarly

overloaded or underloaded. Evaluative studies in this dissertation show that performance

of load balancing algorithms can be severely affected under such clustering. Our studies

confirm that while global load balance algorithms may correct the imbalance in a single

step at a cost of high overhead, diffusive algorithms correct the imbalance gradually but

pay a penalty for taking many steps to converge. Diffusive algorithms may be sufficient

for localized imbalances, but drastic and expensive imbalances across a large system may

require a drastic correction.

Informed by our study, we developed a model for comparison of load balance algorithms

in the context of a specific application imbalance scenario, enabling the selection of a

balancing algorithm that will minimize overall runtime. In the applications studied, our

model enables runtime evaluation of the imbalance in the application in terms of the

effectiveness of the available load balancing algorithms. Our model correctly selects the

algorithm that achieves the lowest runtime in up to 96% of the cases, and can achieve a

19% gain over selecting a single balancing algorithm for all cases.

1.1.2 Lazy Load Balancing

Several fundamental issues with the traditional approach to load balancing scientific

simulations hamper the effectiveness of load balancing. First, SPMD simulations typically

pause while a load balance algorithm runs, but this can cause the load balance algorithm

itself to become a bottleneck. Second, the load balance algorithms often do not scale up as

3

well as the simulation itself. For example, graph partitioners are widely used for balancing

the work in parallel scientific simulations, but they do not strong-scale well.

We propose an approach that relies on two key observations. First, application state

typically changes slowly in SPMD physics simulations, so work assignments computed in

the past will still produce good load balance in the future. Second, we can decouple the

load balance algorithm so that it runs concurrently with the application and more efficiently

on a smaller number of processes. Our approach allows the application to proceed while

the new assignment is computed; the application applies this work assignment once it has

been computed. We call this lazy load balancing. We show that the rate of change in work

distribution is slow for two parallel applications, and we implement a lazy load balancing

infrastructure to exploit this property. We show that we can save resources by running a

load balancing algorithm at higher parallel efficiency on a smaller number of processes.

Using our framework, we explore the trade-offs of lazy load balancing and demonstrate a

performance improvement of up to 46% on the application under study.

1.1.3 Load Balancing N-body Simulations

Our load balancing framework provides a common interface for suites of load balancing

algorithms to choose from, and adds a new accurate and fast method to address a particularly

challenging case of N-body applications with highly non-uniform density. N-body methods

simulate the evolution of systems of particles (or bodies). They are critical for scientific

research in fields as diverse as molecular dynamics, astrophysics, and material science [59,

91, 100]. Most load balancing techniques for N-body methods use particle count to

approximate computational work [24, 91]. We found that the assumption that particles

represent work is inaccurate, especially for systems with high density variation, because

work in an N-body simulation is proportional to the particle density, not the particle count.

We have demonstrated that existing techniques do not perform well at scale when particle

4

density is highly non-uniform, and developed a load balance technique that efficiently

migrates interactions instead of particles. We use adaptive sampling to create a hypergraph

of interactions and particles to represent the computation. Our aggressive sampling makes

the partitioning affordable by reducing the size of the graph by several orders of magnitude.

We implement and evaluate our approach on a Barnes-Hut algorithm [12] and a large-

scale dislocation dynamics application, ParaDiS [24]. Our method achieves up to 26%

improvement in overall performance of Barnes-Hut and 18% in ParaDiS.

1.1.4 Summary

Our contributions include an asynchronous infrastructure for load balancing high

performance applications, models for deciding when to balance and how to allocate the

resources in the system, and a novel algorithm for balancing N-body simulations with

highly non-uniform density. We evaluated the framework on a variety of high performance

applications.

Portions of this research were previously published or are currently under review.

Our load model for attributing computation to application elements was published at

the International Conference on Supercomputing (ICS) 2012 [74]. Our methodology

for explicitly load balancing N-body simulations with highly non-uniform density was

published at the International Conference on Supercomputing (ICS) 2014 [73]. Finally,

our approach for decoupling the resources used by the load balance algorithm and running

the load balance algorithm asynchronously to the application is under review, presented

here in Section 5.

1.2 Outline

Section 2 starts with the formal definitions of load balance and load balance metrics,

and details existing load balance algorithms and frameworks. Section 3 describes our model

for comparison of load balance algorithms in the context of a specific application imbalance

5

scenario, which enables the selection of a balancing algorithm that will minimize overall

runtime. Section 4 describes a load balancing method for N-body applications with highly

non-uniform density using an adaptive sampling method for selecting migratable tasks and

hypergraph partitioning for assigning them to processes. Section 5 describes our framework

for decoupling the load balance algorithm resources from application resources, and our

lazy load balance algorithm. This dissertation has revealed new directions for research that

are discussed in the concluding section.

6

2. PRELIMINARIES AND RELATED WORK

In this section, we cover background topics and related work that will be referred

to throughout the remainder of this dissertation. We define work and its assignment to

processes in Section 2.1. We introduce load balance terminology and metrics in Section 2.2.

We present load balancing strategies in Section 2.3, including the distinction between

global and diffusive strategies (Section 2.3.1), built-in application load balancing strategies

(Section 2.3.2), graph partitioning libraries (Section 2.3.3), and related work on overdecom-

position, scheduling, and work-stealing (Section 2.3.4). We present a comparison table

of existing load balancing strategies and their differences in Section 2.3.5. We present

related work on load balance measurement tools, and useful tool stacks in Section 2.4. We

present related work on lazy evaluation and its use for optimizing parallel performance

in Section 2.5. Finally, we describe the benchmarks and applications that we use in our

experiments, along with their built-in load balance algorithm, in Section 2.6.

2.1 Work Assignment and Load Balancing

Most SPMD physics simulations divide the simulated domain into logical elements,

which are assigned to processors in the parallel machine. Often, the computational work

per element varies over time, so evenly dividing elements among processors does not

guarantee an even distribution of work. Figure 2.1 shows an example application domain

with elements in the simulation divided among three processes. The domain is represented

as a graph with elements as nodes weighted by their computational work. Computation

associated with an element may depend on other elements, and this relationship is shown

as edges. Dotted edges represent inter-process communication.

In order to keep all processors occupied, applications use dynamic load balance algo-

rithms to reassign work periodically to processors. Fundamentally, load balance algorithms

7

1

2 3

2 5

1 2

3 2

2 1

2 1

4 2

7

Figure 2.1: A Partitioned (Dashed Lines) Graph of Vertices (Circles) and Edges (Links)

solve a work assignment problem. That is, they attempt to distribute work evenly across all

processes in the application by relocating application elements. Additionally, load balance

algorithms may consider other constraints, such as preserving locality among application

elements or minimizing communication.

More formally, a load balance algorithm computes an assignment, A : V → P , where

A is a function that maps a set of elements V onto a set of processors P . In a simulation

that performs redundant computation to avoid communication, A may not be a function,

but we restrict its definition for simplicity in this dissertation.

The work associated with any element vi is denoted W (vi) and the set of all elements

mapped to a processor pi ∈ P is denoted Vi:

Vi = {v|A(v) = pi} (2.1)

The total work assigned to any processor pi is denoted W (Vi):

W (Vi) =
∑
vj∈Vi

W (vj) (2.2)

An effective load balance algorithm attempts to ensure that the total work assigned to each

processor is equal, that is:

W (Vi) ≈ W (Vj) ∀i, j (2.3)

8

An optimal load balance algorithm will minimize the deviation of each processor’s assigned

work from the average: ∑
i

∣∣∣∣∣W (Vi)−
1

|P |
∑
j

W (Vj)

∣∣∣∣∣ (2.4)

It has been shown in prior work that the load balancing problem is essentially a balanced

graph partition problem. Unfortunately, this means that the load balanced assignment

problem is NP complete [46, 55].

2.2 Load Balance Definition and Metrics

Load imbalance is an uneven distribution of computational load among tasks in a

parallel system. In large-scale SPMD applications with synchronous time steps, imbalance

can force all processes to wait for the most overloaded process. The performance penalty

grows linearly as the number of processors increases, so regularly balancing large-scale

synchronous simulations is particularly important as their load distribution evolves over

time.

Load balance metrics characterize how unevenly work is distributed. The percent

imbalance metric, λ, is most commonly used:

λ =

(
Lmax

L
− 1

)
× 100% (2.5)

where Lmax is the maximum load on any process and L is the mean load over all processes.

This metric measures the performance lost to imbalanced load or, conversely, the perfor-

mance that could be reclaimed by balancing the load. Percent imbalance measures the

severity of load imbalance. However, it ignores statistical properties of the load distribution

that can provide insight into how quickly a particular algorithm can correct an imbalance.

Statistical moments provide a detailed picture of load distribution that can indicate

whether a distribution has a few highly loaded outliers or many slightly imbalanced pro-

9

σ =

√√√√ 1

n

n∑
i=0

(Li − L)2 (2.6)

g1 =

1
n

n∑
i=0

(Li − L)3

(
1
n

n∑
i=0

(Li − L)2

)3/2
(2.7)

g2 =

1
n

n∑
i=0

(Li − L)4

(
1
n

n∑
i=0

(Li − L)2

)2 − 3 (2.8)

Figure 2.2: Statistical Moments

cesses. These properties impact which balancing algorithm will most efficiently correct

the imbalance. Diffusive algorithms [34] can quickly correct small imbalances while the

presence of an outlier in the load distribution may require more drastic, global corrections.

Figure 2.2 shows the three most common statistical moments, standard deviation σ, skew-

ness g1 and kurtosis g2, where n is the number of processes and Li is the load on the ith

process. Positive skewness means that relatively few processes have higher than average

load, while negative skewness means that relatively few processes have lower than average

load. A normal distribution of load implies skewness of 0. Higher kurtosis means that more

of the variance arises from infrequent extreme deviations, while lower kurtosis corresponds

to frequent modestly sized deviations. A normal distribution has kurtosis of 0. Statistical

moments capture key information about load distribution but are insufficient to evaluate

the speed with which we can correct imbalance because they do not include information

about the proximity of application elements in the simulation space.

Table 2.1 uses several load distributions to show how the statistical moments fail

10

Load on each Process L λ σ g1 g2

(a) 0

1

2

3

P0 P1 P2 P3 P4 P5 P6 P7 2 0% 0 0 0

(b) 0

1

2

3

P0 P1 P2 P3 P4 P5 P6 P7 2 50% 1 1 −2

(c) 0

1

2

3

P0 P1 P2 P3 P4 P5 P6 P7 2 50% .5 2 1

(d) 0

1

2

3

P0 P1 P2 P3 P4 P5 P6 P7 2 50% .5 2 1

Table 2.1: Example Load Distributions and Their Moments

to distinguish key properties. For simplicity, we show a one-dimensional interaction

pattern of processes P0...P7 in which Pi and Pi+1 perform computation on neighboring

domains. The figure shows that load metrics cannot distinguish cases (c) and (d) while the

difficulty of correcting these load scenarios varies greatly if the computation is optimal

when neighboring portions of the simulated space are assigned to the neighboring processes.

In case (c), we could simply move the extra load on P1 to P0, while in (d) the extra load

from P7 must first displace work to P6, then from P6 to P5, and so on through P1 until the

under-loaded P0 receives enough work.

2.3 Load Balancing Strategies

2.3.1 Centralized and Distributed Strategies

Most dynamic load balancing strategies can be classified as centralized or fully dis-

tributed. In centralized strategies, a single (dedicated) processor gathers global load

information and makes a decision about global balance. In fully distributed strategies, each

11

processor exchanges information with its neighbors only.

Due to the smaller machine sizes of the past, many early load balancing methods were

centralized. These include state broadcast algorithms, in which each of the processors

broadcasts its new state with any change, a little less communication intensive broadcast

idle algorithms, in which a processor only broadcasts its status message when it enters an

idle state, and poll when idle algorithms [63]. Other solutions to the problem [27] include

enumerative [83], graph theoretic [17, 88, 89], linear and dynamic programming [18, 38,

44, 64, 70], and queuing theory solutions [29, 57]. The main drawback of centralized

approaches is that they do not scale well on modern architectures (petascale and beyond).

Several fully distributed load balancing methods have been implemented [103]. The

Sender (Receiver) Initiated Diffusion strategies are asynchronous schemes that only use

near-neighbor information. The Hierarchical Balancing Method organizes the system into a

hierarchy of subsystems within which balancing is performed independently. The Gradient

Model employs a gradient map of the proximities of underloaded processors in the system

to guide the migration of tasks between overloaded and underloaded processors. The

Dimension Exchange Method requires a synchronization phase prior to load balancing then

balances iteratively. Diffusive approaches [32, 34] balance load based on local information

by moving the work in the direction of decreasing load. While highly scalable, diffusive

approaches perform more work and can take a long time to bring the application to a

balanced state, which results in a higher imbalance in the meantime.

With scalability concerns of centralized approaches and poor global balance of dis-

tributed approaches in mind, our work explores a method that efficiently incorporates the

global load information by working asynchronously to the main computation.

12

2.3.2 Application Load Balancing

Many applications that can suffer from load imbalance implement their own load

balancing schemes. These schemes are usually implemented directly within an application,

and, as a result, are tightly coupled with application data structures and cannot be used

outside of the application. The drawback of the approach is that often only one algorithm is

implemented, and the application developers are unable to compare it to other algorithms.

ParaDiS [24] computes plastic strength of materials. It used to rely heavily on geometric

decomposition of the domain (i.e., hierarchical recursive bisection) for load balancing, but

currently uses oct-trees to partition the problem domain into similar load subdomains.

SAMRAI [105] is a structured AMR application that load balances boxes at each level of

mesh refinement. The processes are organized in a tree structure. An overloaded process

sends the extra load to its parent in the tree; the parent then decides to send the load to one

of its children or to send it further up the tree. This load balance strategy implicitly keeps

neighboring boxes on neighboring processes, but results in a communication bottleneck at

the root of the tree.

DistDLB [61] is a dynamic load balancing scheme for distributed cosmology simula-

tions on heterogeneous distributed systems such as the TeraGrid. It targets structured AMR

applications where the grid hierarchy is represented as a tree of grids. DistDLB employs a

hierarchical approach where rebalancing is possible on a global level (between groups) and

inside the groups themselves.

Chombo [31] is a collection of libraries for parallel block-structured AMR calculations.

It can load balance the AMR calculations by taking user-specified weights for each box

and assigning boxes to processors via the Kernighan-Lin algorithm [56] for solving the

knapsack problems.

Network Weather Service (NWS) [106] is a system that takes periodic measurements

13

Figure 2.3: NBody Simulation Terminology: n Particles (Blue Circles), Short-Range and
Long-Range Interactions (Red and Gray Edges)

of the currently deliverable performance (in the presence of contention) from each resource

and uses numerical models to generate forecasts of future performance levels dynami-

cally. Forecast data is continually updated and distributed so that resource allocation and

scheduling decisions may be made at run time based on expected levels of deliverable

performance. To forecast resource performance, NWS treats periodic measurements taken

from a particular sensor as a time series, and then uses different statistical models to predict

the next value in the series. Application level scheduling (AppLeS) [87] uses the NWS

estimates to schedule gene sequence comparison in a master-slave model.

2.3.2.1 Existing N-Body Load Balancing Techniques

N-Body methods simulate the evolution of systems of particles (bodies) by computing

force interactions on groups of particles. For forces like gravity and electromagnetism,

interactions involve pairs of particles, but in other systems they may involve larger groups.

Once the force is evaluated, particle positions are updated and the cycle repeats. Figure 2.3

shows a system of particles (circles) and the interactions between them (edges). In nearly

all N-body simulations, force computation is the bulk of the work. Modern algorithms

such as Barnes-Hut [12] and fast multipole [94] compute weak long-range forces (gray

edges) less frequently than stronger near-range forces (red edges). These algorithms use a

14

cutoff radius to determine whether an interaction is near- or long-range; the cutoff radius

is determined based on the particular physics simulated. This optimization reduces the

number of interactions computed. Still, the force computation dominates the runtime.

The largest N-body simulations are comprised of billions of particles and require a

parallel computer in order to run. Implementing an efficient parallel N-body algorithm is

difficult because the algorithm must evenly distribute work to all processes; this task of

dividing work is called domain decomposition. Since N-body systems are dynamic, the

interactions evaluated by each process change over time, and we must assess and load

balance the work frequently as the simulation progresses. Finally, in addition to dividing

work evenly, parallel N-body load balance algorithms must effectively manage locality. To

compute a force interaction, the simulation needs information on all particles involved. If

the particles are owned by different processes, then each process must gather information on

remote particles. Local copies of remote particles are called ghosts. Ghost communication

is expensive, so load balance algorithms must allocate particles so that such communication

is minimized.

Plimpton [76] classifies N-Body load balancing algorithms into three categories: particle

decomposition, force decomposition, and spatial decomposition. The remainder of this

section discusses these methods and their limitations in terms of the above criteria.

Particle Decomposition. In a system of N particles running in parallel on P processes,

particle decomposition assigns N/P particles to each process. Particle decomposition

is also called row-wise decomposition, as each particle and its associated interactions

comprise a single row in the force matrix, as shown in Figure 2.4. Each interaction is

computed by the process that owns the particles involved. If particles in an interaction are

owned by different processes, a tiebreaker function determines which process computes the

interaction. Unless extra care is taken to preserve particle locality, particle decomposition

does not minimize ghost communication. Work is balanced by moving the particles from

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
∑

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
∑

1 1 1 1 1 1 1 1 1 1 9

2 1 1 1 1 1 1 1 1 8

3 1 1 1 1 1 1 1 7

4 1 1 1 1 1 1 6

5 1 1 1 1 1 1 1 7

6 1 1 1 1 1 1 6

7 1 1 1 1 4

8 1 1 1 1 1 1 6

9 1 1 1 1 1 5

10 1 1 1 1 4

11 1 1 1 3

12 1 1 1 3

13 1 1 2

14 1 1

15 0

Figure 2.4: Particle Decomposition in N-Body Applications (Assigns Particles or Rows to
Processes)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
∑

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
∑

1 1 1 1 1 1 1 1 1 1 9

2 1 1 1 1 1 1 1 1 8

3 1 1 1 1 1 1 1 7

4 1 1 1 1 1 1 6

5 1 1 1 1 1 1 1 7

6 1 1 1 1 1 1 6

7 1 1 1 1 4

8 1 1 1 1 1 1 6

9 1 1 1 1 1 5

10 1 1 1 1 4

11 1 1 1 3

12 1 1 1 3

13 1 1 2

14 1 1

15 0

Figure 2.5: Force Decomposition in N-Body Applications (Assigns Blocks to Processes)

process to process. However, with a cutoff radius, the number of interactions per particle

varies with the local density of the system. Interactions are the bulk of the computation, so

particle decompositions become increasingly imbalanced the more density varies.

Force Decomposition. Rather than assigning rows of the force matrix as in particle

decomposition, force decomposition assigns individual blocks of the force matrix, as shown

in Figure 2.5. Because particle ordering in the matrix has no geometric correspondence,

force decomposition methods do not minimize ghost communication. This method works

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
∑

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
∑

1 1 1 1 1 1 1 1 1 1 9

2 1 1 1 1 1 1 1 1 8

3 1 1 1 1 1 1 1 7

4 1 1 1 1 1 1 6

5 1 1 1 1 1 1 1 7

6 1 1 1 1 1 1 6

7 1 1 1 1 4

8 1 1 1 1 1 1 6

9 1 1 1 1 1 5

10 1 1 1 1 4

11 1 1 1 3

12 1 1 1 3

13 1 1 2

14 1 1

15 0

Figure 2.6: Geometric Decomposition in N-Body Applications (Assigns Geometrically
Defined Groups of Particles to Processes)

well for a naive N-body algorithm that does not use a cutoff radius, because the force

matrix is densely populated. However, it does not work well for simulations that use a

cutoff radius because each matrix block may contain different numbers of interactions. To

balance work efficiently, blocks of the force matrix must be uniformly dense, which often

does not hold. Thus, force decomposition is not widely used.

Spatial Decomposition. Most modern N-body simulations use spatial decomposition,

in which the simulated physical domain is divided geometrically into subdomains, which

are then assigned to processes. Examples include orthogonal recursive bisection [14,

100], octrees [85, 101], fractiling [9], and space-filling curves [26]. Orthogonal recursive

bisection divides space recursively into cuboids until each cuboid contains approximately

N/P particles. Octree methods similarly divide three-dimensional subspaces into octants

until octants contain a similar number of particles. Other spatial decomposition methods

include Voronoi cell decomposition [91], in which each process is assigned a centroid

and owns the particles nearest its centroid (Figure 2.8a), and prismatic schemes [24], that

are variations on recursive bisection that allow subspaces to be divided more than twice

(Figure 2.8b). Spatial decomposition methods naturally preserve locality of particles and

17

therefore reduce ghost communication.

In all of these methods, each process owns the computation associated with the particles

in its subdomains. Figure 2.6 shows an example of particles 4, 6, and 7 assigned to a

single process, along with their interactions, assuming that these particles are in a geometric

subdomain. The work is balanced by adjusting the subdomain boundaries, and particles are

moved among subdomains as part of balancing. Some of these methods use the number of

particles per subdomain as an approximation of the actual workload, and interactions are

assumed to be evenly distributed throughout the subdomain. This assumption can result

in imbalanced computation. Other methods [104] weight each particle by the number of

interactions in which it participates. This approach is accurate, but the interactions per

particle may vary, necessitating the split of work on one particle between multiple processes.

Many of these methods (e.g., octrees and recursive bisection) impose limits on how the

space can be subdivided, which imposes further limits on assignment. Together, these

approximations lead to less accurate load balancing, which limits application speedup.

Limitations. No existing method balances N-body interactions directly with high preci-

sion. Particle and spatial decomposition attempt to assign similar numbers of interactions

to processes by assigning particles, introducing a high degree of approximation. The force

decomposition does balance forces directly, but it assumes a dense force matrix, while

many simulations have sparse force matrices. Spatial and particle decompositions reduce

bookkeeping costs; tracking spatial boundaries or even individual particles is still no worse

than O(n) in the number of particles. However, because the number of interactions is

much larger than the number of particles, tracking individual interactions quickly becomes

intractable. Even the force decomposition assigns blocks rather than individual interactions,

resulting in far less bookkeeping overhead. We need a new method that allows fine-grained

interaction balancing without the memory and performance overheads of tracking each

interaction directly.

18

2.3.3 Graph Partitioning

Figure 2.7: A Partitioned (Dashed Line) Hypergraph of Vertices (Triangles) and Hyper-
edges (Circles and Links)

A common approach to load balancing partitions computation associated with mesh or

graph representations of the applications.

A graph is a representation of a set of objects (vertices) in which some pairs of objects

are connected by links (edges), as shown in Figure 2.1. Both vertices and edges can be

weighted. When modeling computation of a parallel application, graph vertices represent

computation while graph edges represent communication.

A hypergraph is a generalization of a graph in which an edge (a hyperedge) can

connect any number of vertices, as shown in Figure 2.7. When modeling computation of a

parallel application, hypergraph vertices represent computation while hyperedges represent

communication. Each hyperedge connects the computation that requires the same data.

The graph partitioning problem is defined on data represented in the form of a graph

G = (V,E), with V vertices and E edges. The graph G is partitioned into smaller com-

ponents with specific properties. For instance, a k-way partition divides the vertex set

into k smaller components. A good partition keeps the number of edges running between

separated components small.

19

Several graph partitioners are available. ParMetis [80, 81] and Jostle [97, 98, 99] use

multilevel techniques that construct a hierarchy of coarser graphs. These tools coarsen the

graph by finding maximum independent matchings and collapsing them. At the coarsest

level they (re)partition the graph and then refine it during the coarsening process. Both

ParMetis and Jostle target unstructured graphs/meshes.

Zoltan [36, 37] includes a suite of geometric and graph partitioning algorithms, such

as recursive coordinate bisection, recursive inertial bisection, refinement tree-based parti-

tioning, oct-tree partitioning, ParMetis and Jostle. The application developer must supply

weights for the units of computation. Zoltan also assists the application in data migration.

DRAMA [13] is a dynamic load balancing library for finite element methods that includes

geometric and graph partitioning algorithms. Its repartitioning modules include iterative

pairwise load balancing, recursive coordinate bisection (RCB), and using ParMetis and

Jostle. Since DRAMA specializes on finite element methods, it includes cost functions to

account for work and communication associated specifically with elements and nodes in

the finite element mesh.

PLUM [16, 71, 72] is a load balancing framework for adaptive grid applications; it is

capable of using any partitioning algorithm and assists in efficient processor assignment

and remapping of the computation.

Users of these partitioners are left with the task of supplying the partitioners with

information about the current state of the application and the system, as well as the decision

of when to load balance.

2.3.4 Overdecomposition, Scheduling, Work-Stealing

Overdecomposition is a strategy to divide the work into many more pieces than pro-

cessors and then map them onto real processors. Overdecomposition can be used to map

multiple threads to each processor in an attempt to overlap computation and communica-

20

tion [20].

Charm++ [4, 15, 22, 58, 107] requires the programmer to express the decomposition

(of data and work) into a large number of objects that have small, well-defined regions

of memory on which they operate. Charm++ automates the mapping of data and work

to processors and uses object migration to manage resources adaptively. The Charm++

runtime system (RTS) measures the work represented by objects and records object-

to-object communication patterns. Based on the RTS measurements, the load balance

algorithm may migrate the objects between processor queues. Migrations can only occur

between method invocations which avoids having to save the stack. The application or an

external timer can trigger the load balance algorithm. The load database records information

about all objects (how much processor time they have consumed and the destinations and

sizes of messages that each object sent). A global reduction distributes load information

to all processors. Charm++ load balancing strategies include greedy strategies (assign

heaviest object to least loaded processor; generates significant communication), refinement

strategies (migrate heavy objects from the most overloaded processors to the least loaded

ones; less communication), a Metis-based strategy (partitions the communication graph

so that the edgecut is minimized), and a branch and bound strategy (runs until it attains

specified improvement).

Work-stealing is a common approach for multi-threaded environments; as one thread

completes its work, it ‘‘steals’’ some from a thread that still has work to do. CILK [30, 43]

is a multithreaded language that implements work-stealing. COOL [28] is a concurrent

object-oriented language designed to express task-level parallelism and uses a work-stealing

runtime scheduler. An idempotent work-stealing algorithm [68] relaxes the constraints

and guarantees that each task is executed at least once instead of exactly once. Dynamic

scheduling in OpenMP [7, 39] uses an internal work queue to give a chunk-sized block

of loop iterations to each thread. When a thread is finished, it retrieves the next block of

21

loop iterations from the top of the work queue. A scheduler can also assign more processor

internal resources to the most compute intensive tasks [19].

PREMA [10, 11] has a runtime model similar to Charm++, but in addition to explicit

load balancing initiation, the runtime system may preempt the application execution at

periodic intervals to perform load balancing functions. PREMA allows the user to plug

in different load balancing algorithms and provides diffusion and work-stealing. It also

employs a polling thread to keep a process up-to-date with current load information.

A hierarchical framework for irregular applications by Karamcheti and Chien [54]

views the computation as being made up of different thread subsets, each of which is load

balanced independently.

Overdecomposition, scheduling and work-stealing work only for the types of appli-

cations where the computation can be decomposed into independent objects; since many

applications do not work this way, a more general approach is necessary.

2.3.5 Comparison Table

Table 2.2 presents a summary of the key features of frameworks designed for load

balancing as their primary objective. While some of the frameworks rely exclusively on

runtime instrumentation, others only consider the loads as specified by the application

programmer. In this work, we consider both of those data acquisition schemes.

2.4 Tools for Measuring Load Imbalance

To understand what information would be useful in diagnosing and correcting load

imbalance, one needs to know that some important SPMD applications proceed in synchro-

nized time steps. During each synchronized time step, different computations (efforts) are

performed one after another. Every synchronization barrier between time steps and various

computations within them can lead to hundreds of thousands of processes waiting for the

few overloaded processes. Additionally, process loads vary between efforts and change

22

Fr
am

ew
or

k
In

fo
rm

at
io

n
Im

ba
la

nc
e

B
al

an
ci

ng
T

ar
ge

te
d

C
ol

le
ct

io
n

E
va

lu
at

io
n

A
lg

or
ith

m
s

A
pp

lic
at

io
ns

Partitioners

Jo
st

le
[9

8]
,

Pa
rM

et
is

[8
1]

pr
og

ra
m

m
er

sp
ec

ifi
ed

w
ei

gh
ts

no
ev

al
ua

tio
n,

ap
pl

ic
at

io
n

re
sp

on
si

-
bl

e
su

ite
of

ge
om

et
ri

c
an

d
gr

ap
h

pa
rt

i-
tio

ni
ng

al
go

ri
th

m
s

un
st

ru
ct

ur
ed

gr
ap

hs
/

m
es

he
s

Z
ol

ta
n

[3
6]

pr
og

ra
m

m
er

sp
ec

ifi
ed

w
ei

gh
ts

no
ev

al
ua

tio
n,

ap
pl

ic
at

io
n

re
sp

on
si

-
bl

e
ge

om
et

ri
c

an
d

gr
ap

h
pa

rt
iti

on
in

g,
Pa

rM
et

is
,J

os
tle

;c
us

to
m

iz
ab

le
un

st
ru

ct
ur

ed
gr

ap
hs

/
m

es
he

s

D
R

A
M

A
[1

3]
pr

ov
id

es
co

st
fu

nc
-

tio
ns

fo
r

w
or

k
an

d
co

m
m

.

no
ev

al
ua

tio
n,

ap
pl

ic
at

io
n

re
sp

on
si

-
bl

e
ite

ra
tiv

e
pa

ir
w

is
e,

R
C

B
,P

ar
M

et
is

fin
ite

el
em

en
tm

et
h-

od
s

C
ho

m
bo

[3
1]

un
if

or
m

w
ei

gh
ts

no
ev

al
ua

tio
n,

ap
pl

ic
at

io
n

re
sp

on
si

-
bl

e
K

er
ni

gh
an

-L
in

[5
6]

st
ru

ct
ur

ed
A

M
R

P
L

U
M

[7
2]

un
if

or
m

w
ei

gh
ts

no
ev

al
ua

tio
n,

ap
pl

ic
at

io
n

re
sp

on
si

-
bl

e
cu

st
om

iz
ab

le
ad

ap
tiv

e
gr

id

Overdecomposition

C
ha

rm
++

[4
,

15
,2

2,
58

,1
07

]
ru

nt
im

e
in

st
ru

m
en

ta
-

tio
n

ta
sk

po
ol

,a
pp

lic
at

io
n

or
tim

er
tr

ig
-

ge
re

d
gr

ee
dy

,
re

fi
ne

m
en

t,
M

et
is

-b
as

ed
,

br
an

ch
-a

nd
-b

ou
nd

;c
us

to
m

iz
ab

le
de

co
m

po
se

d
in

to
ob

je
ct

s

P
R

E
M

A
[1

1]
ru

nt
im

e
in

st
ru

m
en

ta
-

tio
n

ta
sk

po
ol

,
ap

pl
ic

at
io

n
tr

ig
ge

re
d

or
pr

ee
m

pt
iv

e
w

or
k-

st
ea

lin
g

[3
0]

,
di

ff
us

io
n

[3
4]

;
cu

st
om

iz
ab

le
de

co
m

po
se

d
in

to
ob

je
ct

s

C
ilk

[4
3]

,
C

O
O

L
[2

8]
ru

nt
im

e
ru

nt
im

e
dr

iv
en

w
or

k-
st

ea
lin

g
L

an
gu

ag
es

fo
r

sh
ar

ed
m

em
or

y,
m

ul
tit

hr
ea

de
d

Other

N
et

w
or

k
W

ea
th

er
Se

r-
vi

ce
[1

06
]

ru
nt

im
e

in
st

ru
m

en
ta

-
tio

n
ap

pl
ic

at
io

n
tr

ig
ge

re
d

ap
pl

ic
at

io
n-

dr
iv

en
m

as
te

r-
sl

av
e

sc
he

du
lin

g
di

st
ri

bu
te

d

O
ur

s
ru

nt
im

e
in

st
ru

-
m

en
ta

tio
n

an
d/

or
pr

og
ra

m
m

er
sp

ec
ifi

ed
w

ei
gh

ts
;c

us
to

m
iz

ab
le

im
ba

la
nc

e
ev

al
ua

tio
n,

as
yn

ch
ro

no
us

to
m

ai
n

co
m

pu
ta

tio
n;

ap
pl

ic
at

io
n

no
-

tif
ie

d
w

he
n

re
ba

la
nc

in
g

ne
ed

s
to

ha
p-

pe
n

an
d

tr
ig

ge
rs

it

lib
ra

ri
es

lik
e

Pa
rM

et
is

,c
us

to
m

iz
ab

le
va

ri
et

y

T
ab

le
2.

2:
C

om
pa

ri
so

n
w

ith
O

th
er

L
oa

d
B

al
an

ci
ng

Fr
am

ew
or

ks

23

dynamically over time, making temporal observation necessary.

We can analyze application performance through profiling tools such as PAPI [21], TAU

[84], VAMPIR [23] and Paradyn [65], that measure the total time spent on each processor

in different methods of the application. Users can insert their own timers, which requires

application-specific knowledge and can be time-consuming. Users can also look at all

methods of the application, or the underlying MPI methods, e.g., one might be interested in

how much time each processor spends at the synchronization barriers. Profiling can impact

the execution of the underlying application, and recording all of the data can overwhelm the

I/O system. Moreover, only total times for the entire application run are recorded, failing

to reflect the dynamic nature of the changing loads, and the data is not available at runtime

to adjust the loads dynamically.

Particularly suitable to our needs of load balance measurement is Libra [45], a scalable

load balance measurement framework for SPMD codes. Libra classifies application loops

into units of progress and effort. Progress loops represent steps towards some goal expressed

in the application domain. Effort loops are nested within progress loops, and represent a unit

of computation. Libra is a PNMPI [82] tool that works with the MPI profiling interface [50]

(Section 7.6). It collects load data per effort in each time step per process, providing the

temporal load information necessary for load balancing. The tool uses lossy compression

to make on-line measurement of production runs feasible. Compressed data is efficiently

written out at the end of the application run. In this work, we extend this load balance

measurement framework to make it useful for dynamic load balancing.

2.5 Lazy Evaluation and Its Use for Optimizing Parallel Performance

We build on the concurrent programming language notions of futures, promises, and

lazy evaluation. A future can be defined as a return value of an asynchronous function, or a

promise [8, 41]. Lazy evaluation [96] delays the evaluation of an expression until its value

24

is needed (non-strict evaluation) and may also avoid repeated evaluations (sharing). In our

work, we delay the rebalancing of the application until the directions to do so are known.

Overlapping computation and communication has long been considered an avenue

for optimizing parallel performance [33]. Benefits of the overlap have been explored for

different types of algorithms [47] and on different architectures [102]. The co-processor

mode of operation of Blue Gene/L [3] paired an application processor with another pro-

cessor dedicated to handling its communication tasks. Similarly, resources have been

dedicated to collective operations [78], I/O [95], checkpointing [79], tool services [5], and

visualization [77]. We take the idea of overlapping loosely coupled parts of the computation

and apply it to load balancing by overlapping application computation with the load balance

computation performed on dedicated resources.

2.6 Benchmarks and Applications

In this section, we describe the benchmarks and applications that we use in our experi-

ments, along with their built-in load balance algorithms. We use a Barnes-Hut benchmark,

and two large-scale scientific applications, ddcMD and ParaDiS, as well as a synthetic load

balance benchmark.

2.6.1 Load Balance Benchmark

We use a benchmark to represent classes of load imbalance scenarios that occur in

parallel scientific applications. Scientific applications can encounter varying initial load

configurations, different patterns of element interactions, and different scenarios of how

the imbalance evolves throughout the program. Our benchmark controls these variations to

ensure a wide range of experiments.

The main input to our benchmark is a directed graph with vertices that represent

application elements and edges that represent the communication/dependencies between

them. We derive input graphs from a variety of meshes from actual simulations. We use

25

Algorithm 1 Benchmark
Input. G← graph of elements, where each process P is assigned a subgraph GP and remote edges

represent interprocess communication
1: for P ∈ processes in parallel do
2: for timesteps do
3: for remote edges of GP do
4: Irecv/Isend messages
5: end for
6: for v ∈ G assigned to process P do
7: do work(weightv)
8: end for
9: MPI Wait(all messages)

10: if directive to rebalance then
11: rebalance
12: end if
13: update info for load balancing framework
14: end for
15: end for

a simple do work(time) function that accesses an array in a random order. We tune this

function for each architecture such that do work(1) executes for one second. Algorithm 1

outlines our benchmark, which calls do work for each graph vertex with the appropriate

weights to represent the load scenario. We send an MPI message for each edge that connects

vertices on different processes.

Our experiments vary the size of the graph, vertex and edge weights, and the initial

distribution. We can reassign each vertex to any process, as determined by the load balance

framework.

2.6.2 ddcMD

ddcMD [35, 48] is a highly optimized molecular dynamics application that has twice

won the Gordon Bell prize for high performance computing [48, 90]. It is written in C and

uses the MPI library for interprocess communication. In the ddcMD model, each process

owns a subset of the simulated particles and maintains lists of other particles with which its

26

ci

ri

(a) ddcMD

z

x

y

(b) ParaDiS

Figure 2.8: Domain Decomposition in ddcMD and ParaDiS

particles interact.

To allocate particles to processes, ddcMD uses a Voronoi domain decomposition. Each

process is assigned a point as its center. It ‘‘owns’’ the particles that are nearer to its

center than any other. A Voronoi cell is the set of all points nearest to a particular center.

Figure 2.8(a) shows a sample decomposition, with cells outlined in black and particles

shown in red. Around each cell, ddcMD also maintains a bounding sphere that has a radius

of the maximum distance of any atom in the domain to its center.

During execution, atoms that a process owns can move outside of their cell. When this

happens, ddcMD uses a built-in diffusion load balance algorithm that uses a load particle

density gradient calculation to reassign load. The balance algorithm moves the Voronoi

centers so that the walls of the Voronoi cells shift towards regions of greater density.

Voronoi centers can only move a limited amount closer to neighboring cells. Voronoi

constraints on the shape of cells also limit the possible distributions.

For our global load balancing algorithm, we use a point-centered domain decomposition

method developed by Koradi [60]. Each step, we calculate a bias bi for each domain i.

When the bias increases (decreases), the domain radius and volume increase (decrease).

We assign each atom (with position vector x) to the domain that satisfies:

|x − ci |2 − bi = minimal , (2.9)

27

where ci is the center of domain i, and we calculate the new centers as the center of gravity

for the atoms in each cell.

Although the Koradi algorithm is diffusive, we can run its steps independently of the

application execution until it converges. Thus, our implementation is a global method

since it only applies the final center positions in the application. We further optimize the

algorithm by parallelizing it and executing it on a sample of the atoms rather than the

complete set.

Figure 2.9: Octree in Barnes-Hut Benchmark

2.6.3 Barnes-Hut

Barnes-Hut [12] is a classic N-body algorithm that uses an octree to compute the

approximate force that the n particles in the system exert on each other (e.g., through

gravity). The n leaves of the octree are the individual particles, while the internal nodes

summarize information about the particles contained in the subtree (i.e., combined mass

and center of gravity). The octree is used to partition the volume hierarchically around the

n particles into successively smaller cells. Algorithm 2 demonstrates the main Barnes-Hut

algorithm, and Algorithm 3 details the force computation. While a precise computation

28

Algorithm 2 Pseudocode for Barnes-Hut
Input. particles← /* read input */;

1: for int step = 0; step < maxTimestep; step++ do
2: Octree octree = new Octree();
3: for ∀ particle p ∈ bodies do
4: octree.Insert(p);
5: end for
6: for ∀ Subtrees s ∈ octree do
7: s.ComputeCombinedMass();
8: s.ComputeCenterOfGravity();
9: end for

10: for ∀ Particle p ∈ bodies do
11: b.ComputeForce(octree);
12: end for
13: for ∀ Particle p ∈ bodies do
14: b.Advance();
15: end for
16: end for

would have to consider O(n2) interactions, the Barnes-Hut algorithm uses the summary

information contained at each level of the hierarchy to approximate interactions for far

away particles. Forces on particles that interact with other particles in nearby cells are

computed directly, but for interactions with cells that are sufficiently far away, performing

only one force computation with the cell is sufficient.

This algorithm hasO(n log(n)) complexity. For example, consider the two-dimensional

hierarchical subdivision of space in Figure 2.9. The algorithm checks the distance to the

red cell’s center of gravity (red circle). Because the distance is not large (red arrow),

interactions with all bodies in the red cell are computed (black arrows). Because the

blue cell’s center (blue circle) is far enough away, only the interaction with the center is

computed (blue arrow, a single computation), instead of for each body (dashed arrows).

We created a distributed version of Barnes-Hut based on a shared memory implementa-

tion from the Lonestar suite in Galois [25, 75]. The code is written in C++ and uses MPI

for communication.

29

Algorithm 3 Pseudocode for Barnes-Hut ComputeForce()
Input. Particle p;

1: stack.PushBack(root);
2: while !stack.empty() do
3: OctreeNode node = stack.PopBack();
4: if distance(p,node) > threshold /* node is far */ then
5: ComputeForce(p, node);
6: else
7: for ∀ child ∈ node.children() do
8: if child is leaf then
9: ComputeForce(p, child);

10: else
11: stack.PushBack(child);
12: end if
13: end for
14: end if
15: end while

2.6.4 ParaDiS

ParaDiS [6, 24] is a large-scale dislocation dynamics simulation used to study the

fundamental mechanisms of plasticity, written in C/C++ with MPI for interprocess commu-

nication. It computes the short-range forces directly and uses multipole expansion [49, 94]

for long-range force computation. ParaDiS simulations grow in size as they progress,

necessitating periodic rebalancing.

Currently, ParaDiS uses a spatial domain decomposition and has several methods for

adjusting the decomposition at runtime. Recursive sectioning or recursive bisection can

be used to decompose the domain into spatial prisms, and one prism is assigned to each

process. The 3-dimensional recursive sectioning decomposition first segments the domain

in the X direction, then in the Y direction within X slabs, and finally in the Z direction

within XY slabs, as demonstrated in Figure 2.8(b). The recursive bisection algorithm bisects

the space in the X, Y and/or Z dimensions into octants, quarters or halves (depending on

the number of domains specified per dimension) such that the computational cost of each

30

sub-partition is roughly the same; the decomposition is then recursively applied to each of

the sub-partitions.

ParaDiS uses empirical measurements as an input to its load balancing algorithm. It

estimates load by timing the computation that the developers consider most important

for load balance. The load balancing algorithm adjusts work per process by shifting the

boundaries of the sections. The size of neighboring domains constrains the magnitude of a

shift since the algorithm does not move a boundary past the end of a neighboring section.

31

3. MODELING LOAD BALANCE 1

Load balance is critical for performance in large parallel applications. Improving load

balance requires a detailed understanding of the amount of computational load per process

and an application’s simulated domain, but no existing metrics sufficiently account for

both factors. Current load balance mechanisms are often integrated into applications and

make implicit assumptions about the load. Some strategies place the burden of providing

accurate load information, including the decision on when to balance, on the application.

Existing application-independent mechanisms simply measure the application load without

any knowledge of application elements, which limits them to identifying imbalance without

correcting it.

Applications need information on both when and how to rebalance; the three load

balancing steps are:

1. Evaluate the imbalance;

2. Decide how to balance if needed;

3. Redistribute work to correct the imbalance.

We address the first two requirements and derive complete information on how to per-

form the third; the application must be able to redistribute its work units as instructed by our

framework (a requirement also imposed by partitioners [36, 80]). Our load model couples

abstract application information with scalable load measurements. We derive actionable

load metrics to evaluate the accuracy of the information. Our load model evaluates the

cost of correcting load imbalance with specific load balancing algorithms. We use it to

select the method that most efficiently balances a particular scenario. We demonstrate this

1ACM, 2012. This is the authors version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in International Conference for
Supercomputing (ICS), 2012 [74], http://dx.doi.org/10.1145/2304576.2304601.

32

methodology on two large-scale production applications that simulate molecular dynamics

and dislocation dynamics. Overall, we make the following contributions:

• An application-independent load model that captures application load in terms of the

application elements;

• Metrics to evaluate application-provided load models and to compare candidate

application models;

• A methodology to evaluate load imbalance scenarios, and how efficiently particular

load balance schemes correct it;

• A cost model to evaluate balancing mechanisms and to select the one most efficient

for a particular imbalance scenario;

• An evaluation of load balance characteristics in the context of two large-scale pro-

duction simulations.

We show that ad hoc application models can mispredict imbalance by up to 70%

and the widely used ratio of maximum load to average load incompletely represents

imbalance. Our models provide insight into the cost of algorithms such as diffusion [34]

and partitioning [80]. Our model correctly selects the algorithm that achieves the lowest

runtime in up to 96% of the cases, and can achieve a 19% gain over selecting a single

balancing algorithm.

The remainder of this Section is organized as follows. We give an overview of our

method in Section 3.1; it addresses the shortfalls of current load metrics described in

Section 2.2. We define our application-independent load model in Section 3.2 and our cost

model for load balancing algorithms in Section 3.3. We evaluate application models and

demonstrate how to use our load model to select the appropriate load balancing algorithm

in Section 3.4.

33

Algorithm 4 Using the Load Model (Application code in Italics)
Input. G← graph of work units and interactions

1: for timesteps do
2: execute application iteration
3: send G to LB Framework
4: update Load Model based on iteration measurements and G
5: use Cost Model for cost-benefit analysis of available LB algorithms
6: if benefit of rebalancing > cost of rebalancing then
7: provide selected LB algorithm with accurate input
8: send instructions on how to rebalance to application
9: end if

10: if instructed to rebalance then
11: rebalance as directed by LB Framework
12: end if
13: end for

3.1 Overview of Approach

The computational load in high-performance physical simulations can evolve over time.

Our novel model, which represents load in terms of application elements, provides a cost-

benefit analysis of imbalance correction mechanisms. Thus, it can guide the application

developer on when and how to correct the imbalance.

Algorithm 4 summarizes the steps of our method. The core of our load model is

a graph that abstractly represents application elements (vertices) and dependencies or

communication between them (edges). The application elements are the entities that can be

migrated to correct imbalance. A developer only needs to provide the work units and their

interactions (the same input that they would provide to a partitioner) (Algorithm 4, line 3).

Our framework then builds a graph to represent this abstract information.

Our load model combines the abstract application representation with existing tools’

measurements of the degree of imbalance to evaluate the load accurately in terms of the

application elements (Algorithm 4, line 4). We perform a cost-benefit analysis of available

load balancing algorithms to determine if rebalancing the application would be beneficial

34

at a given time, and, if so, which load balancing algorithm to use (Algorithm 4, line 5).

We give accurate load information to the load balancing algorithm to determine how the

application should be rebalanced (Algorithm 4, line 7). We instruct the application to

rebalance (answering the when question) with that load balancing algorithm (answering the

how question) (Algorithm 4, line 8).

We show that evaluation of the imbalance and correction mechanisms requires aware-

ness of application information. Our general framework characterizes load imbalance and

augments existing load metrics by facilitating the evaluation of developer-provided load

estimation schemes. Thus, a developer can use it to refine ad hoc load models and to

understand their limitations. We demonstrate this process for two large-scale applications

in Section 3.4.1. The developer can then use our cost model to select from available load

balancing algorithms, as we show in Section 3.4.2.

3.2 Element-Aware Load Model

Parallel scientific applications decompose their physical domain into work units, which,

in different applications, can be elements that represent units of the simulated physical

space, particles modeled, or random samples performed on the domain. Some application

elements may involve more or less computation than others due to their physical properties

or spatial proximity. Section 2.2 shows that a load model must be aware of the application

elements and their interactions and placement in order to understand load imbalance and,

more importantly, how to correct it. A model that does not include this information will fail

to capture the effects of the proximity of elements in the simulation space and the mapping

of the simulation space onto the process space.

Our investigation of large-scale scientific applications has shaped our novel application-

element-aware, application-independent load model that represents application elements

and interactions between them. Our API enables the application to provide our frame-

35

1

2 3

2 5

1 2

3 2

2 1

2 1

4 2

7
1

2

2

3

1

2

Process 0 Process 1 Process 2
CompUnits = 7 CompUnits = 4 CompUnits = 5
CompWt = 16 CompWt = 8 CompWt = 16

MeasuredLoad = 11 MeasuredLoad = 5 MeasuredLoad = 10

Figure 3.1: Application Element-Aware Load Model

work with abstract application information at the granularity of the application domain

decomposition. This granularity allows our model to reflect application elements, their

communication and dependencies, and their mapping to processes. Most load balancing

algorithms analyze and redistribute work with the same granularity, which enables our

framework to guide them. We provide a general methodology to map observed application

performance accurately to the application elements at the appropriate granularity level.

Figure 3.1 illustrates our load model: the edges represent bidirectional interactions

between application elements. Solid edges represent interactions within a process, while

dashed edges represent interprocess communication. The relationships between application

elements within the domain decomposition provide the communication structure and the

relative weights of computation in the model. Node weights indicate the computation

required for each element as anticipated by the application (i.e., the application load model).

Importantly, we can correlate this information to wall-clock measurements of the load on

each process. The example in Figure 3.1 shows that Process 0 has 7 work units with an

application anticipated load or relative computation weight of 16, and its work units have 4

channels of communication with elements on Process 1 with a total relative communication

cost of 6. For example, we measure the load on Process 0 to be 11.

36

We must carefully consider the difference in modeled and measured load. If the model

is accurate, the two are linearly related. If they are not directly proportional, the application

model is incomplete and could be improved. We discuss our methodology to evaluate

abstract application information in Section 3.4.1. When we are satisfied with the model

accuracy, we can use it to compute the load distribution metrics and to observe how the

load is distributed throughout the process space in terms of application elements.

3.2.1 Applying Element-Aware Load Model to Scientific Applications

Table 3.1 illustrates the versatility of our model by showing work unit mappings for

three major types of scientific applications.

3.2.1.1 Unstructured Mesh

In unstructured mesh applications, each cell in the mesh is an element. We represent

the mesh connectivity with edges. In some unstructured mesh applications, the cells may

require similar computation and we would anticipate unit computation per mesh cell. In

others, the computation per cell may be proportional to the cell’s volume, and we reflect this

relationship in the weight of each node in our model. Table 3.1(a) shows an unstructured

mesh application that performs a Monte Carlo algorithm on its mesh. In this case, the work

is proportional to the number of samples in each mesh cell, so we use the sample count as

the node weight. We show communication between neighboring grid cells as edges.

3.2.1.2 Molecular Dynamics

In classical molecular dynamics applications and other N-body simulations, each

individual body is an element. Edges reflect the simulated neighborhood of the bodies:

each body is connected to others within a cutoff radius (i.e., those with which it interacts),

as Table 3.1(b) shows. As we discuss in Section 3.4.1, we can select from several models

for computation per element. Simple models assume that the work per body is constant,

37

Type of Application, elements and
interactions

Sample Applica-
tion Image

Representation in
App.

Our Representa-
tion

(a) Unstructured Mesh
• e.g., particle transport or fi-

nite element applications
• elements: cell volume or

number of samples in each
cell (Monte Carlo algo-
rithms)

• interactions: mesh connec-
tivity

4
5

2

3

1
2

(b) N-body
• e.g., Molecular Dynamics

Applications
• elements: (sampled)

molecules
• interactions: molecules

within range of interac-
tion r (as defined by the
application)

r

1

1

1

1

1

1
1

1

1

1

(c) Other - Empirical Model
• e.g., ParaDiS (Section

4.2.2)
• interactions: graph of pro-

cess communication
• elements: time in

developer-defined ‘key’
routines (green); in-
complete coverage of
application behavior (red)

main

fn1

fn2

fn3

fn4

fn5 fn6

fn7 fn8

fn9

P0

P1 P2

P3

P4

P5 P6

4.6s

2.1s 5.3s

5.1s

4.2s

4.1s 3.8s

Table 3.1: Applications and Their Representation in Our Load Model

38

while others reflect the density of the body’s neighborhood.

3.2.1.3 Empirical Model

Some applications, such as ParaDiS [24], use empirical models to anticipate compu-

tation per element. An application developer can construct this type of model by placing

timers around important computation regions. Table 3.1(c) shows how ad hoc placement

of timers may omit important load constituents.

3.3 Load Balance Cost Model

In this section, we use our load model to evaluate the cost of two types of load balancing

algorithm. Our cost model can guide selection of the best algorithm for specific imbalance

scenarios.

3.3.1 Types of Load Balancing Algorithms

3.3.1.1 Global Algorithms

A global balancing algorithm [36, 80, 97] takes information about the load on all

tasks and decides how to redistribute load evenly in a single step. Global decisions can

be costly. Sequential implementations must process data for an entire parallel system.

Parallel implementations can communicate excessively. Global algorithms also can require

substantial element movement. However, if the cost of balancing is low, global algorithms

balance load in a single step and correctly handle local minima and maxima.

3.3.1.2 Diffusive Algorithms

A diffusive balancing algorithm [34] performs local corrections at each step and only

moves elements within a local neighborhood in the logical simulation domain. Diffusive

algorithms can take many steps to rectify a large imbalance because load can only move

a limited distance. However, diffusive algorithms are scalable because they only require

local information, and element movements can be mapped to perform well on high diameter

39

Variable Definition How Determined

Lave Average process load 1
procs

procs∑
i=0

Li

Li Load of process i Measured or estimated by Algorithm 5

Di Set of processes with elements that can
be moved to process i

Derived from edges in load model

Lij Load of process j ∈ Di Measured or estimated by Algorithm 5

γ Load shifting coefficient in Algorithm 5 Provided by application, γ ≤ 1

convergence steps Number of steps for diffusive algorithm
to converge

Derived by simulating diffusion, Algo-
rithm 5

Lmaxi
Maximum process load at step i Simulated (diffusion); ≈ Lave (global)

ElementsMovedi Largest number of elements moved to a
process at step i

Simulated (diffusion);
≈ Elementsmax

Lave

Lmax−Lave
(global)

CDataMvmt Time required to send ElementsMovedi Modeled empirically,
α+ βElementsMoved

CLbDecision Runtime of load balancing algorithm,
e.g., Cglobal and Cdiff

Measured or modeled empirically

CBalAlgo Balancing algorithm cost: algorithm
time plus redistribution time

CLbDecision + CDataMvmt

AppTimeBalAlg Total application runtime under BalAlg,
e.g., AppTimediff

Modeled by cost model

steps Number of time steps that the application
takes

Arbitrary, same for global and diffusion
algorithms

Table 3.2: Cost Model Variables

mesh and torus networks used in the largest machines.

3.3.2 Cost Model for Balancing Algorithms

Our cost model captures the rebalancing characteristics of diffusive and global algo-

rithms. Developers typically choose load balance algorithms based on their intuition about

the scalability of particular algorithms. For example, one might expect the cost of a global

balancing scheme to be higher than that of a diffusive algorithm at scale because the time

required for an immediate rebalance outweighs the amortized cost of local diffusive balanc-

40

ing. The intuition is approximate and sometimes inaccurate. Our cost model provides a

quantitative basis for selecting among algorithms. Table 3.2 summarizes the variables that

we use to define this cost model.

Our cost model only considers the current imbalance. Future imbalances are highly

dependent on how the simulation evolves. Predicting them is generally infeasible (other-

wise we could predict the result of the simulation). We assume a continuous evaluation of

the imbalance in an application’s load leading to new balancing decisions when necessary.

These decisions can consider the (observed) rate at which the application becomes imbal-

anced, and apply a global load balance algorithm when drastic changes are necessary or a

diffusion scheme to handle more modest imbalances.

A load balancing algorithm’s cost is the time to decide which elements to move plus

the time required to move the elements:

CBalAlg = CLbDecision + CDataMvmt (3.1)

where BalAlg can be global or diffusion (i.e., Cglobal or Cdiffusion).

CLbDecision , the time to run the balancing algorithm, can be known a priori or derived

using a performance model, such as a regression model over timings that vary the algo-

rithm’s input parameters [62]. Typical parameters for the modeling approach include the

input size (e.g., the number of vertices in the load model graph and the average number of

edges per vertex) and the number of processes that a parallel balancing algorithm uses.

We define CDataMvmt as:

CDataMvmt = α + βElementsMovedmax × elementsize (3.2)

where the application provides elementsize, α is the start-up cost of communication

41

(latency), and β is the per-element send time (bandwidth), determined empirically per

platform. A more detailed model could capture network contention. For global balancing

algorithms, we approximate the number of elements moved as:

ElementsMovedglobal ≈ Elementsmax
Lave

Lmax − Lave

(3.3)

where Elementsmax is the number of elements on the process with Lmax. We approximate

the portion of the elements that we must move from the most loaded process as propor-

tional to the load imbalance, which assumes that the load per element is approximately

constant. Although this assumption is coarse (load balance would be trivial), we find this

simplification works well in practice.

The total cost of a load balancing algorithm is the application runtime when using the

algorithm, which is the time to perform each computation step plus the cost of the algorithm

at each step:

AppTimeBalAlg =

steps∑
i=0

(CBalAlgi + Lmaxi) (3.4)

where steps is the number of timesteps that the application takes, CBalAlgi is load balancing

algorithm’s cost at step i, which is zero for a global algorithm in all steps other than the one

in which load balancing is performed. The time for each step of the computation is the time

taken by the most heavily loaded process, Lmax .

For a global scheme, the total cost reduces to:

AppTimeglobal = Cglobal1 + steps × Lave (3.5)

since we assume that the global load balancing algorithm is only invoked in the first step.

We estimate the time per computation step as Lave under the assumption that imbalance is

corrected.

42

Algorithm 5 Diffusion Simulation [34]

Input. Li ← load of process i
Di ← neighborhood of process i, defined in Load Model graph
Lij ← load of process j ∈ Di

γ ← coefficient for how much load can be moved in one timestep
threshold← lowest attainable level of imbalance for the application convergence steps← 0

1: All processes in parallel do
2: for timesteps do
3: if imbalance > threshold then
4: convergence steps++
5: end if
6: Li = Li +

∑
j∈Di

γ(Li − Lij)

7: ElementsMovedi = NumElementsi

∑
j∈Di

γ(Li − Lij)

8: NumElementsi = NumElementsi + ElementsMovedi

9: Lmaxi = max (Li) ∀ processes at timestep i
10: ElementsMovedmaxi = max (ElsMovedi)∀ procs at step i
11: end for

For diffusion, we compute the total application time as:

AppTimediff =

steps∑
i=0

(Cdiffi + Lmaxi) (3.6)

To compute the total application time for diffusion, we have developed a diffusion simulator

that mimics the behavior of diffusive load balancing algorithms. Algorithm 5 gives a high

level overview of our diffusion simulator. We apply Algorithm 5 to our load model to

simulate the movement of load at each iteration. At each step, process i moves a portion

of its load to its neighboring processes. We define a coefficient, γ, to model the amount

of load that can be moved in one time step to reflect any application limitations (e.g., the

maximum amount that domain boundaries can move in one time step). If the application

does not limit element movement, γ = 1. Our algorithm accounts for local minima and

maxima because it moves the simulated load through our graph-based model similarly to

43

data motion under an actual diffusive algorithm.

Algorithm 5 records Lmaxi and ElementsMovedmaxi at each simulated step. We use

those values in Equation 3.6. Additionally, Algorithm 5 defines an important metric,

convergence steps, or the number of steps a diffusion algorithm takes to balance the load.

This metric differentiates scenarios that a diffusion algorithm can correct quickly from

those for which diffusion performs poorly.

Algorithm 5 determines the costs required for Equation 3.6 much faster than the actual

diffusion can be performed. We can evaluate its cost without perturbing the application.

If the simulation predicts that diffusion will take too long, we can use a different load

balancing algorithm such as a global load balancing scheme.

We compare AppTimediff , AppTimeglobal , and AppTimenone to determine which load

balance algorithm to use, where:

AppTimenone = steps × Lmax1 (3.7)

We report the effectiveness of this decision in Section 3.4.2.

3.4 Evaluation

For all ParaDiS experiments, we use a Linux cluster that has 800 compute nodes, each

with four quad-core 2.3 GHz AMD Opteron processors, connected by Infiniband. We use

a similar cluster that has 1,072 compute nodes, each with four dual-core 2.4 GHz AMD

Opteron processors connected by Infiniband for all ddcMD runs in Section 3.4.1. On both

Linux systems, we use gcc 4.1.2 and MVAPICH v0.99 for the MPI implementation. We

use a Blue Gene/P system with 1,024 compute nodes with 4 32-bit PPC450d (850MHz)

cores each and 64 32-bit PPC450d I/O nodes for all ddcMD experiments in Section 3.4.2.

On this system, we use gcc 4.1.2 for our measurement framework and compile ddcMD

with xlC 9.

44

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90

M
o
d
e
le

d
 L

o
a
d
 I
m

b
a
la

n
c
e
 (

%
)

Measured Load Imbalance (%)

ddcMD
Accurate

Molecules
Barriers
Forces

(a) Percent Imbalance in Runs

-2

-1

 0

 1

 2

 3

 4

 5

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

M
o
d
e
le

d
 K

u
rt

o
s
is

Measured Kurtosis

ddcMD
Accurate

Molecules
Barriers
Forces

(b) Kurtosis of Load Distributions

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 10 20 30 40 50 60 70

R
a
n
k
 C

o
rr

e
la

ti
o
n

Experiment

ddcMD
Accurate

Molecules
Barriers
Forces

(c) Rank correlation of load distributions

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

 4.5e+11

 0 10 20 30 40 50 60 70 80

T
im

e
 t
ill

 C
o
n
v
e
rg

e
n
c
e

Experiment (sorted by Force model convergence time)

ddcMD
Molecules

Barriers
Forces

(d) Steps for Diffusion Algorithm to Converge

Figure 3.2: Evaluation of Three ddcMD Models

45

 10

 15

 20

 25

 30

 35

 40

 10 15 20 25 30 35 40

M
o
d
e
le

d
 L

o
a
d
 I
m

b
a
la

n
c
e
 (

%
)

Measured Load Imbalance (%)

ParaDiS
Accurate
Modeled

(a) Percent Imbalance in Runs

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 5 10 15 20 25 30 35

R
a
n
k
 C

o
rr

e
la

ti
o
n

Experiment

ParaDiS
Accurate
Modeled

(b) Rank Correlation of Load Distributions

Figure 3.3: ParaDiS Model Evaluation

46

Our experiments use a range of decompositions that exhibit different load balance

properties by varying the placement of Voronoi cell centers. We evaluate all three models

in Section 3.4.1, and vary load distributions in Section 3.4.2. We used two problem sets for

ddcMD, a nanowire simulation and a condensation simulation. The nanowire simulation is

a finite system of 133,280 iron (Fe) atoms that incurs imbalance due to uneven partitioning

of the densely populated cylindrical body surrounded by vacuum. Atom interaction is

modeled with EAM potentials. We ran the nanowire problem on 64 processes. The

condensation simulation is a Lennard-Jones condensation problem with 2.5e+6 particles

and the interactions modeled with Lennard-Jones potentials [53]. It incurs imbalance due to

condensation droplets forming in some of the simulated domains. We ran the condensation

simulation on 512 processes.

To validate application models, we measure the work per process using Libra [45], a

scalable load balance measurement framework for SPMD codes. Libra measures the time

spent in specific regions of an application per time step using the effort model. In this model,

time steps, or progress steps, model each step of the synchronous parallel computation, and

fine-grained effort regions within these steps model different phases of computation.

We extend Libra’s effort model to serve as input to our load model and add an interface

to query load information during execution. We measure the computational load on each

process by summing the time spent in all effort regions. Our load model couples these

measurements with the application abstractions, allowing us to validate the abstractions

against empirical measurements.

We use PNMPI [82] to integrate Libra with our load model infrastructure. PNMPI stacks

independent tools that use the MPI profiling interface [50], which we apply to combine

Libra with our new load model component. PNMPI also supports direct communication

among tools, which we use to exchange element interaction and performance information.

Our tool stack imposes 3% overhead on average, an insignificant perturbation of application

47

behavior.

3.4.1 Evaluating Application Abstractions

In this section, we evaluate the quality of ad hoc, developer-provided application load

abstractions by comparing them with empirical measurements obtained from Libra. To

quantify the quality of the abstractions, we report the accuracy with which they capture the

measured load imbalance and the statistical moments of the measured load distribution, as

defined in Section 2.2.

For additional analysis, we validate application abstractions with a rank correlation

metric. Rank correlation measures how accurately the abstraction ranks each process’s

load relative to that of other processes. To calculate the rank correlation r of process loads

between the application abstraction M and measured load L, we first order all ranks based

on the values of the developer-provided load abstraction and the measured load data. The

resulting rank number for process i is stored in li and mi respectively, as is the mean rank

in l̄ and m̄. We then calculate the correlation with:

r =

n∑
i=0

(mi − m̄)(li − l̄)√
n∑
i=0

(mi − m̄)2

n∑
i=0

(li − l̄)2

(3.8)

To accommodate tied ranks correctly, we use Pearson’s correlation coefficient [69]. We

now apply our abstraction evaluation methodology to ddcMD and ParaDiS.

To represent elements and the associated load, ddcMD uses three application-specific

models:

1. Molecules: number of particles (molecules) per process;

2. Barriers: time each process spends outside of barriers;

3. Forces: time spent calculating interactions on each process.

48

Molecules Barriers Forces

imbalance 15.917 25.769 16.095
kurtosis 0.444 0.079 0.057
rank corr. 0.138 0.008 0.007

Table 3.3: RMSE for Plots in Figure 3.2

Figure 3.2(a) demonstrates how well the ddcMD abstractions capture the imbalance in

the problem. Table 3.3 shows root mean squared error (RMSE) of load imbalance and the

statistical moments calculated over our experiments. Abstractions based on the number

of molecules and force computation overestimate the imbalance in the system, while the

abstraction based on execution time excluding time spent at barriers underestimates the

imbalance. Underestimating the imbalance leads to slower imbalance correction with a

diffusion scheme because it is less aggressive than necessary. Alternately, overestimation

pushes the limits of how much the load can be redistributed at each time step, and thus

converges faster, as long as the overestimation correctly captures the relative loads.

Figure 3.2(b) shows how the three ddcMD abstractions capture the kurtosis of the load

distributions for each run; Table 3.3 shows the RMSE. The abstraction based on the number

of molecules does most poorly, because much of the imbalance arise from imbalanced

neighbor communication, which that abstraction omits.

Figure 3.2(c) shows the rank correlation between the modeled and measured distri-

butions for each of our test cases; Table 3.3 shows the corresponding RMSE. Again,

abstractions based on time and force computation detect any outliers fairly well, while the

abstraction based solely on the number of particles does worse.

Overall, our analysis indicates that the force computation abstraction is the most

accurate and, thus, the most suitable for use as input to the diffusion mechanism. To

validate our conclusions, Figure 3.2(d) shows the number of steps to converge when

49

the diffusion algorithm uses the three abstractions as input. We use a threshold of 12%

imbalance because ddcMD’s best achievable balance is limited by constraints on the shape

of Voronoi cells in its domain decomposition. As predicted, the abstraction based on

the force calculation is the most accurate and thus corrects the load most quickly. The

abstraction based on the number of molecules outperforms the Barrier abstraction, partly

because the former overestimates the imbalance making the diffusion scheme take more

drastic measures and arrive at a balanced state sooner.

ParaDiS uses empirical measurements as an input to its load balancing algorithm. It

estimates load by timing the computation that the developers consider most important

for load balance. Figure 3.3(a) shows the accuracy with which the ParaDiS application

abstraction represents its load imbalance. Figure 3.3(b) shows the rank correlation of

actual and modeled load distributions. The figures show that the abstraction is somewhat

inaccurate, which we suspected because it does not include certain major phases of the

computation that are captured by the measurements; the developers only measure the main

force computation. Our load model in conjunction with Libra’s data shows that this fails to

capture the behavior of communication, collision detection, and remesh phases. When we

compare ParaDiS’s calipers to Libra’s measurements of only the force computation, the

model is quite accurate. Depending on the problem, these omitted regions comprise up to

15% of the execution time.

3.4.2 Cost Model Case Study

In this section, we evaluate how well our model selects the most effective load balance

algorithm for particular imbalance scenarios, and we further evaluate the net performance

improvement achieved using our model. We use the cost model defined in Section 3.3 to

select the load balancing algorithm that would lead to the shortest runtime of our benchmark.

We then apply our cost model to the global and diffusive load balancing schemes in ddcMD.

50

 84

 86

 88

 90

 92

 94

 96

 98

 100

 102

 104

 0 5 10 15 20 25

M
e
a
s
u
re

d
 L

o
a
d
 I
m

b
a
la

n
c
e
 (

%
)

Benchmark Input

Benchmark
Imbalance

(a) Starting Imbalance of Benchmark Runs

-40

-20

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

%
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

N
o
n
e

Experiment (sorted by Load Model improvement)

Benchmark
None

Global
Diffusive

Load Model

(b) Model Performance on Benchmark Runs

-150

-100

-50

 0

 50

 0 10 20 30 40 50 60 70 80

%
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

N
o
n
e

Experiment (sorted by Load Model improvement)

ddcMD
None

Diffusive
Global

Load Model

(c) Model Performance on ddcMD Runs

Figure 3.4: Evaluation of Our Load Model on Benchmark and ddcMD

51

For our benchmark, we compare total application runtime when using the following

load balancing algorithms:

1. Global: Correcting imbalance during the first time step using Zoltan’s graph parti-

tioner [36]; modeled by Equation 3.5;

2. Diffusive: Correcting imbalance at every time step using the Koradi method [60];

modeled by Equation 3.6;

3. None: No correction; modeled by Equation 3.7.

We conduct runs spanning 2 to 64 processes with graphs with between 8,000 and

512,000 vertices and varying weights and initial decompositions. Figure 3.4(a) shows

initial imbalance in the benchmark runs; we chose these initial imbalance scenarios because

they are representative of some of the application runs that we observed.

Figure 3.4(b) shows that our load model correctly selects the algorithm that achieves the

lowest runtime in 87% of the cases, tracing the curve with highest performance improvement

for most of the experiments. In most cases, our model chooses the global algorithm. This

algorithm performs well in 96% of the cases, but 4% of the time, its high algorithmic and

redistribution cost (as modeled by Equation 3.1) outweighs the performance benefit so it

incurs a 35% performance penalty. In these cases, the diffusive algorithm outperforms the

global algorithm, and our model correctly chooses it instead. In the only cases where our

model does not choose the correct algorithm, it only suffers a penalty of 5.43% because

these were scenarios in which the global and diffusive algorithm performed within 6% of

each other.

On average, using our model can achieve a 49% performance gain while the next best

alternative, the global algorithm, achieves 48% overall improvement in runtime. While the

diffusive algorithm performed much worse than either of these overall (averaging net gains

of only 3% over doing nothing), our model is still able to exploit it in the rare cases where

52

Load on each Process Original Diffusive Global Scheme Selected by Model

(a) 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ad

226 212 248 diffusive

(b) 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ad

344 459 269 global

(c) 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ad

286 355 239 global

(d) 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ad

270 267 235 global

Table 3.4: Sample ddcMD Imbalance Scenarios

it did outperform the global algorithm, leading to significant gains in these scenarios and

more reliable performance. For these cases, the diffusive algorithm performs significantly

better than Zoltan, and using our model can prevent performance loss for workloads that

contain many such pathological runs.

For evaluating the performance of our model for ddcMD, we applied it to the input sets

also used in Section 3.4.1; their initial load properties are demonstrated in Figures 3.2 (a-c).

Our model selected among the following load balancing algorithms:

1. Global: Correcting imbalance during the first time step using the Koradi method [60]

several times to mimic a method that corrects the imbalance in one step; modeled by

Equation 3.5;

2. Diffusive: Correcting imbalance at every time step using the ad hoc Voronoi decom-

position method with the Forces abstraction evaluated in Sec. 3.4.1 as input; modeled

by Equation 3.6;

3. None: no correction; modeled by Equation 3.7.

Table 3.4 shows runtimes of the load balancing algorithms for several imbalance

scenarios in the nanowire simulation. These cases ran on 64 processors organized as a 4x16

53

process grid. Table 3.4 shows the relative load in the beginning of the simulation, with

darker sections representing higher load and lighter blue representing lower load for the

particular process. For each of these, we show the execution time without load balancing,

the execution time with the diffusion algorithm, and the execution time using the global

algorithm. We run the nanowire simulation for 200 time steps. The diffusion algorithm has

a cost (as defined in Equation 3.1) of 0.01 seconds per simulation step. The global load

balancing method incurs a one-time cost of 9 seconds. In all cases, our cost model guides

the selection of the appropriate balancing algorithm.

Figure 3.4(c) shows that our load model correctly selects the best algorithm in 96% of

the cases, tracing the curve of the best performing algorithm. Because the ad hoc Voronoi

algorithm improves performance in 82% of the cases with an average performance gain

of 14%, our model correctly selects it in most cases. The Koradi algorithm consistently

performs worse and is only selected by the model in a few cases where its performance

improvement outweighs the high cost of Koradi; overall, the model achieves a 19% gain

over the Koradi algorithm.

While our experiments are designed to explore a range of values, a suite of production

runs might contain a variety of pathological cases, and our model will allow a code to

perform well even in the cases where the otherwise preferred balancing algorithm will

perform poorly. Our model provides a means to select the appropriate load balancing

algorithm at runtime without developer intervention, correctly selecting the algorithm that

achieves the lowest runtime in up to 96% of the cases, achieving a 19% gain over selecting

a single balancing algorithm for all cases.

3.5 Summary

We have presented a novel load model based on application elements and their interac-

tions. Our load model establishes a mapping between application elements and computation

54

costs while maintaining information on dependencies between application elements. Our

load model enables an application-independent representation of load distribution and

can form the basis for a new generation of generic, yet element-aware load balance tools.

We have shown that our element-aware approach overcomes deficiencies of conventional

statistical load metrics, which fail to represent element interaction information. Using our

element-aware load model, we developed a new set of actionable metrics that accurately

characterize load distribution.

We demonstrated the effectiveness and versatility of our load model on several case

studies. We provided a mechanism to evaluate and to contrast several application-provided

abstractions. We have used our load model to analyze the load imbalance in two production

applications. Finally, we evaluated the ability of available load balance schemes to correct

imbalance. In all experiments, adding the application element interaction information to

the load data was critical to understanding and analyzing the application’s load behavior.

55

4. LOAD BALANCING N-BODY SIMULATIONS1

N-body methods simulate the dynamic evolution of a system of particles (bodies) under

the influence of physical forces. These algorithms are critical to many scientific fields,

including astrophysics, computational biology, chemistry, and material science [59, 86, 91,

100]. In an N-body simulation, each particle may exert a force on any other. The simulation

progresses by repeatedly computing force interactions between pairs of particles, then

updating the particles to reflect the force’s effect. These forces typically comprise the bulk

of the simulation’s execution time. If all forces are considered, a naive N-body algorithm

runs in O(n2) time with respect to the number of particles. Modern algorithms such as

Barnes-Hut [12] and the fast multipole method [94] use more sophisticated algorithms to

reduce the number of interactions that need to be computed, resulting in O(n log n) or O(n)

runtime, but even with these algorithms, the interaction computation dominates the runtime.

Large N-body simulations may involve billions of particles, and they need to be run on

parallel computers.

Load balance is a major performance problem for N-body methods at scale. For the best

parallel performance, computational work must be evenly decomposed over all processing

elements of the machine. Currently, many N-body simulations use a geometric domain

decomposition to assign groups of particles to processes, and each process computes

the interactions involving the particles assigned to it. However, the work in N-body

simulations is proportional to the number of interactions that each process computes, i.e.,

the local density of particles in the simulated domain. Particle decompositions can therefore

distribute work unevenly when particle density varies widely. This type of load imbalance

1ACM, 2014. This is the authors version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in International Conference for
Supercomputing (ICS), 2014 [73], http://dx.doi.org/10.1145/2597652.2597659.

56

is particularly expensive at scale, because hundreds of thousands of idle processors may

wait on a single overloaded processor.

We show that particle-based decompositions are prohibitively imprecise at scale, par-

ticularly when interaction density is highly non-uniform, and we present a load balancing

method that explicitly balances the real work: interactions. Current approaches do not

balance interactions explicitly because of memory and performance concerns: interactions

greatly outnumber particles. Our approach makes balancing interactions affordable by

using adaptive sampling to select uniformly sized groups of interactions, which we call

work units. We then apply a hypergraph partitioner to the work units to assign them to

processes. The overhead of this approach is low because the coarse granularity of the work

units and their uniform size make the hypergraph partitioner run efficiently.

We apply our load balancing technique to a Barnes-Hut benchmark and a large scale

dislocation dynamics application, ParaDiS. This chapter makes the following contributions:

1. An algorithm for load balancing interactions in N-body simulations, using work unit

selection and hypergraph partitioning to assign interactions to processes explicitly;

2. An adaptive sampling approach to select work units with uniform sizes for good load

balance, and coarse granularity for good partitioning performance;

3. Demonstration of significantly improved load balance, low overhead, and overall

performance improvements of up to 26% on Barnes-Hut and 18% on ParaDiS.

To our knowledge, we present the first approach to load balancing interactions explic-

itly with low overhead. Section 2.3.2.1 summarized traditional load balance methods for

N-body applications. Section 4.1 describes our algorithm for load balancing interactions,

which uses an adaptive sampling approach for selecting work units and hypergraph par-

titioning for assignment to processes, as detailed in Sections 4.1.1 and 4.1.2. Section 4.2

outlines our implementation and its application to Barnes-Hut and ParaDiS. We evaluate

57

the performance of our approach in Section 4.3.

4.1 An Interaction-Based Load Balance Algorithm

The load balance algorithm must be precise to achieve the evenly balanced load required

for performance at scale. In particular, to address the limitations discussed in Section 2.3.2.1,

the load balance algorithm must:

1. Balance interactions directly with fine granularity;

2. Preserve locality to reduce ghost communication;

3. Run fast and not incur excessive bookkeeping overhead.

In this section, we present a load balancing algorithm that satisfies all three criteria. It

consists of the following steps:

1. Select work units with sampling. Sample interactions; use samples to divide

interactions into subsets, or work units.

2. Construct model. Use work units, proximity information.

3. Partition model. Assign work units to p processes by partitioning the work units

into p groups.

Optimal partitioning is NP-hard [66] with many heuristic partitioning algorithms. How-

ever, while existing partitioning algorithms are sufficient for off-line use, our challenge is

to use them in a dynamic, on-line load balance algorithm. Even with an efficient heuristic

algorithm, the number of interactions on each process is O((N
P

)2). Repeatedly partitioning

a system this large at runtime is too slow.

The crux of our approach is to reduce the number of work units under consideration

by several orders of magnitude using sampling. Further, we exploit two key aspects of

any partitioner, namely that the partitioner has a higher likelihood of finding an optimal

solution [66] and will therefore run faster if: 1) work unit sizes are small compared to

process load, and 2) the sizes are fairly uniform. We have developed adaptive techniques

58

to split large sample groups and to narrow distribution of work unit sizes. We have also

experimented with different sample granularities to find a sufficiently fine granularity

without excessive overhead.

To our knowledge, our load balancing algorithm is the first on-line algorithm that

directly partitions interactions instead of particles. Our technique is also the first algorithm

to sample interactions in a large-scale N-body problem. We discuss our adaptive sampling

techniques in detail in Section 4.1.1, and we present our techniques for model construction

and partitioning in Section 4.1.2.

4.1.1 Selecting Work Units

As discussed, using a hypergraph partitioner on the full set of interactions in an N-body

simulation is infeasible. Thus, we have developed an adaptive sampling strategy that works

in two ways. First, sampling coarsens the data set by several orders of magnitude, which

allows us to solve a much smaller partitioning problem. Second, our sampling strategy is

adaptive: it samples denser regions of the problem space more finely so that work units are

relatively uniform in size, avoiding many of the pitfalls of the decompositions discussed in

Section 2.3.2.1. Our strategy ensures that the partitioning is both fast and accurate.

Algorithm 6 outlines the steps of our approach. Our algorithm takes as input the set of

particles P , a set of interactions I , and an adaptive sampling threshold s. Our algorithm’s

output is a set of work units. A work unit is a sampled interaction and an associated

neighborhood. Each work unit represents all samples in a particular neighborhood, and it

consists of the sampled interaction, an associated centroid, and a number of non-sampled

interactions.

On line 2, Algorithm 6 starts by iterating over all particles. For each particle, on lines 4

and 5, the algorithm samples at least one interaction. If a particle is involved in more than

the average number of interactions, then we take more samples. The adaptive sampling

59

Algorithm 6 Adaptive Interaction Sampling
Input. P ← particles, I ← interactions, s← adaptive sampling threshold

1: countavg = |I|/|P |
2: for all pj ∈ P do
3: ipj = set of interactions of pj
4: nSubsetsj = max(1, s× |ipj |/countavg)
5: take nSubsetsj samples from ipj
6: if nSubsetsj > 1 then
7: build k-d tree from samples taken
8: for all interactions of pj do
9: select the subset wjk to which interaction belongs

10: |wjk|++
11: end for
12: wjavg = |ipj |/nSubsetsj
13: for all subsetjk ∈ subsetsj do
14: if wjk > s× wjavg then
15: adaptively sample within subsetjk, calculate weights
16: end if
17: end for
18: end if
19: end for
Output. W ← work units with desired size and ∼uniform size distribution

threshold, s, determines the number of additional samples to take, and the caller can use s

to adjust the aggressiveness of sampling in dense regions of the domain. The number of

interactions sampled from particle pj is stored in nSubsetsj .

Once we have a sampled interaction, we assign it a coordinate in space based on the

centroid of the particles that it involves. For a pairwise force, like gravity, the centroid

is the midpoint between two particles. For more complex forces, it is the center of mass

of the polygon defined by the member particles (Figure 4.1(a)). To define neighborhoods

for work units, each sampled interaction’s centroid is used as the center of a Voronoi cell

that defines the neighborhood. A centroid’s Voronoi cell is the set of points closest to

that centroid. Figure 4.1(b) shows a set of points and their enclosing Voronoi cells. Any

interactions in a sampled interaction’s Voronoi cell are considered part of its work unit.

60

C
A

B

D

(a) Centroid C of
Particles A, B, D

(b) Sampled Interactions
Define Voronoi Cells

Refin
ed Level

Top Level

(c) Multi-Layer Voronoi Cells

µ 2µ 3µ 4µ

Work Unit Size

Fr
eq

ue
nc

y
Gamma distribution (Θ = 5, k = 0.2)

(d) Gamma Distribution Probability Density Function

Figure 4.1: Defining Interaction Subsets

Our adaptive sampling technique ensures that each Voronoi cell contains approximately

the same number of interactions. If a cell contains too many interactions, e.g., the cell

in Figure 4.1(c), then we increase the number of samples in its neighborhood, effectively

splitting it into subcells. Thus, our work units have nearly uniform granularity and are easy

to partition. However, the splitting is potentially expensive. With one sample per particle,

we can easily track which interactions belong to a particular work unit by associating the

interactions with their owning particle. With multiple samples for a particle, we need

another ownership mechanism. For particles with multiple samples, we use a k-d tree [42]

to determine which interactions are closest to each sample.

4.1.1.1 Right-Tailed Distribution

Using a k-d tree ensures that each work unit has high locality and the accuracy of our

sampling scheme. However, constructing it is expensive. We must therefore be careful to

61

set the adaptive sampling threshold to a value that balances granularity with range query

cost.

Fortunately, an obvious way to set s exists for nearly all N-body systems, In the natural

sciences, the density of samples of objects in physical and natural processes (such as

particles in a dynamical system) obey a power law distribution [40]. This phenomenon

is known as Taylor’s Law in ecology and the fluctuation scaling law in physics. For our

purposes, it implies that random sampling leads to work units with sizes that can be fit to a

gamma distribution:

P(x) =
1

Θk

1

Γ(k)
xk−1e−

x
Θ (4.1)

where k is a shape parameter, Θ is a scale parameter, and Γ(k) is the gamma function

evaluated at k. While the parameters vary, all examples that we have considered exhibit a

long right tail as shown in Figure 4.1(d), which implies that relatively few samples have

a larger than average number of interactions. Thus, we can achieve an even distribution

of work unit weights by splitting relatively few work units into smaller pieces. The (red)

shaded area under the tail of the gamma distribution in Figure 4.1d depicts the number of

work units that are larger than 2µ, or 2× the mean. Thus a domain scientist can easily pick

a good value for s for a particular problem: s should generally be chosen to ‘‘chop off’’ all

or part of the tail of the gamma distribution. In Section 4.3, we show empirically that our

method produces work units with relatively uniform sizes, and we demonstrate the positive

impact on the resulting load balance.

4.1.2 Assigning Work Units to Processes

Section 4.1.1 described how we select uniformly sized work units for load balancing;

next, we construct a model from these work units to represent both parallel computation and

communication. A hypergraph is a well suited model for this problem because hypergraphs

have been used extensively to represent the behavior of parallel applications [51]. Further,

62

Algorithm 7 Hypergraph Construction
Input. P (set of particles), SI (set of sampled interactions)
Output. H = (V,EH) (graph of particles and interactions)

1: for pj ∈ P do
2: H .insert(ei) to represent the particle
3: for i ∈ subsetsj do
4: H .insert(vij)
5: add edges from vij to all ei, hyperedges needed to compute vij
6: end for
7: end for

we can use well established hypergraph partitioning algorithms to guide load balancing.

Hypergraphs are a generalization of graphs. Where a graph contains vertices, and pairs

of vertices are connected by edges, in a hypergraph, each hyperedge may connect one

or more vertices. Thus, if we represent interactions with vertices, particles are a natural

fit for hyperedges, because a particle may be involved in many interactions. Hyperedges

also accurately represent ghost communication in N-body simulations, because if two

interactions in the same partition share a hyperedge that represents a remote particle, a

single ghost node will need to be fetched. Partitioning a hypergraph tries to minimize

the number of hyperedges cut by partition boundaries, and thus minimizes inter-process

communication.

Formally, given a weighted hypergraph H = (V,EH) where V is a set of vertices

and EH is a set of hyperedges, hypergraph partitioning divides V into k sets based on the

following two objectives:

1. Equal partitions: Vertices are assigned to processes so that the total vertex weight

on each process is approximately equal.

2. Minimized hyperedge cut: Minimize the number of shared particles cut by the

partitions.

In our hypergraph, the vertices are the work units selected in Section 4.1.1 (to represent

63

Algorithm 8 Sampling-based Interaction Load Balance Algorithm
n← number of particles, p← number of processes,
m← number of interactions, s← adaptive sampling threshold

Step Cost

1: Build list of interactions per particle incurred
2: Adaptively sample interactions (Alg. 6) O(snp + m

p log(s))

3: Construct hypergraph (Alg. 7) O(snp)

4: Partition hypergraph O(snp log(s
n
p))

5: Redistribute particles, samples, setup ghosts incurred
6: Build list of interactions per particle incurred
7: Interaction→ particle→ subset→ process O(mp log(s))

interactions), and hyperedges represent particles (storage units). Algorithm 7 shows our

procedure. We first add all particles as hyperedges to the sampled interaction hypergraph

H to ensure the graph is connected (line 2). We add the work units from Section 4.1.1 as

vertices (line 4) that will be partitioned into equal partitions. We add edges between the

vertices (work units) and the needed hyperedges (particles) to preserve the spatial proximity

information in the graph (line 5). We use a hypergraph partitioner to partition the resulting

hypergraph.

4.1.3 Interaction-Based Load Balance Algorithm Using

Sampling and Hypergraph Partitioning

Algorithm 8 shows all steps of our approach together with phases of a host N-body

application. To quantify the asymptotic overhead of our algorithm, we list the computational

complexity of each phase. Again, since we have chosen to use a hypergraph as our model,

the complexities reflect those of hypergraph partitioning. For all complexities, p is the

number of processes, n is the number of particles, m is the number of interactions, and s is

our sampling threshold. The complexities of some phases are listed as incurred. These are

phases that an N-body application would perform regardless of whether it uses our load

64

balancing approach, so we do not count the runtime of these phases as overhead.

Our load balance algorithm starts by building interaction lists for each particle. The

application would need this step (or at least a loop, if not a list) to compute interactions,

so the cost is not part of overhead. The list of interactions is then passed to Algorithm 6,

which samples interactions and constructs work units. We then construct a model, in this

case a hypergraph, from the work units in Algorithm 7. We pass this model to partitioning.

Assuming a power law distribution as mentioned in Section 4.1.1, the number of work

units added to the hypergraph is O(n). The work units in the tail of the hypergraph do not

increase this upper bound. Because the graph is constructed in a distributed manner across

all processes, the cost is O(sn
p
). This cost can vary based on the load balance of the input

graph, but for this analysis, we assume that the input is not highly imbalanced initially,

which is true for all but the first invocation, assuming our algorithm is run frequently.

Hypergraph partitioning is O(|V |log(|V |)), in the size of the input graph, and for our

graph, |V | = sn
p
, which gives O(sn

p
log(sn

p
)) for phase 4. Thus, the complexity is in terms

of n and our algorithm partition n objects instead of m = p(n
p
)2 interactions.

After partitioning, we rely on the application to distribute work according to the outcome

of partitioning. These costs are incurred. Last, during the force computation, we must

add logic to check each interaction computation against our computed assignment, which

is O(m
p
log(s)). The extra log(s) factor reflects the range lookup required for the small

number of particles with split interactions.

4.2 Applications and Implementation

Our load balance algorithm implementation requires support libraries for partitioning

and for geometric range queries. Several hypergraph partitioning libraries are freely

available [36, 80]. In this work, we use the hypergraph partitioner from Zoltan [37], which

is developed by Sandia National Laboratories. We use the k-d tree implementation from

65

0 5 10 15

0

50

100

150

Timestep

Im
ba

la
nc

e

128 procs
256 procs
512 procs
1024 procs
2048 procs
4096 procs

Figure 4.2: Imbalance over Time in ParaDiS with Built-in Recursive Bisection Load
Balancer

A

B

C

E

D

F

(a) Particles (blue spheres) and Arms (red lines)

A

B

C

E

D

F

(b) Interactions (red squares) between Arms (red edges)

A

B

C

E

D

F

(c) Hypergraph: Vertices (red), Hyperedges (blue circles + adj. edges)

Figure 4.3: ParaDiS Computation as a Hypergraph

66

103 103.1 103.2 103.3 103.4

100

101

2,660

Work Unit Size

N
um

be
ro

fW
or

k
U

ni
ts

(a) Random Sampling

0 500 1,000 1,500 2,000 2,500
0

100

200

300
2,190

Work Unit Size

N
um

be
ro

fW
or

k
U

ni
ts

(b) Per-Particle Sampling

0 500 1,000 1,500 2,000 2,500
0

100

200

300
1,380

Work Unit Size

N
um

be
ro

fW
or

k
U

ni
ts

(c) Adaptive Sampling

Figure 4.4: Effect of Sample Size and Sampling Strategy on Work Unit Size Variability in
Barnes-Hut

67

the CGAL [2] Computational Geometry Library for the nearest neighbor computation.

4.2.1 Barnes-Hut

The first application to which we have applied our interaction-based load balance

algorithm is our own implementation of the classic Barnes-Hut algorithm, described in

Section 2.6.3. In this implementation, we run our load balance algorithm at the end of

each timestep. We generate our hypergraph by extracting the particle interactions from the

octree data structure. Once partitioned, we redistribute the particles and assign interactions.

As a baseline comparison for our results, we use a decomposition that allows assignment

of any particle (along with its interactions) to any process, which is more flexible than

many implementations of spatial decomposition. To preserve locality, we ordered the

atoms by a space filling curve as done by Winkel, et al. [104], Warren and Salmon [101],

and used with modifications by Sundar, et al. [92]. The related work shows speedup

for ’homogeneous’ and ’non-homogeneous’ particle distributions; the drop in scalability

for ’non-homogeneous’ particle distributions reveals that this load balancing scheme is

insufficient for this case, which our work targets. Unfortunately, the prior work does not

explicitly quantify the load imbalance.

4.2.2 ParaDiS

The second application we use in our experiments is ParaDiS [6, 24]. Figure 4.2 shows

the effectiveness of the recursive bisection load balance algorithm. This fully distributed

approach improves load balance over time. However, beyond some point, it cannot improve

load balance further due to its approximate assignment of interactions. We use the lowest

load imbalance values achievable by the built-in load balance algorithm as the baseline for

our comparisons in Section 4.3.3.

Figure 4.3 demonstrates how we describe the ParaDiS computation as a hypergraph

of dislocation nodes (particles) and interactions, where a dislocation node is a degree of

68

freedom in the problem. Dislocation nodes are the units of data stored in application data

structures, and arms or segments are the connecting edges, as shown in Figure 4.3(a).

ParaDiS imposes a regular grid of cells to discretize the space, which is used to determine

proximity and divide the interactions into short and long range. A segment interacts

with all other segments in its own cell and the cells surrounding it, 27 cells in total

(assuming periodic boundaries). A segment interaction is a unit of work in ParaDiS,

as illustrated by red squares in Figure 4.3(b). Each interaction involves three or four

dislocation nodes (particles), unlike many n-body applications which define interactions

between pairs of particles. Figure 4.3(c) demonstrates the hypergraph that we use for

ParaDiS. The dislocation nodes and segment interactions are the same as in Figure 4.3(b)

(shown as blue spheres and red squares). The dislocation nodes become the hyperedges,

connected to all interactions that they support.

4.3 Performance Evaluation

For our experiments, we use a Linux cluster with nodes consisting of two Hex-core

Intel Xeon EP X5660 processors running at 2.8 GHz, with twelve cores per node and

22,272 cores total. All nodes are connected by QDR Infiniband. We use GCC 4.4.7 and

MVAPICH v0.99 on top of CHAOS [1], an HPC variant of RedHat Enterprise Linux

(RHEL), running at Linux kernel version 2.6.32.

4.3.1 Distribution of Work Unit Sizes and Impact on Performance

This section examines the distribution of work unit sizes under the sampling strategies

described in Section 4.1.1, and how more uniform distribution leads to more evenly

distributed load. These experiments use a Barnes-Hut problem with 32K particles, which

we strong scale from 8 to 2,048 processes. We chose this problem since it is the largest

problem that can fit into memory for 8 processes. We chose strong scaling since reproducing

density variations for weak scaling is difficult. Strong scaling allows us to use the same

69

128 512 2,048

0

2

4

Processes

%
Im

ba
la

nc
e

0.4% sample
0.4% adaptive
0.8% sample
0.8% adaptive

(a) Per-Particle vs. Adaptive Sampling

8 32 128 512 2,048

0

20

40

Processes

%
Im

ba
la

nc
e

0.1%
0.2%
0.4%
0.8%
1.6%
Orig.

(b) Sample Rate and Resulting Imbalance

0.1% 0.2% 0.4% 0.8% 1.6%

0

200

400

Sample Rate

T
im

e
(m

s)

128
256
512
1,024
2,048

(c) Sample Rate & Aggregate Algorithm Cost

Figure 4.5: Impact of Sampling Strategy on Resulting Imbalance and Cost of Load Balanc-
ing Algorithm

70

0.11% 0.60% 1.21%

0

20

40

60

Sample Rate

T
im

e
(s

ec
)

128
256
512

1,024
2,048
4,096

(a) Partitioner Time

LB
Number of Processes

128 256 512 1,024 2,048

0.1% 101.64 51.26 26.29 13.21 7.95
0.2% 92.78 47.27 24.62 13.14 7.49
0.4% 86.13 43.62 22.67 12.06 6.88
0.8% 79.08 39.60 20.36 10.78 6.28
1.6% 80.08 40.31 20.86 11.01 6.62
Original 107.04 54.01 27.55 14.38 8.02

(b) Total Computation Time (sec)

0.1% 0.2% 0.4% 0.8% 1.6%
0

20

40

Sample Rate

%
Im

pr
ov

em
en

t

128
256
512

1,024
2,048

(c) Improvement over Original

Figure 4.6: Impact of Sampling Rate on Performance of Graph Partitioner and Barnes-Hut
Application

71

2,000 4,000

10,000

20,000
5,615

Work Unit Size

N
um

be
ro

fW
or

k
U

ni
ts

(a) Per-Particle Sampling (0.11% sample)

2,000 4,000

10,000

20,000
2,807

Work Unit Size

N
um

be
ro

fW
or

k
U

ni
ts

(b) Adaptive Sampling (0.12% sample)

2,000 4,000

10,000

20,000
1,885

Work Unit Size

N
um

be
ro

fW
or

k
U

ni
ts

(c) Adaptive Sampling (0.17% sample)

Figure 4.7: Effect of Sample Size and Technique on Work Unit Size Variability in ParaDiS

72

12
8

25
6

51
2

1,0
24

2,0
48

4,0
96

0

10

20

30

40

Processes

%
Im

ba
la

nc
e

0.11%
0.12%
0.17%
0.60%
Orig.

(a) Resulting Imbalance

12
8

25
6

51
2

1,0
24

2,0
48

4,0
96

0

0.2

0.4

0.6

0.8

1

Processes

R
el

at
iv

e
to

O
ri

gi
na

lT
im

e

Computation Time
Overhead
Partitioning (Zoltan)

(b) Costs for 0.17% Sample Rate

.11
%

.12
%

.17
%

.60
%

0

5

10

15

20

Sample Rate

%
Im

pr
ov

em
en

t

128
256
512

1,024
2,048
4,096

(c) Improvement over Original

Figure 4.8: Impact of Sampling on Load Balance and Application Performance

73

problem at all scales so data points are comparable.

Figure 4.4 shows the effect of sample size and sampling strategy on the variability

of work unit size in Barnes-Hut. As discussed in Section 4.1.1, sampling a simulated

domain with high density variability results in a power law distribution of work units, as

Figure 4.4(a) shows (note that the horizontal axis is log-scale). The maximum work unit

size (2,660) is indicated at the top of the figure. We can partially mitigate the density

properties by proportionally sampling interactions per-particle (Figure 4.4(b)). By running

Algorithm 6 without any adaptation, we achieve a maximum work unit size of 2,190.

We achieve a tighter, nearly normal distribution of the interactions that each work unit

represents by using the full adaptive sampling approach from Algorithm 6, as Figure 4.4(c)

shows. Here, the maximum work unit size is 1,380.

Figure 4.5 demonstrates the impact of the sample size and strategy. Figure 4.5(a)

compares how the two approaches to sampling impact the ability of the load balance

algorithm to assign equal partitions to processes, where imbalance is:

imbalance =
maximum load - average load

average load

Because adaptive sampling makes the distribution of sample weights more uniform, it

results in better partition quality (lower imbalance), as Figure 4.5(a) shows. Roughly,

adaptive sampling can achieve the same partitioning quality as doubling the sample size,

and keeps the number of resulting work units roughly the same as its non-adaptive version.

Since the number of work units directly impacts the cost of our load balancing method,

using a sampling approach that more uniformly distributes work unit sizes is of increasing

importance as process count increases.

We also evaluate the quality of the load balance achieved by our load balancing

approach, measured by the percent imbalance. We compare the different sampling rates

74

and the traditional particle-based approach. Figure 4.5(b) shows that, while imbalance of

the application using a particle-based method grows quickly as the number of processes

increases, our direct interaction assignment scheme is able to achieve much lower levels of

imbalance. Because our method is sampling based, quality is, to a large extent, a function

of the number of samples, or the work units assigned to processes. When the number of

work units is too small, quality partitioning is difficult to achieve. However, even modest

sample sizes of under 1% of all interactions allows for quality partitions. Samples above

1% show diminishing returns on partition quality.

The imbalance increases with the number of processes in this strongly scaled example

since we have fewer individual work units to assign to each process. Thus the job of the

partitioner is more difficult. One of the strengths of our method is that we can choose

the number of work units that we select, which allows us to trade off between cost and

accuracy.

Figure 4.5(c) shows the aggregate overhead of our load balance algorithm. As men-

tioned earlier, sample count directly impacts the cost of our algorithm because it determines

the cost of partitioning, sampling and nearest-neighbor assignment. The figure clearly

demonstrates the linear relationship between the sample size and the cost of our algorithm.

The same size bars within a sample size group would indicate consistent aggregate compute

time across all processes, i.e., perfect scaling. While the sampling and nearest-neighbor

assignment scale well, the overhead numbers show some degradation in scalability due to

the limited scalability of the partitioner. The latter is a well known problem, but can be

remedied. Since our method is sampling based and the resulting graph of work units is

small, we could gather this graph on a smaller number of processes for partitioning, and

then scatter the results. This optimization would allow us to pick the optimal scale for the

partitioner independent of the scale at which the application is run, and thus reduce overall

runtime. We explore this optimization in Section 5.

75

Sampling enables us to use the graph partitioning when partitioning the entire graph

would be prohibitively expensive. Figure 4.6(a) shows the hypergraph partitioner time

(Zoltan) for different sample rates using our ParaDiS data set. The complete graph for this

data set has 1M particles and 547M interactions. It takes seconds to partition the graph with

just 0.11% of the interactions sampled; partitioning the complete graph would be extremely

expensive.

Overall, our sampling approach is an effective way to reduce the size of the graph

to be partitioned while preserving the quality of the resulting partitions. The savings in

partitioner time make the approach of explicitly load balancing the interactions affordable.

As mentioned in Algorithm 4.1.3, we have effectively reduced the complexity of balancing

interactions to that of balancing particles.

4.3.2 Impact on Barnes-Hut Performance

We show the impact of our load balance algorithm on performance of the Barnes-Hut

benchmark in Figure 4.6. The total times for our 32K particle simulation with different

sampling rates are listed in Figure 4.6(b); Figure 4.6(c) illustrates these total times relative

to the original load balance algorithm. With 0.1% sample, our method shows marginal

performance improvement over the original load balance algorithm; poor performance

is due to undersampling and the partitioner’s inability to form equal partitions from the

work units provided. With more sampling, our method outperforms the original method;

in this example, the point of diminishing returns is apparent for the sampling ratio of

1.6%. Although our method gains more from its accuracy at scale, two reasons inhibit its

performance when the sampling ratio is held constant while increasing the process count.

First, the partitioner has fewer work units to divide between a larger number of partitions,

resulting in slight increase in load imbalance. In a more realistic scenario, one would

chose the sampling ratio relative to both the problem size and the number of partitions

76

LB
Number of Processes

128 256 512 1,024 2,048 4,096

0.11% 6118.71 3061.16 1529.36 774.96 405.14 228.51
0.12% 6086.44 3059.56 1527.47 788.39 408.94 231.51
0.17% 6089.01 3056.97 1536.31 780.96 405.07 220.05
0.60% 6126.13 3064.07 1560.99 792.21 413.34 231.80
Original 6482.01 3271.84 1647.85 834.33 445.09 269.57

Figure 4.9: Total Computation Time of ParaDiS (seconds)

needed, thus not observing this performance degradation. Second, the partitioner scales

poorly when partitioning the same small graph on more processes (as discussed previously),

necessitating the decoupling of the partitioner scale from the problem scale.

Our interaction-based load balance algorithm with sufficient sampling performs well

and clearly outperforms the particle-based load balance algorithm. Overall, we observe

23-26% improvement for the optimal sampling rate.

4.3.3 Impact on ParaDiS Performance

We evaluate the impact of our load balance algorithm on the performance of ParaDiS.

We use a highly dynamic crystal simulation input set for ParaDiS, with 1M degrees of

freedom at the beginning of the simulation growing to 1.1M degrees of freedom by the end

of the run. We strongly scaled this simulation up to 4,096 processes.

Figure 4.7 shows the effect of the sample size and strategy on work unit size variability.

Per-particle sampling results in a distribution with a long right tail, as demonstrated in

Figure 4.7(a). The maximum work unit represents 5,615 interactions, and the sample size

is 0.11% of the interactions in the problem. As shown in Figure 4.7(b), with an only 0.01%

increase in sample size (for a total sample rate of 0.12%), we decrease the maximum work

unit size to 2,807. With an additional 0.05% increase in sample size (for a total sample rate

of 0.17%), we decrease the maximum work unit size to 1,885, as Figure 4.7(c) shows.

77

Figure 4.8 details performance of the load balance algorithm and the application with

different sampling strategies. Figure 4.8(a) demonstrates the impact that the different

sampling strategies have on load imbalance, along with the lowest observed load balance

achieved by the built-in load balance algorithm. With an addition of more work units to

partition and more uniform work unit size distribution, the hypergraph partitioner achieves

lower levels of load imbalance. As the number of processes grows, the imbalance increases

in this strong scaling problem due to the partitioner having to divide the same number of

work units into more partitions. The partitioner needs more work units to work with at

scale; a higher sampling rate or a bigger problem with the same sampling rate would allow

the partitioner to accomplish similar levels of imbalance at scale.

Figure 4.8(b) shows the cost break down for a sample rate of 0.17% relative to the

performance using the existing load balance algorithm. The computation time required with

our load balance algorithm is lower, especially at larger process counts when the existing

load balance algorithm performs significantly worse. The time spent in the hypergraph

partitioner increases as the process count increases because the partitioner does not scale

optimally and must partition the same number of work units into more partitions, a more

difficult problem to solve.

Figure 4.8(c) shows the runtime of the problem with different sampling levels, relative

to the runtime of the problem with the existing algorithm. For all sampling levels, our

method shows greater improvement as the number of processes grows, due to larger

improvement in load balance. Further improvement is possible over the per-particle

sampling (0.11% sample) because our adaptive sampling improves the distribution of work

unit sizes. Because the cost of our algorithm is dependent on the sample size, a sample rate

of 0.17% only slightly outperforms one of 0.12%. Performance degrades with the 0.60%

sample due to the costs outweighing the benefit of sampling more. Figure 4.9 lists the total

runtimes.

78

We compare to the second, optimized load balance scheme that the ParaDiS developers

implemented. Overall, we achieve improvement in performance of 6-18% over this already

highly optimized and dynamically load balanced production application.

4.4 Summary

Traditional parallel N-body load balance algorithms use approximate methods to assign

computational work, or interactions to processes. Those that do balance interactions

directly, such as force decomposition, do so with coarse granularity because the interaction

graph is large and costly to partition directly. We have developed the first approach for

explicitly balancing interactions in N-body applications at runtime. Our approach uses

sampling to reduce the size of the interaction hypergraph by several orders of magnitude,

and aggressive adaptive sampling to make the size of sampled work units more uniform.

The combination of these two techniques enables extremely efficient partitioning. Using

these techniques in conjunction with a hypergraph partitioner to minimize inter-process

communication, we have shown for two optimized parallel applications, Barnes-Hut and

the ParaDiS dislocation dynamics code, that our method achieves 23-26% and 6-18%

improvement in overall performance. To our knowledge, our approach is the first to

balance interactions directly with such fine granularity.

79

5. LAZY LOAD BALANCING

The largest supercomputers have millions of independent processors, and concurrency

levels are rapidly increasing. For ideal efficiency, developers of the simulations that

run on these machines must ensure that computational work is evenly balanced among

processing elements. Rebalancing throughout application execution is necessary because

many simulations have workloads that evolve dynamically over time. For example, physical

simulations may use mesh cells, particles, or other logical elements to represent their

domains. However, the computational work per element may change as the physical

system evolves, causing an initially balanced assignment of work to processors to become

imbalanced over time.

The cost of imbalanced load increases with scale. Most large-scale scientific simulations

today use an SPMD parallel programming model, and underloaded processes will wait on

the overloaded ones during frequent synchronizing operations. Specifically, a simulation

with more processes will waste more resources than a smaller-scale simulation when waiting

on a single slow process. Moreover, in an application’s strong-scaling limit, it becomes

increasingly difficult to balance computational work evenly as the available parallelism

becomes more and more coarse-grained with respect to the number of processes. We must

therefore fix even small imbalances at scale.

For this reason, many large-scale parallel applications use load balance algorithms to

redistribute work evenly. Depending on the application, a fast, local load balance algorithm

may be suitable. However, graph partitioners are typically employed for the best balance,

efficient communication optimizations, and for work assignment to be aware of locality

within the simulated physical domain [36, 80]. Graph partitioners are computationally

intensive and can be themselves a performance bottleneck that requires sophisticated

80

parallelization. Further, they typically exhibit worse strong scaling performance than the

simulation itself. The poor scaling causes graph partitioners to be too expensive for use at

large scale.

In this Section, we describe lazy load balancing, a new approach we propose for load

balancing, that allows even a poorly scaling, high latency load balance algorithm (such as

graph partitioning) to be used efficiently in large-scale applications. In lazy load balancing,

we decouple the load balance algorithm from the application and run it on potentially fewer,

separate processors. In this MPMD configuration, the algorithm can execute concurrently

with the application and with higher parallel efficiency than if it were run on the same

processors as the simulation. Work is reassigned lazily as assignment directions become

available, and the application need not wait for the load balance algorithm to complete.

One challenge of lazy work assignment is that application state can change while

the load balance algorithm computes a new assignment, resulting in a change in how

work is assigned to processes. We call this change in work distribution drift. Our lazy

load balancing approach exploits the fact that application state changes slowly in most

applications, and a work assignment computed from an application state in the past typically

continues to be a good assignment for many time steps. As part of this work, we have

developed techniques that guarantee a correct application state after lazy load balancing,

even after significant drift.

Our lazy load balancing approach allows an application to remove load balance compu-

tation from its critical path, and to decouple, offload, and right-size a partition of processors

for the load balance algorithm. The contributions described in this Section are:

• An empirical evaluation of drift metrics for two applications, Barnes-Hut and Par-

aDiS;

• Techniques that map a lazily computed work assignment to the the current state of a

simulation after drift;

81

4,096 16,384 51,200 65,536
0

500

1,000

1,500

Processes
T

im
e

(s
ec

on
ds

)

Figure 5.1: Graph Partitioner Runtime (Strong Scaling). BGQ, 265K Vertices, 65K
Partitions.

• A prototype framework for decoupling and offloading load balance computation;

• An analytical model that predicts the right size for a lazy load balance algorithm

partition from a set of application characteristics.

Combined, these techniques enable lazy load balancing. We show that our approach

can improve performance by up to 46%, even for applications with substantial drift.

Section 5.1 discusses scalability of a graph partitioner, a computationally expensive

load balance algorithm that requires sophisticated parallelization. Section 5.2 outlines the

application properties and drift metrics that make lazy load balancing feasible. Section 5.3

is an overview of the differences between inline and lazy load balancing. Section 5.3.1 in-

troduces the concept of decoupling load balance algorithm resources to optimize execution.

Section 5.3.2 describes how offloading the load balance computation and overlapping it

with the application execution impacts the application. Section 5.5 describes our framework

and its implementation. Section 5.6 shows our results.

5.1 Graph Partitioning is Useful but Scales Poorly

Prior work has shown that the load balancing problem is essentially a balanced graph

partition problem, and therefore NP complete [46, 55]. In practice, many applications

82

employ local load balancing to balance work among neighboring processes. However,

these methods do not balance or minimize communication as well as a graph partitioner

can. For this reason, many applications still employ a graph partitioner for load balancing.

While graph partitioning is well studied and many heuristic solutions exist [36, 80], parallel

graph partitioning algorithms are known to scale poorly. Figure 5.1 shows strong scaling

performance of a parallel graph partitioner running on an IBM Blue Gene/Q supercomputer

for 32 to 65,536 processors. Peak efficiency is achieved with 2,048 processors, and from

this point on, runtime increases. On 65K processes, the algorithm spends all of its time in

communication, and the runtime skyrockets. At scale, we could do better by running the

graph partitioner on fewer processes and avoiding these excessive costs.

5.2 Application Drift

Even if we run the graph partitioner on fewer processes, it can take seconds to run.

This is well above the time step length of many applications. However, if we could run a

load balance algorithm concurrently with the simulation, thus amortizing the load balance

algorithm execution time over many time steps, we could eliminate the excessive overhead.

A potential problem with lazy load balancing is that application state changes over time.

Work per element may change, as may the number of elements. We call this change drift.

However, in this Section we observe that the work distribution in most parallel SPMD

applications changes slowly. In many cases, a balanced assignment computed from a past

application state is a good approximation of a balanced assignment for the current state.

That is, we can compute the assignment asynchronously and apply it lazily when the result

is available.

Given an assignment A : V → P for a past time step’s elements V , we can compute a

drifted assignment A′ : V ′ → P for the current time step’s elements V ′ by determining the

83

0 250 500

96

98

100

Timesteps

Pe
rc

en
tT

ot
al

W
or

k
in

Si
m

ul
at

io
n

(a) Total Work Over Simulated Time

0 250 500
0

20

40

60

80

100

Timesteps

Pe
rc

en
ta

ge
of

E
le

m
en

ts

1% -- 5%

0% -- 1%

No change

(b) Work per Element Over Simulated Time

0 250 500
0

1

2

Timesteps

Pe
rc

en
tI

m
ba

la
nc

e

Balanced at t=0

(c) Imbalance Over Simulated Time

Figure 5.2: Application Drift in Barnes-Hut, 26M Interactions, 8192 Processes

84

0 250 500

100

102

104

106

Timesteps

Pe
rc

en
tT

ot
al

W
or

k
in

Si
m

ul
at

io
n

(a) Total Work Over Simulated Time

0 250 500
0

20

40

60

80

100

Timesteps

Pe
rc

en
ta

ge
of

Pr
oc

es
se

s

1% -- 5%

0% -- 1%

No change

(b) Work per Process Over Simulated Time

0 250 500
0

2

4

6

8

Timesteps

Pe
rc

en
tI

m
ba

la
nc

e

Balanced at t=0

(c) Imbalance Over Simulated Time

Figure 5.3: Application Drift in ParaDiS

85

relationship between V and V ′. Depending on the simulation, there are three possibilities:

A′(v) =


A(v) v ∈ V ∩ V ′

C(v) v ∈ V ′ \ V

undefined v ∈ V \ V ′

In the first case, v is in both the old and the new application state, and we simply reuse

its assignment from A. This case will typically cover most of the elements, and it is the

only case for most N-body simulations and for unstructured mesh applications with a static

number of cells in the mesh. In both of these applications, V = V ′. In the second case, v

represents an application element or task that has been created since the past state, and we

must construct a new function C : V ′ \ V → P to assign it. In the third case, v represents

an application element or task that no longer exists in the current state and we can ignore

its prior assignment. The second and third cases are typical of adaptive mesh refinement

(AMR) applications, and other applications in which elements may be created based on

the physics. Computing a good function for C is application-dependent and we leave the

description of this function to later sections.

5.2.1 Assignment Validity

For A′ to be valid for the new application state it must be defined for the entire set V ′.

Trivially, we observe that A′ is defined for (V ∩ V ′) ∪ (V ′ \ V), which, by inspection,

equals V ′.

5.2.2 Assignment Efficiency

An assignment is efficient if it minimizes the deviation in Equation 2.4, as minimizing

the deviation effectively minimizes load imbalance. We define the imbalance of an

86

assignment I(A) as the scaled maximum load on any processor minus the average:

I(A : V → P) =
maxi(W (Vi))− 1

|P |
∑

iW (Vi)
1
|P |
∑

iW (Vi)
(5.1)

In a bulk synchronous application, the extra load corresponds to the performance degrada-

tion of any overloaded processors.

5.2.3 Empirical Evaluation of Drift Metrics

We have empirically evaluated the imbalance of drifted assignments for two applica-

tions. The first, shown in Figure 5.2, shows the drift metrics for a Barnes-Hut N-body

simulation [12]. Barnes-Hut is a gravitational force simulation where the number of parti-

cles remains the same throughout the simulation, but the interactions computed per particle

can change as particles move because the simulation only computes gravitational interac-

tions within a cutoff radius. Figure 5.2(a) shows the total work, summed over all particles

in the simulation, over time. We can see that this fluctuates over a range of about 5% of the

total initial work. Figure 5.2(b) shows how the work per particle in the simulation changes

over time. Approximately half the particles have the same amount of work throughout the

execution, but the other half’s work changes up to 5% per time step. Figure 5.2(c) shows

the imbalance that results from this change on each successive step, assuming that we use a

completely balanced assignment from time step zero. The imbalance grows only slightly,

despite the larger changes in work per element in the simulation. Thus, the assignment

computed at step 0 is still an efficient assignment for subsequent steps.

In Figure 5.3 we show similar drift metrics for ParaDiS [24], a material strength

application that uses crystal dislocations as its elements. In ParaDiS, elements can be created

or destroyed as the simulation continues, but interactions between them are computed much

as they are in the Barnes-Hut N-body simulation. In ParaDiS, the total work in the

simulation can grow much more rapidly than in Barnes-Hut (Figure 5.3(a)). The more

87

rapid growth in total work is due to the creation and deletion of elements. Figure 5.3(b)

shows the number of element interactions per processor in the simulation: we can see

that in ParaDiS nearly all processors experience a change in workload on every time step,

and that the changes grow as the simulation continues. The change in imbalance, shown

in Figure 5.3(c), shows that the largest change in imbalance comes from the creation of

elements, but that the use of a drifted assignment still results in an imbalance of at most 7%.

These simulations and their performance with our load balancing technique were described

in detail in Section 4.2.

5.3 The Lazy Load Balancing Approach

Figure 5.4(a) shows the main components of traditional approach to load balancing an

application. The main steps are:

1. When to Balance: evaluate the imbalance, decide whether to correct load imbalance

at this point in execution;

2. How to Assign Work: use a load balance method to compute directions on how to

rebalance;

3. Rebalance the application if needed.

As Figure 5.4(a) shows, these steps are typically performed sequentially (in the SPMD

sense) with the application’s computation. Application execution pauses while load balance

decisions are made. As discussed, this approach is not well suited to using a graph

partitioner load balance algorithm, as these algorithms do not scale to the process counts

that the application does. Potentially thousands of application processes may have to wait

for the load balancing algorithm while it runs at sub-optimal efficiency.

5.3.1 Decoupling the Load Balance Algorithm

The load balance algorithm is distinct from the application calculation, and the amount

of computation performed by the load balance algorithm is usually smaller than the actual

88

start

executei

balanced?

LB

improve?

rebalance

done?

terminate

n
tim

es

yes

no

no

yes

yes

no

(a) Balancing Inline

start

executei

Isend(G)

done?

executei+1

Test(R)

rebalance*

done?

terminate

n 2
tim

es

balanced?

LB

improve?

Isend(R)

yes

no

yes

yes

no

yes

no

no

(b) Balancing Asynchronously

Figure 5.4: Inline vs. Asynchronous Load Balancing. Application components are shown
in green, load balancing decisions are shown in blue, external libraries are shown in orange,
asynchronous communication between application and load balancing processes is shown
in red.

89

Algorithm 9 Steps of Decoupled LB (PApp ∩ PLB 6= ∅)
1: for all pi ∈ PApp in parallel do
2: Pause computation
3: Send input to corresponding LB process PLBj

4: end for
5: for all pj ∈ PLB in parallel do
6: Receive input from all corresponding App process(es) PAppi
7: Apply LBAlgorithm
8: Send output to all corresponding App process(es) PAppi
9: end for

10: for all pi ∈ PApp in parallel do
11: Receive LBAlgo output from corresponding PLBj

12: Rebalance
13: Proceed with balanced computation
14: end for

computational work in the application. Using the same number of processes as the applica-

tion, the load balance algorithm has much less available parallelism because the granularity

of assignment for load balancing is typically much coarser than the finest granularity of

elements in the simulation. Decoupling moves the data to be partitioned onto a different set

of processes from those used by the application. The decoupling allows an algorithm such

as graph partitioning to run more efficiently on a smaller number of processes.

We outline the steps of a decoupled balancing configuration in Algorithm 9 and illustrate

them pictorially in Figure 5.4(b). First, the application sends its state to the corresponding

load balance processes (line 3 in Algorithm 9, red fan-in in Figure 5.5(b)). The load balance

processes receive the application information (line 6), run the load balance algorithm in

parallel (line 7, shown in blue), and send the instructions to the corresponding application

processes (line 8, red fan-out). The application then receives the instructions (line 11),

rebalances (line 12), and proceeds with the computation in a balanced state (line 13, shown

in green).

90

p Total number of t Number of f (n,w) Runtime of a balanced
processes timesteps timestep, run on n processes

n Processes used by u Number of un- g(m,w ′) LB runtime on m processes
Application bal. timesteps

m Processes used by w Work in the h(m, p,w ′) Comm. bt/w m Decoupled LB
Decoupled LB Application and p App. procs

m ′ Processes used by w′ Work in the h ′(m ′,n,w ′)Comm. bt/w m ′ Asyn-
Asynchronous LB LB algorithm chronous LB and n App.procs

α Initial Application i Rate of change
imbalance in imbalance

Standard Decoupled Asynchronous

Processes p = m = n m ≤ n = p m′ + n = p
Timesteps u = 0 u = 0 u > 0
LBTime g(p,w) g(m,w ′) + h(m, p,w ′) g(m ′,w ′) + h ′(m ′,n,w ′)
AppTime tf (p,w) tf (p,w) tf (n,w) + uαf (n,w)
TotalTime g(p,w ′) + tf (p,w) g(m,w ′) + h(m, p,w ′) + tf (p,w) tf (n,w) + uαf (n,w)

Table 5.1: Break Down of Execution Time for Standard, Decoupled, and Asynchronous
Approaches to Load Balancing

5.3.2 Asynchronous, Concurrent Load Balance Algorithm

To avoid pausing the application computation while computing a load balance assign-

ment, we can offload the load balance algorithm computation to a separate balancing

partition. Separation allows our load balance algorithm to run concurrently with the ap-

plication, overlapping application computation and load balance algorithm computation.

Assignments are applied by the application lazily as they become available.

We outline the steps of an asynchronous balancing configuration in Algorithm 10 and

show it pictorially in Figure 5.5(c). First, the application sends its state to the corresponding

load balance processes (line 2 in Algorithm 10, red fan-in in Figure 5.5(c)). The application

proceeds with the computation in the imbalanced state until further notice (line 3, first

green block). The load balance processes receive the application information (line 6), run

the load balance algorithm in parallel (line 7, shown in blue), and send the instructions to

91

Algorithm 10 Steps of Asynchronous LB (PApp ∪ PLB = ∅.)
1: for all pi ∈ PApp in parallel do
2: Send input to corresponding LB process PLBj

3: Proceed with imbalanced computation until further notice
4: end for
5: for all pj ∈ PLB in parallel do
6: Receive input from all corresponding App process(es) PAppi
7: Apply Load Balancing Algorithm
8: Sent output to all corresponding App process(es) PAppi
9: end for

10: for all pj ∈ PApp in parallel do
11: Receive LBAlgo output from corresponding PLBj

12: Pause computation, Rebalance
13: Proceed with balanced computation
14: end for

the corresponding application processes (line 8, red fan-out). The application then receives

the instructions (line 11), rebalances (line 12), and proceeds with the computation in a

balanced state (line 13, second green block).

One of the differences with Algorithm 9 is that by the time that the application receives

the load balance directions (line 11), the application has moved forward from its state when

it sent the instructions. We assume that the application can only be rebalanced at timesteps.

The load balance algorithm uses a snapshot s0 of the application at timestep t0 to compute

how to rebalance the application; we refer to this decision as d0. Assume that d0 results in

a balanced state of the application. However, while the load balance processes compute,

the application advances k timesteps. Applied to sk, d0 may result in an imbalanced state.

The asynchronous approach can optimize the resources for the load balance algorithm,

and overlap the load balance algorithm with the main computation to avoid wasting

resources. Running the load balance algorithm asynchronously also means we can run the

load balance algorithm continuously, correcting the imbalance with a higher frequency

than otherwise would be affordable. Figure 5.5(d) demonstrates how the application can

92

continue sending its state to the load balance processes, and the load balance algorithm can

continually compute the rebalancing directions. The frequency of the rebalancing should be

dictated by the amount of drift that an application can tolerate, as discussed it in Section 5.2

vs. the number of resources a user is willing to dedicate to load balancing and with that the

frequency in which new work assignments can be produced.

5.4 Performance Model for Allocating Resources

To understand the performance of different load balancing configurations and to min-

imize the overall runtime, we develop a performance model that provides a quantitative

basis for deciding how to allocate the available resources in the system. The cost model

captures the performance characteristics of the standard, decoupled, and asynchronous load

balancing configurations. To simplify the explanation, we assume that the load balance

algorithm is able to balance the application fully.

Figure 5.5 illustrates how the different load balancing configurations result in different

resource usage. The height of the block indicates the number of processes (resources);

the length of the block indicates the runtime. We consider application computation, load

balance algorithm computation, and communication overhead. Table 5.1 summarizes the

variables that we use in the performance model.

Model Input:

• p -- Total number of processes;

• α -- Initial application imbalance;

• t -- The smaller of the number of time steps that the simulation takes, or the number

of steps the simulation takes prior to drift becoming too large;

• Runtime of the application, load balance algorithm, and communication overhead, as

defined in the subsections to follow.

Model Output:

93

Application LB App to LB Comm

LB to App Comm
Work

Runtime

Resources

(a) Traditional

(b) Decoupled

(c) Asynchronous

(d) Continuous
Asynchronous

time

Figure 5.5: Resource Diagram of Load Balancing Configurations

• Choice of standard, decoupled, or asynchronous configuration;

• m -- Number of processes for the load balance algorithm;

• n -- Number of processes for the application.

Predictive modeling of the performance of specific load balance algorithms (such as

graph partitioners) and physical simulation algorithms are research topics in their own right

and are outside the scope of this dissertation. Here, we use curve fits of the load balance

algorithm and application runtime, from which our model determines how to allocate the

resources in the system.

5.4.1 Modeling the Application

The computation time of an application, f (n,w), is a function of the number of pro-

cesses and the amount of work in the application, and we model it with a curve fit. The

application uses p processes in the standard and decoupled configurations, and n < p

processes in the asynchronous configuration.

94

At the beginning of the execution, the application has an initial imbalance α. Because

the standard and decoupled configurations pause the application execution while the load

balance algorithm computes, the application is redistributed immediately and computes all

t timesteps in a balanced state. In the asynchronous configuration, the application continues

running imbalanced for u steps, while the offloaded load balance algorithm computes the

directions; we discuss how we determine u in the next subsection. Once the rebalancing

directions are received, the application is redistributed and completes the remaining t − u

steps in a balanced state. The application execution time therefore depends on whether

the timesteps are executed prior to or after redistribution, and how many processes the

application uses.

The application provides t ′, the number of time steps that it intends to run. For

simplicity, we assume that the drift metric i , rate of change in imbalance, is constant. We

estimate i at runtime or accept it as input from the application. Using the rate of change,

we compute how many steps t ′ the application can execute before it needs to be rebalanced

again because it reaches an imbalance threshold tol :

t ′′ =
log(tol × f (n,w))− log(f (n,w))

log(1 + i)
(5.2)

We then choose the smaller of those values and use it as the number of timesteps in our

model:

t = min(t ′, t ′′) (5.3)

5.4.2 Modeling the Load Balance Algorithm

The computation time of a load balance algorithm, g(m,w ′), is a function of the

amount of work and the number of processes used. The amount of work in the load

balance algorithm, w ′, is usually smaller than the amount of work in the application itself,

95

w . The performance of each load balance algorithm is modeled with curve fitting, and

the algorithm will use p processes in the standard configuration, m ≤ p processes in the

decoupled configuration, and m ′ < p processes in the asynchronous configuration.

In the decoupled and asynchronous configurations, the application processes first send

relevant information to the load balance processes. Once the load balance directions are

computed, they are sent back to the application. We refer to this overhead, h(m, p,w ′) and

h ′(m ′, n,w ′), as communication overhead for decoupled and asynchronous configurations.

In our implementation, we use asynchronous communication between the application

processes and the load balance processes. However, for simplicity we model this communi-

cation as if it cannot be overlapped with the computation. The runtime of gather/scatter

operations depends on the number of the application processes and load balance processes,

and the amount of data sent.

In the asynchronous configuration, the application proceeds in an imbalanced state for

u steps, while the load balance information is gathered, the load balance algorithm executes,

and the directions are scattered back to the application. We calculate u as a fraction of the

time until the directions are available, and the length of the imbalanced timestep:

u =
g(m,w ′) + h ′(m ′, n,w ′)

α f (n,w)
(5.4)

The extra time that the application runs because of the delay in rebalancing becomes part

of the overhead of the asynchronous load balancing configuration.

5.4.3 Modeling Overall Runtime

The total time for the standard and decoupled configurations is a sum of load balance

algorithm time and application time, including the gather/scatter overhead in the decoupled

configuration. The total time for the asynchronous configuration only includes the applica-

tion time since the load balance algorithm time is overlapped; however, the application runs

96

Application

PnMPI

MPI

Communication b/w application & tool partition

Virtualization

Libra

Data collec-
tion & feedback

D
at

a
ex

ch
an

ge

Instrumentation
Load

balancing
method

Analysis
& decision

making

Interface

Figure 5.6: Asynchronous Load Balancing Infrastructure and Interaction Between the
Components. Framework Modules are in Blue.

using fewer processes because some of the resources were reserved for the load balance

algorithm, so that the application runtime may be longer. Additionally, as discussed above,

the application runs in an imbalanced state for u steps, which increases the total time as

well.

The decoupled configuration is a generalization of the standard configuration when

m = n = p, h(m, p,w ′) = 0 , so we only discuss how to choose between the decoupled

and asynchronous configurations. Given p, the model attempts to choose m and n such

that:

min


g(m,w ′) + h(m, p,w ′) + t f (p,w)

t f (n,w) + uα f (n,w)

(5.5)

We discuss an instantiation of our model for our test applications and load balance

algorithm in Section 5.6.2.

97

G Send Graph
R Rebalance

G R

0 0
1 0
1 1

Figure 5.7: Valid State Transitions

Init Done?

Compute

Rebalance

yes/∅

00/∅ 10/graph

11/∅

∅/graph
no/done

Figure 5.8: Application State Machine. Transitions Show Input (from Load Balance
Algorithm) and Output (from Application to Load Balance Algorithm).

Init Get input Analysis
∅/10

graph/∅

∅/10

∅/11
done/∅

Figure 5.9: Load Balance Algorithm State Machine. Transitions Show Input (from Appli-
cation) and Output (from Load Balance Algorithm to Application).

98

5.5 Lazy Load Balancing Implementation

To enable applications to exploit the lazy load balancing approach, we develop a frame-

work for transparently, i.e., without changes to the actual computation in the application,

decoupling the resources used by the load balance algorithm from the application resources.

Our framework enables offloading the load balance algorithm to separate processes, al-

lowing the load balance algorithm to execute asynchronously to the application, without

pausing the application.

We achieve this separation by virtualizing the application to execute on a different, po-

tentially smaller, set of processes than the job allocation, as described in Section 5.5.1. We

describe our asynchronous communication protocol between the application and balancing

processes in Section 5.5.2.

5.5.1 Transparently Splitting Existing Application Partitions

Without a loss in generality of the concepts, we focus our implementation on appli-

cations built on top of the Message Passing Interface (MPI) [67], currently the dominant

standard for large scale scientific applications. We implement a portable mechanism using

standard MPI to allocate the processes in a parallel machine in an MPMD fashion, i.e., the

ability to execute multiple independent programs concurrently (in our case the application

and the load balance algorithm) within the same job partition, without modifying the

applications.

We use PNMPI [82] to integrate modules in our framework. PNMPI is a tools frame-

work that stacks independent tools built using the MPI profiling interface [50]. We use this

framework to combine the necessary components or tools implementing the virtualization

of the underlying MPI process into separate partitions, the measurement tools, the interac-

tion with the application, and our new asynchronous interaction component. PNMPI also

supports direct communication among tools, which we use to exchange element interaction

99

and performance information. Our tool stack imposes negligible overhead, so perturbation

of application behavior is insignificant.

The virtualization module intercepts all application communication, and transparently

replaces MPI COMM WORLD with a smaller communicator, APP COMM and with that

provides the illusion for the application that it is executed on a smaller set of resources.

With a predetermined number of processes reserved for the load balance algorithm, the

application proceeds as before, using MPI COMM WORLD and other MPI communicators

that now simply use fewer processes. The load balance algorithm executes asynchronously

in a separate communicator, LB COMM, where:

MPI COMM WORLD = APP COMM ∪ LB COMM (5.6)

Figure 5.6 illustrates the PNMPI modules in our framework and their interaction with

the application and libraries. The virtualization module splits the processes between the

two communicators. Data collection is performed on APP COMM, which allows the use of

additional data collection modules like Libra [45]. All load balance calculations are run in

LB COMM, including external load balance libraries like Zoltan [36]. LB COMM processes

also determine whether to send the application rebalance directions. We next describe the

communication between the two communicators.

5.5.2 Asynchronous Interaction Protocol Between Application and Load Balancing

Processes

The communication in Figure 5.6 enables the asynchronous execution and coordina-

tion between the application and the load balancing processes. This communication is

performed completely outside the application, preserving the original execution model for

the application.

Figures 5.8 and 5.9 demonstrate the asynchronous interaction protocol between the

100

application and the load balance processes. Figure 5.7 shows the shorthand for the valid

state transitions, which indicate when the load representation (graph) needs to be sent and

when the application should rebalance. The application sends information about its state

and continues to run while the load balance algorithm computes. The execution within

the load balancing processes can be synchronous, allowing us to call MPI libraries (i.e.,

partitioners), directly, without impacting application execution. The application is sent the

rebalancing instructions only when they have been computed. The application can then

apply this decision at the next stopping point (i.e., between time steps).

If the application is at a stopping point and has not received rebalancing instructions, it

can:

• always wait for load balancing directions (inline);

• never wait for load balancing directions (fully asynchronous);

• continue for up to a given number of time steps and then wait (middle ground).

The above decision can be made dynamically at runtime for each stopping point and

should be based on a function of how quickly the application load balance deteriorates. For

the purpose of the remainder of this section, we run in a fully asynchronous mode, since

this choice stresses the concept of lazy load balancing the most and therefore allows the

most thorough evaluation.

5.6 Performance Evaluation

5.6.1 Evaluating Overhead of Lazy Load Balancing

For our experimental studies, we show strong scaling for all comparisons. Weak scaling

studies of N-body computations are difficult to construct accurately due to variability in the

particle density during scaling. Showing strong scaling ensures a fair comparison.

Figure 5.10(a) shows the break down of the costs of decoupling the load balance algo-

rithm as a function of the resources provided to the load balance algorithm. These costs

101

2 4 8 16 32 64 128 256 512 1024
0

10

20

Processes used by Load Balance Algorithm

T
im

e
(s

ec
)

SendToApp

Unmerge

Merge

SendToLB

LB

(a) Costs of Decoupling the Load Balance Algorithm

D
ec

ou
pl

ed
A

sy
nc

D
ec

ou
pl

ed
A

sy
nc

D
ec

ou
pl

ed
A

sy
nc

D
ec

ou
pl

ed
A

sy
nc

D
ec

ou
pl

ed
A

sy
nc

D
ec

ou
pl

ed
A

sy
nc

D
ec

ou
pl

ed
A

sy
nc

D
ec

ou
pl

ed
A

sy
nc

D
ec

ou
pl

ed
A

sy
nc

0

10

20

Unbal. Ts

2 4 8 16 32 64 128 256 512Tool Procs

T
im

e
(s

ec
)

UnbalApp
Comm
LB

(b) Overhead of Balancing Configurations (Standard, Decoupled, and Asynchronous)

Figure 5.10: Lazy Load Balance Algorithm Overhead. Linux Cluster, Barnes-Hut, 64.6M
Interactions, 1024 Processes

102

57,344 61,440 63,488 65,536
4.2

4.4

4.6

4.8

Processes

T
im

e
(s

ec
on

ds
)

Linear Fit
Training Set
Testing Set

(a) Application Timestep Length

2,048 16,384 51,200 65,536
0

500

1,000

1,500

Processes

T
im

e
(s

ec
on

ds
)

Linear Fit
Training Set
Testing Set

(b) Load Balance Algorithm

7 15 28 32

10

20

n:m Processes

T
im

e
(s

ec
on

ds
)

Linear Fit
Training Set
Testing Set

(c) Communication Parameters

Figure 5.11: Model Parameters Obtained via Curve Fitting. BGQ, Barnes-Hut, 306.5M
Interactions

103

include sending the data to the load balancing processes, merging the data from several

application processes on a single load balancing process, running the load balance algo-

rithm in parallel on load balancing processes, unmerging, and sending the load balancing

instructions back to corresponding application processes. The communication overhead

imposed by the decoupling has a strong relationship with the n : m ratio of application

processes to load balancing processes, consistent with fan in/fan out costs that one would

expect. We discuss the scaling of the load balance algorithm in the next subsection.

Figure 5.10(b) shows the overhead of the decoupled and asynchronous load balancing

configurations as a function of the resources provided to the load balance algorithm. In the

decoupled configuration, the overhead includes the load balance algorithm time and the

communication overhead. In the asynchronous configuration, the overhead includes the

time lost due to running the application in an imbalanced state while the load balancing

directions are computed. Unbalanced timestep length is shown for scale.

5.6.2 Model Validation

We use least squares fit to model the parameters in our model. Figure 5.11 shows

the performance of the load balance algorithm, application timestep, and communication

overhead for a Barnes-Hut problem with 306.5M interactions. The training set measure-

ments are shown as black dots, along with the curve that we fit to them. We show the

measurements that we use for validation as red dots. We model the load balance algorithm

and the application timestep as a function of processes. The communication overhead,

however, is closely related to the ratio between the number of application processes and the

number of load balancing processes, so we model it as a function of the ratio. Linear fits

are sufficient in all cases. Poor performance of the graph partitioner (it becomes slower

with additional resources) is due to the small size of the partitioned graph (265K vertices),

which results in little work per process and high serialized overhead that increases with

104

15

20

25

30

35

40

45

%
R

un
tim

e
Im

pr
ov

em
en

t

57,344 59,392 61,440 63,488 65,536
2,000

2,500

3,000

3,500

4,000

Application Processes

T
im

e
(s

ec
on

ds
)

Decoupled
Asynchronous
Modeled
Standard

Figure 5.12: Runtime of Load Balance Configurations and Model Selection. Percent
Runtime Improvement of Best Decoupled and Best Asynchronous Load Balancing Config-
urations over Standard

105

the number of processes. This inefficiency is one of the motivations for our work: by

decoupling the load balance algorithm we can use a graph partitioner when it would be too

expensive to run at the full scale of the application.

Figure 5.12 shows the runtime and percent improvement over the standard approach.

For asynchronous and decoupled, only the runtimes with the best performing parameters

(out of 7-11 parameters) are shown. The runtime for the configuration selected by the

model (out of 15-23 valid options) is shown. In all but one case, the model accurately

selects the best performing configuration. In the case that the model selects the second best

configuration, the difference in runtime between the first and second best configuration is

small, so the error results in little performance loss.

Overall, the decoupled and asynchronous configurations are able to reclaim the perfor-

mance lost due to the poor strong scalability of the graph partitioner, resulting in 15-46%

runtime improvement. The asynchronous configuration results in the shortest runtime

in most cases due to overlapping the application and graph partitioning computations.

Our model generally correctly selects the best performing configuration along with the

parameters, resulting in 17-46% runtime improvement.

5.7 Conclusions

Our novel lazy approach to load balancing is based on decoupling the load balance

algorithm from the application and offloading the load balance computation to overlap it

with the application execution. We implemented a framework that performs the decoupling

and offloading of the load balance algorithm transparently to the application, requiring

no modifications to the application. We characterized the application properties and drift

metrics that determine suitability of lazy load balancing. We provided a model for allocating

the resources in the system based on the performance of the application and the load balance

algorithm.

106

We have evaluated the usefulness of our proposed drift metrics on a Barnes-Hut

benchmark and a production application, ParaDiS. We studied the performance properties

of lazy load balancing and have demonstrated runtime improvements of up to 46%. Finally,

we have shown that our resource allocation model can accurately predict the load balance

configuration and the resource allocation that result in the lowest execution time of the

application. Our MPMD approach to allocating the supercomputer removes the load

balance algorithm from the critical path of the application, shortening the overall runtime

of the simulation.

107

6. CONCLUSIONS

The research conducted as a part of this dissertation has reestablished the importance of

effective and affordable dynamic load balance correction at scale. Our work shows that

affordable distributed load balancing techniques are often too inaccurate to use at scale

when even small imbalances can result in severe performance degradation. Yet the more

accurate methods are frequently too expensive to be affordable at runtime.

This dissertation makes several important contributions towards effective and efficient

load balancing of dynamic parallel applications. We developed strategies to measure and

evaluate the computational load of the application, and decide when and how to correct

the imbalance. We developed a model for comparison of load balance algorithms for a

specific state of the simulation that enables the selection of a balancing algorithm that will

minimize overall runtime.

To make the load balance correction affordable at scale, we propose a lazy load bal-

ancing strategy that evaluates the imbalance and computes the new assignment of work to

processes asynchronously to the main application computation. We decouple the load bal-

ance algorithm from the application and run it with higher parallel efficiency on potentially

fewer, separate processors. In this Multiple Program Multiple Data (MPMD) configuration,

and application work is reassigned lazily as directions become available. We show that

we can save resources by running a load balance algorithm at higher parallel efficiency on

a smaller number of processors, and provide a model for allocating the resources in the

system based on the performance of the application and the load balance algorithm. We

studied the performance properties of lazy load balancing and have demonstrated runtime

improvement of up to 46%. We have shown that our resource allocation model accurately

predicts the load balance configuration and the resource allocation that result in the lowest

108

execution time of the application.

Based on this work, several directions for future research are possible. The load bal-

ancing framework can be enhanced with more sophisticated algorithms for load balancing,

including customized algorithms for applications with unusual resource requirements. Ex-

tending the generality of the model for evaluating load balance algorithm performance to

include more types of load balancing algorithms is another direction for research.

The work presented on deciding how to allocate the resources between the application

and the load balance algorithm is specific to a particular load balance algorithm and two

applications described. For this work to be generally useful, other load balance algorithms

would have to be modeled, along with applications to which they are applied.

109

REFERENCES

[1] chaos-release: Linux Distribution for High Performance Computing, 2010.

http://code.google.com/p/chaos-release/wiki/CHAOS Description.

[2] CGAL, Computational Geometry Algorithms Library, 2010. http://www.cgal.org.

[3] N. Adiga, G. Almasi, G. Almasi, Y. Aridor, R. Barik, D. Beece, R. Bellofatto,

G. Bhanot, R. Bickford, M. Blumrich, A. Bright, J. Brunheroto, C. Caşcaval, J. Casta

nos, W. Chan, L. Ceze, P. Coteus, S. Chatterjee, D. Chen, G. Chiu, T. Cipolla,

P. Crumley, K. Desai, A. Deutsch, T. Domany, M. Dombrowa, W. Donath, M. Eleft-

heriou, C. Erway, J. Esch, B. Fitch, J. Gagliano, A. Gara, R. Garg, R. Germain,

M. Giampapa, B. Gopalsamy, J. Gunnels, M. Gupta, F. Gustavson, S. Hall, R. Har-

ing, D. Heidel, P. Heidelberger, L. Herger, D. Hoenicke, R. Jackson, T. Jamal-

Eddine, G. Kopcsay, E. Krevat, M. Kurhekar, A. Lanzetta, D. Lieber, L. Liu, M. Lu,

M. Mendell, A. Misra, Y. Moatti, L. Mok, J. Moreira, B. Nathanson, M. New-

ton, M. Ohmacht, A. Oliner, V. Pandit, R. Pudota, R. Rand, R. Regan, B. Rubin,

A. Ruehli, S. Rus, R. Sahoo, A. Sanomiya, E. Schenfeld, M. Sharma, E. Shmueli,

S. Singh, P. Song, V. Srinivasan, B. Steinmacher-Burow, K. Strauss, C. Surovic,

R. Swetz, T. Takken, R. Tremaine, M. Tsao, A. Umamaheshwaran, P. Verma,

P. Vranas, T. Ward, M. Wazlowski, W. Barrett, C. Engel, B. Drehmel, B. Hil-

gart, D. Hill, F. Kasemkhani, D. Krolak, C. Li, T. Liebsch, J. Marcella, A. Muff,

A. Okomo, M. Rouse, A. Schram, M. Tubbs, G. Ulsh, C. Wait, J. Wittrup, M. Bae,

K. Dockser, L. Kissel, M. Seager, J. Vetter, and K. Yates. An Overview of the

BlueGene/L Supercomputer. In SC’02, November 2002.

[4] T. Agarwal, A. Sharma, and L. V. Kalé. Topology-Aware Task Mapping for

Reducing Communication Contention on Large Parallel Machines. In International

110

Parallel and Distributed Processing Symposium (IPDPS), April 2006.

[5] D. Arnold, D. Ahn, B. de Supinski, G. Lee, B. Miller, and M. Schulz. Stack

Trace Analysis for Large Scale Debugging. In Parallel and Distributed Processing

Symposium (IPDPS), March 2007.

[6] A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce, and

V. V. Bulatov. Enabling Strain Hardening Simulations with Dislocation Dynamics.

Modelling and Simulation in Materials Science and Engineering, 15(6):553, 2007.

[7] E. Ayguadé, B. Blainey, A. Duran, J. Labarta, F. Martinez, X. Martorell, and

R. Silvera. Is the Schedule Clause Really Necessary in OpenMP? In International

Workshop of OpenMP Applications and Tools, Lecture Notes in Computer Science,

June 2003.

[8] H. C. Baker, Jr. and C. Hewitt. The Incremental Garbage Collection of Processes.

In ACM Symposium on Artificial Intelligence and Programming Languages, 1977.

[9] I. Banicescu and S. Flynn Hummel. Balancing Processor Loads and Exploiting Data

Locality in N-Body Simulations. In SC’95, November 1995.

[10] K. Barker, A. Chernikov, N. Chrisochoides, and K. Pingali. A Load Balancing

Framework for Adaptive and Asynchronous Applications. IEEE Transactions on

Parallel and Distributed Systems, 15(2):183--192, 2004.

[11] K. Barker and N. Chrisochoides. An Evaluation of a Framework for the Dynamic

Load Balancing of Highly Adaptive and Irregular Parallel Applications. In SC’03,

November 2003.

[12] J. Barnes and P. Hut. A Hierarchical O(N log N) Force-Calculation Algorithm.

Nature, 324:446--449, December 1986.

111

[13] A. Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg, H. Digonnet, R. Ducloux,

J. M. Gratien, U. Hartmann, G. Lonsdale, B. Maerten, D. Roose, and C. Walshaw.

Dynamic Load-Balancing of Finite Element Applications with the DRAMA Library.

Applied Mathematical Modelling, 25(2):83--98, 2000.

[14] M. J. Berger and S. H. Bokhari. A Partitioning Strategy for Nonuniform Problems

on Multiprocessors. IEEE Transactions on Computers, 36(5):570--580, May 1987.

[15] A. Bhatelé, L. V. Kalé, and S. Kumar. Dynamic Topology Aware Load Balancing

Algorithms for MD Applications. In SC’09, November 2009.

[16] R. Biswas, L. Oliker, S. K. Das, and D. Harvey. Portable Parallel Programming

for the Dynamic Load Balancing of Unstructured Grid Applications. In IEEE

International Parallel Processing Symposium (IPPS), April 1999.

[17] S. H. Bokhari. Dual Processor Scheduling with Dynamic Reassignment. IEEE

Transactions on Software Engineering, SE-5(4):326--334, July 1979.

[18] S. H. Bokhari. A Shortest Tree Algorithm for Optimal Assignments Across Space

and Time in a Distributed Processor System. IEEE Transactions on Software

Engineering, SE-7(6):335--341, November 1981.

[19] C. Boneti, R. Gioiosa, F. J. Cazorla, and M. Valero. A Dynamic Scheduler for

Balancing HPC Applications. In SC’08, November 2008.

[20] L. A. Bongo, B. Vinter, O. J. Anshus, T. Larsen, and J. M. Bjorndalen. Using

Overdecomposition to Overlap Communication Latencies with Computation and

Take Advantage of SMT Processors. In International Conference on Parallel

Processing Workshops (ICPPW), August 2006.

[21] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A Scalable Cross-

Platform Infrastructure for Application Performance Tuning Using Hardware Coun-

112

ters. In SC’00, November 2000.

[22] R. K. Brunner and L. V. Kalé. Handling Application-Induced Load Imbalance using

Parallel Objects. International Workshop on Parallel and Distributed Computing

for Symbolic and Irregular Applications, 2000.

[23] H. Brunst, H.-C. Hoppe, W. E. Nagel, and M. Winkler. Performance Optimization

for Large Scale Computing: The Scalable VAMPIR Approach. In International

Conference on Computational Science-Part II, 2001.

[24] V. Bulatov, W. Cai, J. Fier, M. Hiratani, G. Hommes, T. Pierce, M. Tang, M. Rhee,

K. Yates, and T. Arsenlis. Scalable Line Dynamics in ParaDiS. In SC’04, November

2004.

[25] M. Burtscher and K. Pingali. An Efficient CUDA Implementation of the Tree-Based

Barnes-Hut N-Body Algorithm. In GPU Computing Gems Emerald Edition, 2011.

[26] A. R. Butz. Convergence with Hilbert’s Space Filling Curve. Journal of Computer

& System Sciences, 3(2):128--146, 1969.

[27] T. L. Casavant and J. G. Kuhl. A Taxonomy of Scheduling in General-Purpose

Distributed Computing Systems. IEEE Transactions on Software Engineering,

14(2):141--154, 1988.

[28] R. Chandra, A. Gupta, and J. L. Hennessy. Data Locality and Load Balancing

in COOL. In ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), pages 249--259, 1993.

[29] T. C. K. Chou and J. A. Abraham. Load Balancing in Distributed Systems. IEEE

Transactions on Software Engineering, SE-8(4):401--412, July 1982.

113

[30] R. B. Christopher, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and

Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. Journal of Parallel

and Distributed Computing, pages 207--216, 1995.

[31] P. Colella, D.Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini, and B. V.

Straalen. Chombo: Software Package for AMR Applications -- Design Document.

2003.

[32] A. Corradi, L. Leonardi, and F. Zambonelli. Diffusive Load-Balancing Policies for

Dynamic Applications. IEEE Concurrency, 7(1):22--31, 1999.

[33] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-

nian, and T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation.

In Symposium on Principles and Practice of Parallel Programming (PPoPP), May

1993.

[34] G. Cybenko. Dynamic Load Balancing for Distributed Memory Multiprocessors.

Journal of Parallel and Distributed Computing, 7(2):279--301, 1989.

[35] B. R. de Supinski, M. Schulz, V. V. Bulatov, W. Cabot, B. Chan, A. W. Cook,

E. W. Draeger, J. N. Glosli, J. A. Greenough, K. Henderson, A. Kubota, S. Louis,

B. J. Miller, M. V. Patel, T. E. Spelce, F. H. Streitz, P. L. Williams, R. K. Yates,

A. Yoo, G. Almasi, G. Bhanot, A. Gara, J. A. Gunnels, M. Gupta, J. Moreira,

J. Sexton, B. Walkup, C. Archer, F. Gygi, T. C. Germann, K. Kadau, P. S. Lom-

dahl, C. Rendleman, M. L. Welcome, W. McLendon, B. Hendrickson, F. Franchetti,

S. Kral, J. Lorenz, C. W. Uberhuber, E. Chow, and U. Catalyurek. BlueGene/L Appli-

cations: Parallelism on a Massive Scale. Internationa Journal of High Performance

Computing Applications (IJHPCA), 22(1), 2008.

[36] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, J. Teresco, J. Faik, J. Flaherty,

and L. Gervasio. New Challanges in Dynamic Load Balancing. Applied Numerical

114

Mathematics, 52(2-3):133--152, 2005.

[37] K. Devine, B. Hendrickson, E. Boman, M. St. John, and C. Vaughan. Design of Dy-

namic Load-Balancing Tools for Parallel Applications. In International Conference

on Supercomputing (ICS), May 2000.

[38] K. W. Doty, P. L. McEntire, and J. G. O’Reilly. Task Allocation in a Distributed

Computer System. IEEE InfoCom, pages 33--38, 1982.

[39] A. Duran, M. Gonzàlez, and J. Corbalán. Automatic Thread Distribution for Nested

Parallelism in OpenMP. In International Conference on Supercomputing (ICS), June

2005.

[40] Z. Eisler, I. Bartos, and J. Kertesz. Fluctuation Scaling in Complex Systems: Taylor’s

Law and Beyond. Advances in Physics, 57(1):89--142, 2008.

[41] D. Friedman and D. Wise. The Impact of Applicative Programming on Multiprocess-

ing. In International Conference on Parallel Processing (ICPP), pages 263--272,

September 1976.

[42] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An Algorithm for Finding Best

Matches in Logarithmic Expected Time. ACM Transactions on Mathematical

Software, 3(3):209--226, Sept. 1977.

[43] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5

Multithreaded Language. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), volume 33, 1998.

[44] A. Gabrielian and D. B. Tyler. Optimal Object Allocation in Distributed Computer

Systems. In International Conference on Distributed Computing Systems (ICDCS),

May 1984.

115

[45] T. Gamblin, B. R. de Supinski, M. Schulz, R. Fowler, and D. A. Reed. Scalable

Load-Balance Measurement for SPMD Codes. In SC’08, November 2008.

[46] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman & Co., New York, NY, USA, 1979.

[47] E. Georganas, J. González-Domı́nguez, E. Solomonik, Y. Zheng, J. Touriño, and

K. Yelick. Communication Avoiding and Overlapping for Numerical Linear Algebra.

In SC’12, November 2012.

[48] J. N. Glosli, K. J. Caspersen, J. A. Gunnels, D. F. Richards, R. E. Rudd, and F. H.

Streitz. Extending Stability Beyond CPU Millennium: A Micron-Scale Atomistic

Simulation of Kelvin-Helmholtz Instability. In SC’07, November 2007.

[49] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simulations. Journal of

Computational Physics, 135:280--292, 1987.

[50] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming

with the Message Passing Interface. MIT Press, Cambridge, MA, USA, 1994.

[51] B. Hendrickson and T. G. Kolda. Graph Partitioning Models for Parallel Computing.

Parallel Computing, 26(12):1519--1534, 2000.

[52] K. A. Huck and J. Labarta. Detailed Load Balance Analysis of Large Scale Parallel

Applications. In International Conference on Parallel Processing, September 2010.

[53] J. E. Jones. On the Determination of Molecular Fields. II. From the Equation of

State of a Gas. Royal Society of London Proceedings Series A, 106:463--477, Oct.

1924.

[54] V. Karamcheti and A. A. Chien. A Hierarchical Load-Balancing Framework for

Dynamic Multithreaded Computations. In SC’98, November 1998.

116

[55] R. M. Karp. Reducibility Among Combinatorial Problems. Complexity of Computer

Computations, pages 85--103, 1972.

[56] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs.

Bell System Technical Journal, 49:291--307, February 1970.

[57] L. Kleinrock and A. Nilsson. On Optimal Scheduling Algorithms for Time-Shared

Systems. Journal of the ACM, 28(3):477--486, 1981.

[58] G. A. Koenig and L. V. Kalé. Optimizing Distributed Application Performance

Using Dynamic Grid Topology-Aware Load Balancing. In IEEE Intl. Parallel and

Distributed Processing Symposium (IPDPS), March 2007.

[59] N. Komatsu, T. Kiwata, and S. Kimura. Thermodynamic Properties of an Evapo-

ration Process in Self-Gravitating N-Body Systems. Physics Review E, 82, August

2010.

[60] R. Koradi, M. Billeter, and P. Gntert. Point-Centered Domain Decomposition

for Parallel Molecular Dynamics Simulation. Computer Physics Communications,

124:139--147, 2000.

[61] Z. Lan, V. E. Taylor, and Y. Li. DistDLB: Improving Cosmology SAMR Simulations

on Distributed Computing Systems Through Hierarchical Load Balancing. Journal

of Parallel and Distributed Computing, 66(5):716--731, 2006.

[62] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and S. A.

McKee. Methods of Inference and Learning for Performance Modeling of Parallel

Applications. In International Symposium on Principles and Practices of Parallel

Programming (PPoPP), March 2007.

[63] M. Livny and M. Melman. Load Balancing in Homogeneous Broadcast Distributed

Systems. In Proceedings of the Computer Network Performance Symposium, pages

117

47--55, 1982.

[64] P. Y. R. Ma, E. Y. S. Lee, and J. Tsuchiya. A Task Allocation Model for Distributed

Computing Systems. IEEE Transactions on Computers, C-31(1), January 1982.

[65] B. M. Mark, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. Bruce, I. Karen,

L. Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn Parallel Perfor-

mance Measurement Tools. IEEE Computer, 28:37--46, November 1995.

[66] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-

tations. Chichester: John Wiley and Sons, New York, NY, USA, 1990.

[67] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard

Version 3.0. http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf, September

2012.

[68] M. M. Michael, M. T. Vechev, and V. A. Saraswat. Idempotent Work Stealing. In

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), February 2008.

[69] J. L. Myers and A. D. Well. Research Design and Statistical Analysis (2nd edition).

Lawrence Erlbaum Associates Publishers, Mahwah, NJ, USA, 2003.

[70] L. M. Ni and K. Hwang. Optimal Load Balancing Strategies for a Multiple Processor

System. In International Conference on Parallel Processing (ICPP), August 1981.

[71] L. Oliker and R. Biswas. Efficient Load Balancing and Data Remapping for Adaptive

Grid Calculations. In ACM Symposium on Parallel Algorithms and Architectures

(SPAA), June 1997.

[72] L. Oliker and R. Biswas. PLUM: Parallel Load Balancing for Adaptive Unstructured

Meshes. Journal of Parallel and Distributed Computing, 52(2):150--177, 1998.

118

[73] O. Pearce, T. Gamblin, B. R. de Supinski, T. Arsenlis, and N. M. Amato. Load

Balancing N-Body Simulations with Highly Non-Uniform Density. In International

Conference on Supercomputing (ICS), June 2014.

[74] O. Pearce, T. Gamblin, B. R. de Supinski, M. Schulz, and N. M. Amato. Quantifying

the Effectiveness of Load Balance Algorithms. In International Conference on

Supercomputing (ICS), June 2012.

[75] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H.

Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo, D. Prountzos, and X. Sui. The

Tao of Parallelism in Algorithms. In Conference on Programming Language Design

and Implementation (PLDI), February 2011.

[76] S. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal

of Computational Physics, 117(1):1 -- 19, 1995.

[77] R. B. Ross, T. Peterka, H.-W. Shen, Y. Hong, K.-L. Ma, H. Yu, and K. Moreland.

Visualization and Parallel I/O at Extreme Scale. Journal of Physics: Conference

Series, 125(1):12--99, 2008.

[78] J. Sancho, D. Kerbyson, and K. Barker. Efficient Offloading of Collective Communi-

cations in Large-Scale Systems. In International Conference on Cluster Computing

(ICCC), September 2007.

[79] K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski, and

S. Matsuoka. Design and Modeling of a Non-Blocking Checkpointing System. In

SC’12, November 2012.

[80] K. Schloegel, G. Karypis, and V. Kumar. A Unified Algorithm for Load-Balancing

Adaptive Scientific Simulations. In SC’00, November 2000.

119

[81] K. Schloegel, G. Karypis, and V. Kumar. Parallel Multilevel Algorithms for Multi-

Constraint Graph Partitioning. In International Euro-Par Conference on Parallel

Processing, August 2000.

[82] M. Schulz and B. R. de Supinski. PNMPI Tools: A Whole Lot Greater Than the

Sum of Their Parts. In SC’07, November 2007.

[83] C. Shen and W. Tsai. A Graph Matching Approach to Optimal Task Assignment in

Distributed Computing Systems Using a Minimax Criterion. IEEE Transactions on

Computers, C-34(3):197--203, March 1985.

[84] S. S. Shende and A. D. Malony. The TAU Parallel Performance System. Interna-

tional Journal of High Performance Computing Applications (IJHPCA), 20(2):287--

311, 2006.

[85] J. P. Singh, C. Holt, J. L. Hennessy, and A. Gupta. A Parallel Adaptive Fast

Multipole Method. In SC’93, November 1993.

[86] C. D. Snow, E. J. Sorin, Y. M. Rhee, and V. S. Pande. How Well Can Simulation

Predict Protein Folding Kinetics and Thermodynamics? Annual Review of Biophysics

and Biomolecular Structure, 34(1):43--69, 2005.

[87] N. Spring and R. Wolski. Application Level Scheduling of Gene Sequence Compar-

ison on Metacomputers. In International Conference on Supercomputing (ICS), July

1998.

[88] H. S. Stone. Critical Load Factors in Two-Processor Distributed Systems. IEEE

Transactions on Software Engineering, SE-4(3):254--258, May 1978.

[89] H. S. Stone and S. H. Bokhari. Control of Distributed Processes. Computer, 11:97--

106, July 1978.

120

[90] F. Streitz, J. Glosli, M. Patel, B. Chan, R. Yates, B. de Supinski, J. Sexton, and

J. Gunnels. 100+ TFlop Solidification Simulations on BlueGene/L. In SC’05,

November 2005.

[91] F. Streitz, J. Glosli, M. Patel, B. Chan, R. Yates, B. de Supinski, J. Sexton, and

J. Gunnels. Simulating Solidification in Metals at High Pressure: The Drive to

Petascale Computing. Journal of Physics: Conference Series, 46:254--267, 2006.

[92] H. Sundar, R. S. Sampath, and G. Biros. Bottom-Up Construction and 2:1 Balance

Refinement of Linear Octrees in Parallel. SIAM Journal on Scientific Computing,

30(5):2675--2708, 2008.

[93] N. R. Tallent, J. M. Mellor-Crummey, M. Franco, R. Landrum, and L. Adhianto.

Scalable Fine-Grained Call Path Tracing. In International Conference on Supercom-

puting (ICS), June 2011.

[94] K. S. Thorne. Multipole Expansions of Gravitational Radiation. Reviews of Modern

Physics, 52:299--340, Apr. 1980.

[95] V. Vishwanath, M. Hereld, K. Iskra, D. Kimpe, V. Morozov, M. E. Papka, R. B.

Ross, and K. Yoshii. Accelerating I/O Forwarding in IBM Blue Gene/P Systems. In

SC’10, November 2010.

[96] C. P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD thesis,

Oxford University, 1971.

[97] C. Walshaw and M. Cross. Parallel Optimization Algorithms for Multilevel Mesh

Partitioning. Parallel Computing, 26(12):1635--1660, 2000.

[98] C. Walshaw, M. Cross, and M. G. Everett. Parallel Dynamic Graph Partitioning

for Adaptive Unstructured Meshes. Journal of Parallel and Distributed Computing,

47(2):102--108, 1997.

121

[99] C. Walshaw, M. Cross, and K. McManus. Multiphase Mesh Partitioning. Applied

Mathematical Modelling, 25(2):123--140, 2000.

[100] M. S. Warren and J. K. Salmon. Astrophysical N-Body Simulations Using Hierar-

chical Tree Data Structures. In SC’92, November 1992.

[101] M. S. Warren and J. K. Salmon. A Parallel Hashed Oct-Tree N-Body Algorithm. In

SC’93, November 1993.

[102] J. White and J. Dongarra. Overlapping Computation and Communication for Advec-

tion on Hybrid Parallel Computers. In Parallel Distributed Processing Symposium

(IPDPS), May 2011.

[103] M. H. Willebeek-LeMair and A. P. Reeves. Strategies for Dynamic Load Balancing

on Highly Parallel Computers. IEEE Transactions on Parallel and Distributed

Systems (TPDS), 4(9):979--993, 1993.

[104] M. Winkel, R. Speck, H. Hübner, L. Arnold, R. Krause, and P. Gibbon. A Mas-

sively Parallel, Multi-Disciplinary Barnes-Hut Tree Code for Extreme-Scale N-Body

Simulations. Computer Physics Communications, 183(4):880--889, 2012.

[105] A. M. Wissink, D. Hysom, and R. D. Hornung. Enhancing Scalability of Parallel

Structured AMR Calculations. In International Conference on Supercomputing

(ICS), June 2003.

[106] R. Wolski, N. Spring, and C. Peterson. Implementing a Performance Forecasting

System for Metacomputing: the Network Weather Service. In SC’97, November

1997.

[107] G. Zheng. Achieving High Performance on Extremely Large Parallel Machines:

Performance Prediction and Load Balancing. PhD thesis, Department of Computer

Science, University of Illinois at Urbana-Champaign, 2005.

122

