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Abstract

We evaluate the accuracy of Local-Density Approximations (LDAs) using explicit

molecular dynamics simulations of binary electrolytes comprised of equi-sized ions in

an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, cap-

tures excluded volume interactions between primitive model ions only poorly. Instead,

LDAs based on the Carnahan-Starling (CS) hard-sphere equation of state capture sim-

ulated values of ideal and excess chemical potential profiles extremely well, as well

as the relationship between surface charge density and electrostatic potential. Excel-

lent agreement between the EDL capacitances predicted by CS-LDAs and computed

in molecular simulations is found even in systems where ion correlations drive strong

density and free charge oscillations within the EDL, despite the inability of LDAs to

capture the oscillations in the detailed EDL profiles.
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1 Introduction

Electric Double Layers (EDLs) form adjacent to charged surfaces in electrolytes, whether

the charge is fixed (e.g. via charged surface groups or specific ion adsorption) or arises due

to an externally-applied electrostatic potential (e.g. on an electrode). Ions in the electrolyte

rearrange to screen this interfacial charge over a length scale that is determined by the

characteristics of the electrolyte. EDLs play a central role in colloidal1 and polyelectrolyte

science,2 micro- and nano-fluidics,3 surface conductivity,4 ‘blue energy’ systems,5 and in

electric double layer capacitors6 that store energy electrochemically across the EDL. Detailed

ion density profiles within EDLs have been measured experimentally using various techniques

and materials,7 e.g. from x-ray reflectivity measurements of liquid-liquid interfaces8,9 and

Langmuir monolayers.10 Rational design and engineering of EDL capacitors,11 electrokinetic

flows,12 or capacitive de-ionization systems13–15 requires accurate double layer models of

electrolytic and ionic liquid systems.7,16

Models and simulations have been developed to interpret and predict EDL structure and

capacitance. Simple, mean-field approaches remain popular because they are relatively easy

to use, yet still capture essential EDL properties. The most widely-used are local-density ap-

proximations (LDAs)17 that assume ions to interact with mean fields (electrostatic or steric),

rather than explicit ion-ion interactions. By nature, LDAs neglect non-local correlations be-

tween ions, and can therefore fail at large potentials or in concentrated electrolytes, both of

which are experimentally relevant.1,18 As described by Gillespie in a recent review,19 they can
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also fail on more basic theoretical grounds near interfaces or electrodes if “locally-averaged”

concentrations are not used, where the averaging is performed over an ion-sized volume. De-

spite these well-known shortcomings, LDA models have been proposed to treat short-ranged

enthalpic20 and steric interactions between equisized21,22 and asymmetric23 ions, for ionic

liquids,24 electrochemical cells,6,13 and liquid-liquid interfaces.8,10

We recently showed that all EDLs described by any particular LDA have self-similar scal-

ing, and thus collapse onto a single master curve when plotted against suitably derived simi-

larity coordinates.25 Such similarity coordinates can be derived directly from experimentally-

or computationally-determined EDL profiles, without assuming any particular form for a

LDA. This model-free test reveals whether it is possible for any LDA to successfully describe

a particular EDL, and therefore whether there is any sense in attempting to identify an

appropriate LDA. Nonetheless, the procedure gives no information regarding which LDA

would be appropriate.

In what follows, we compare the most common LDAs against extensive Molecular Dy-

namics (MD) simulations, which explicitly treat both electrostatic and steric interactions

between ions. In particular, the neglect of steric interactions between ions has long been

known to yield aphysical predictions near highly-charged walls and/or concentrated elec-

trolytes.17 Our MD simulations employ a variant of the so-called Primitive Model (PM),

treating ions as charged Weeks-Chandler-Andersen26 spheres in an implicit solvent. We

compare MD results with predictions from the Bikerman21 (Bik) and Carnahan-Starling17

(CS) LDAs, each of which accounts for finite ion size in a continuum solvent by introduc-

ing an excess term to the chemical potential of each ion. In particular, the CS-LDA treats

ions as comprising a structureless hard-sphere fluid, via the Carnahan-Starling equation of

state.27 The Bik-LDA, on the other hand, assumes ions to occupy a lattice, wherein each

site is occupied either by an ion or by solvent, so that solvent is increasingly displaced by

ions at large surface charge densities.17,24 Because the Bik-LDA can be solved analytically,

yet qualitatively captures the effect of ion saturation, it remains one of the most popular
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LDAs.

Although both Bik- and CS-LDA capture qualitative features of ion crowding within

the EDL, quantitative assessments of the accuracy of their approximations require explicit

comparison with atomistic simulations, or ultimately experiments. We find the CS equation

of state accurately predicts the excess components of the chemical potential, as measured

directly in our PM simulations, over a wide range of electrolytes and volume fractions over

substantial portions of all EDLs. By contrast, the Bik-LDA performs rather poorly, even

qualitatively, in capturing MD results. Consequently, the CS-LDA outperforms the Bik-LDA

(and, obviously, the Gouy-Chapman LDA that does not account for steric interactions at

all) in predicting integrated quantities like EDL capacitance, as well as local quantities like

charge density profiles, and components of the chemical potential.

LDAs permit only monotonic density profiles,28 and thus fail to capture the oscillatory

density profiles that arise when ions pack at high concentrations. We define and measure

a correlation length, `cor, to parametrize the breakdown of the LDA approximation in our

simulated EDLs. Beyond the `cor-thick correlated layer, non-local effects are negligible,

whereupon the CS-LDA accurately predicts PM EDL profiles over a wide range of electrode

charge densities and bulk volume fractions. Somewhat surprisingly, the CS-LDA captures

the EDL capacitance well, even in cases where significant density oscillations appear in the

MD simulations. Thus while the CS-LDA fails to describe (oscillatory) EDL structures

in highly-concentrated regions of the EDL, it nonetheless captures mean and integrated

quantities associated with the EDL quite well.

2 Electric Double Layer Models

We start by reviewing salient features of the two complementary approaches to treating

EDLs – explicit molecular dynamics and mean-field approximations. In what follows, both

approaches treat the solvent implicitly, and consider EDLs that are fully charged. LDAs
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assume ions to interact via average, mean-field interactions, rather than with other ions

individually. They account for steric (and other) interactions by incorporating physically-

motivated chemical potentials that depend on local quantities alone, neglecting e.g. explicit

ion-ion correlations.17 Molecular simulations, on the other hand, account explicitly for in-

teractions between each pair of ions at each time step, and can thus naturally capture

size-induced and/or electrostatic correlations amongst ions with pairwise interaction poten-

tials.

2.1 Mean-field Local-Density Approximations

Local-density approximations require the chemical potential of each ion species at every

point in space r to depend only on local quantities such as the density of ions n±(r) or

electrostatic potential φ(r), via

µiLDA (r) = µi∗(T ) + kBT lnni + qieφ+ µiex , (1)

where kB is the Boltzmann constant, T is temperature, qi is ion valence, and e is the ele-

mentary charge. Eq. (1) expresses the LDA chemical potential µiLDA in terms of a standard

chemical potential µi∗, an ideal component, a contribution from the mean electrostatic field

φ, and an (as-yet undetermined) excess chemical potential µiex, respectively. Far from the

surface (r→ rB), all quantities assume constant (bulk) values, to give

µiLDA (r→ rB)→ µiB = µi∗(T ) + kBT lnniB + qieφB + µiex,B. (2)

Subtracting Eq. (2) from Eq. (1) gives a relative chemical potential, which we normalize by

the thermal energy scale kBT to give

µ̃iLDA (r) =
µiLDA − µiB

kBT
= ln ñi + qiφ̃+ µ̃iex ≡ 0 . (3)
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In Eq. (3), the ion number density ni has been non-dimensionalized by the bulk value niB,

ñi =
ni

niB
, (4)

and electrostatic potentials have been non-dimensionalized by the thermal potential to give

φ̃ =
φ− φB

φT

, (5)

where

φT =
kBT

qie
. (6)

In what follows, we consider symmetric electrolytes, wherein ions have identical sizes,

equal and opposite valence q± = ±q, and an electro-neutral bulk (for which φB = 0 and

with n+
B = n−

B = nB so that µ+
ex,B = µ−

ex,B = µex,B). The bulk values µ±
B of the total chemical

potential for each ion species are thus equal,

µ±
B = µB. (7)

Using Eq. (3), we solve for the free charge density

ρ = e(q+n+ + q−n−) = qenB

(
e−(µ̃+ex+φ̃) − e−(µ̃−ex−φ̃)

)
, (8)

which, when non-dimensionalized by 2qenB, is given by

ρ̃ =
ρ

2qenB

=
1

2

(
e−(µ̃+ex+φ̃) − e−(µ̃−ex−φ̃)

)
. (9)

LDA models for electric double layers use Poisson’s equation to relate the electrostatic

potential to the free charge density established by the ions. When non-dimensionalized as
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in Eqs. (5) and (9), Poisson’s equation becomes

λ2
D∇2φ̃ = −ρ̃ . (10)

The Debye length λD,

λD =
1√

8πλBnB

, (11)

naturally arises, and gives a characteristic length scale over which the electrolyte screens the

surface charge. Eq. (11) expresses λD in terms of the Bjerrum length,

λB =
(qe)2

4πεkBT
, (12)

which represents the distance at which the thermal energy scale kBT balances the electro-

static energy between ions in a uniform continuum with permittivity ε. We non-dimensionalize

all lengths by λD unless otherwise indicated.

Using ρ as given by the equilibrium relation Eq. (8) in Poisson’s equation, Eq. (10),

gives the general modified Poisson-Boltzmann equation,

λ2
D∇2φ̃ = ∇̃2φ̃ =

1

2

(
e−(µ̃−ex−φ̃) − e−(µ̃+ex+φ̃)

)
. (13)

Closing the LDA description requires a form for the excess chemical potentials µ̃±
ex, after

which the LDA equations can be solved self-consistently by imposing constraints on the

electrostatic potential at the charged interface

φ̃ (0) = φ̃0 , (14)

and in the bulk

φ̃ (z̃B) = φ̃B ≡ 0. (15)

Equations (3) and (8) are fairly general and can be modified for electrolytes with additional
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species or to incorporate non-local excess terms that account for ion-wall interactions, such

as a wall excess chemical potential contribution µw(z).29

The classic Poisson-Boltzmann equation describes the simplest mean-field LDA model,

and assumes ideal, point-like ions in a structureless, continuum solvent. In this idealized

limit, the excess terms in Eq. (1) vanish to give an ideal electro-chemical potential,

µ̃±
GC = ln ñ± ± φ̃ ≡ 0, (16)

so that ions follow a direct Boltzmann distribution, ñ± = exp(∓φ̃), whereupon Eq. (13)

reduces to the (nonlinear) Poisson-Boltzmann equation

∇̃2φ̃ = sinh φ̃. (17)

The Gouy-Chapman (GC) solution satisfies the nonlinear Poisson-Boltzmann equation for

planar surfaces at arbitrary surface potential.30,31 The potential drop across a GC EDL is

related to the surface charge Σ according to

Σ̃GC =
ΣGC

Σref

= 2 sinh

(
φ̃0

2

)
, (18)

where we have scaled surface charge density by the natural scale

Σref = 2qenBλD =
qe

4πλBλD

. (19)

Eq. 17 can be linearized in the limit of low potentials (φ̃� 1),

∇̃2φ̃ = φ̃ , (20)
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giving the Debye-Hückel (DH) EDL with potential,

φ̃DH = φ̃0 exp(−z̃) , (21)

and surface charge,

Σ̃DH = φ̃0. (22)

When the bulk electrolyte is dilute, all LDAs reduce to the DH form sufficiently far from

the surface, even for highly-charged electrodes.28

Despite its near-ubiquitous use, the GC-LDA (and Eq. (17) more generally) has long

been known to fail for various reasons. Boltzmann-distributed densities grow exponentially

with φ̃, and can yield volume fractions exceeding close packing of finite-sized ions at reason-

able potentials.21,22 The point-like ion assumption can be relaxed, while remaining within

the LDA framework, by incorporating an excess chemical potential that accounts for steric

interactions between ions. In what follows, we consider equi-sized ions of diameter σ, and

excess chemical potentials that depend on the local volume fraction of ions Φ,

Φ(r) =
ΦB

2

(
n+ + n−

nB

)
=

ΦB

2

(
ñ+ + ñ−) . (23)

which approaches a constant bulk value, given by

ΦB =
π

3
nBσ

3. (24)

The Bikerman LDA (Bik-LDA) adopts a mean-field lattice-gas model for the EDL, where

at most one ion can occupy each lattice site,21 with empty sites representing implicit solvent.

The Bikerman excess chemical potential

µBik
ex

kBT
= − ln (1− Φ) (25)
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is derived from the configurational degeneracies of non-overlapping ions amongst available

lattice sites.24 At sufficiently high potentials, lattice sites saturate with counter-ions.22 Fol-

lowing Eqs. (2) and (3), the Bikerman chemical potential is expressed relative to its bulk

value to give the dimensionless relation

µ̃±
Bik = ln ñ± ± φ̃+ ln

(
1− ΦB

1− ΦB(ñ+ + ñ−)/2

)
≡ 0. (26)

Equation (26) can be solved for ñ± to reveal a Fermi-Dirac (instead of a Boltzmann) form

for the density dependence on electrostatic potential. The Bikerman free charge density is

inserted into Eq. (10) to obtain

∇̃2φ̃ =
sinh

(
φ̃
)

1 + 2ΦB sinh2
(
φ̃/2
) . (27)

The capacitance relationship between surface charge and potential drop across the EDL is

given for the Bik-LDA by

Σ̃Bik =

√
2

ΦB

ln
[
1 + 2ΦB sinh2

(
φ̃0/2

)]
. (28)

In the case of point-sized ions, ΦB → 0 and Eqs. (26-28) recover the GC-LDA and Poisson-

Boltzmann Eq. (17).

More accurate models for excluded volume contributions to the bulk chemical potential

frequently rely on integral equation expansions of a homogeneous hard-sphere fluid.32,33 The

Carnahan-Starling (CS) equation of state27 is an accurate approximation34 that combines

the hard-sphere equations of state from the virial and compressibility routes35 to obtain

µCS
ex

kBT
=

Φ(8− 9Φ + 3Φ2)

(1− Φ)3
. (29)

The ideal and electrostatic chemical potentials and Equation (29) are expressed relative to
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the bulk to obtain the dimensionless total CS-LDA chemical potential17,36

µ̃±
CS = ln ñ± ± φ̃+

Φ(8− 9Φ + 3Φ2)

(1− Φ)3
− ΦB(8− 9ΦB + 3Φ2

B)

(1− ΦB)3
≡ 0. (30)

To solve the CS-LDA, just as with all LDAs, each ion distribution is determined by solving

each chemical potential expression in Equation (30): {µ̃+
CS, µ̃

−
CS = 0, 0}. While this can be

done analytically for the Bik-LDA, it must be done numerically for the CS-LDA. Nonetheless,

the free charge density can then be determined, and used in Eq. (10) to determine ρ̃CS(φ̃).

Both CS- and Bik-LDA recover the GC limit as ΦB → 0, when the excess chemical potential

vanishes.

Charge-voltage curves are relatively straightforward to measure, and the capacitance is

important in various electrochemical energy storage devices. The functional relationship

between the surface charge density and the applied potential φ̃0 across the EDL – from

which the capacitance follows naturally – can be obtained for any LDA17

Σ̃LDA(φ̃0) = sign(φ̃0)

√
−2

∫ φ̃0

0

ρ̃LDA(φ̂)dφ̂. (31)

The integral, or total, capacitance is given by Σ̃LDA/φ̃0, and the differential capacitance

by dΣ̃LDA/dφ̃0. In what follows, however, it will become clear that charge-potential curves

(Eq. 31) effectively integrate out spatial oscillations in ion density profiles, and can thus hide

discrepancies between the predictions of LDAs and molecular simulations.

2.2 Molecular Dynamics Simulations of Primitive Model Elec-

trolytes

The Primitive Model is the simplest model to incorporate finite ion sizes into electrolyte

dynamics, by treating ions as hard-spheres with diameter σ and valence q in an implicit

solvent between uniformly charged plates. In this work, we use Molecular Dynamics simu-
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lations of the PM EDL in the canonical ensemble where the number of ions N , volume V ,

and temperature T are held constant.

The potential energy of ions depends on pairwise ion-ion interactions and single-body

ion-wall interactions. The reduced Coulomb potential,

ŨCoulomb(r) ≡ UCoulomb(r)

kBT
= sign

(
qiqj

) λB

r
, (32)

describes the electrostatic interaction between point-charges separated by distance r. To

lessen numerical difficulties associated with hard-sphere repulsions, we employ the repulsive

Weeks-Chandler-Andersen26 (WCA) potential,

ŨWCA(r) =


ε̃WCA

[
(σ6−r6)2

r12

]
if r ≤ σ,

0 if r > σ,

(33)

to account for finite-size effects between ions. A characteristic repulsive interaction, described

by energy scale ε̃WCA = εWCA/kBT , penalizes ions separated by less than the WCA diameter

σ. As with hard-sphere systems, WCA ions separated by more than σ do not interact. The

WCA diameter σ is not, strictly speaking, equivalent to a hard-sphere diameter. Instead,

we will determine an effective hard-sphere diameter, as described below.

The very steep WCA potential dictates an effective minimum inter-ion separation dis-

tance rmin ∼ O(σ). Therefore, the dominant contributions to pairwise interactions depend

on the relative magnitudes of λB and σ. Choosing λB � σ, as we do here, ensures that

strong ion-ion interactions are predominantly steric in nature, rather than electrostatic. As

a result, ions remain dissolved (i.e. do not aggregate or precipitate out of solution), and any

non-mean-field correlations arise due to steric, rather than electrostatic, interactions.

As described above, two length scales appear naturally in any electrolyte – the Debye

screening length λD (Eq. 11), which depends on ion concentration, and the Bjerrum length

(Eq. 12), which depends upon ion valence. These two length scales, in turn, specify the
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surface charge density scale Σref . Finite ion diameters σ introduce another dimensionless

parameter, the bulk volume fraction ΦB (Eq. 24), which can be expressed in the form

ΦB =
σ3

24λBλ2
D

. (34)

Non-dimensionalizing all lengths by λD, then, reveals any PM EDL to be characterized

uniquely by four dimensionless parameters: ΦB, λB/λD, Σ/Σref , and ε̃WCA. Appreciable

dependence is only seen for the three parameters ΦB, λB/λD, and Σ/Σref , as simulations

show significant insensitivity to ε̃WCA, so long as it is O(1) or greater, as we take throughout

this work.

Steric repulsions between ions and electrodes depend only on the distance from walls.

The electric field term,

Ũfield(z̃) = −qiΣ̃z̃ , (35)

accounts for the potential energy ions experience between two walls with equal and opposite

surface charge density. The wall potentials are the repulsive part of the 9-3 potential,37

analogous to the WCA interaction used between ions,

Ũ+
w (z̃) =


εw
kBT

√
5
18

[(
δw
z̃λD

)9

− 3
(

δw
z̃λD

)3

+ 2

]
if z̃ ≤ δw/λD,

0 if z̃ > δw/λD,

(36)

and

Ũ−
w (z̃) =


0 if z̃ < L/λD,

εw
kBT

√
5
18

[(
δw

δw+L−z̃λD

)9

− 3
(

δw
δw+L−z̃λD

)3

+ 2

]
if z̃ ≥ L/λD,

(37)

with characteristic energy εw and wall thickness parameter δw.
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3 Methods

We perform MD simulations between walls separated by a distance L, with 2D periodicity

in the transverse directions, using lammps38 to compute Primitive Model electric double

layers. Periodic dimensions and wall separations L are chosen to exceed all other length

scales, so that they do not impact computation results. The system is maintained at constant

temperature with a Langevin thermostat.39 Charge-centered WCA ions of diameter (0.001 ≤

σ/L ≤ 0.0122) and characteristic energy εWCA = kBT are confined between two repulsive

walls with uniform charge density ±Σ, thickness δw = L/500, and characteristic energy

εw = kBT (Eqs. 32-37). We evaluate the Coulomb potential with a Particle-Particle Particle-

Mesh slab Ewald sum40 with the default accuracy of 10−4. For each PM electrolyte (specified

by {ΦB; λB/λD; ε̃WCA}) and equal and opposite surface charge densities ±Σ̃, we equilibrate

O(800-1400) ions for 5 M time steps, then collect 50 k snapshots over 50 M steps, requiring

50-100 CPU hours per run. By averaging over bins of width λD (i.e. a non-dimensional

thickness of 1), we then compute time-averaged ion densities, voltages, and spatial profiles

of the excluded volume excess chemical potential using Widom insertion41 using 250-500 M

total test insertions per simulation.

In what follows, we compare CS-LDA and Bik-LDA predictions for ion concentrations,

charge densities, and chemical components with results that are computed from MD sim-

ulations of PM EDLs. To do so, we first determine an effective hard-sphere ion diameter

from the WCA potentials we have assumed. Barker, et. al.33,42 match the configurational

partition function for a system of particles with an arbitrary pairwise potential to a reference

system of hard-spheres; they prescribe an effective hard-sphere diameter σeff from the WCA

diameter σ

σeff =

∫ σ

0

[
1− e−ŨWCA(r̂)

]
dr̂. (38)

Direct comparisons with hard-sphere simulations reveal Eq. (38) to deviate by . 2%.43 We

compute σeff for Eq. (29) to calculate the CS-LDA. The effective size of the WCA ions we
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use in our simulations is essentially constant at σeff/σ = 0.9048± 10−5 for (0.5 ≤ σ ≤ 6.1).

Previous studies that employ the Bik-LDA have chosen the lattice spacing to be given

by the solvation shell diameter for ions in aqueous electrolytes,22 from fits to experimental

data,17 or by enforcing voltage-dependent expressions to distinguish between differently-sized

cations and anions in the case of ionic liquids.24 To compare with PM simulations, however,

we choose the Bik-LDA diameter to match the CS-LDA results in the low-Φ limit, yielding

σBik = 2σCS. With this choice, Bik-LDA chemical potentials match the low-Φ simulations

well (Fig 1a), but diverge at even moderate values Φ ≈ 0.1. Conversely, choosing σBik so

that µEV
ex diverges at close packing fits simulation data very poorly everywhere. While the

simplicity of the Bik-LDA admits its analytical solution, its detailed predictive capabitilities

are generally quite poor. It is thus better suited for simple calculations that explore the

qualitative consequences of steric interactions.

4 Results and Discussion

4.1 Diffuse Electric Double Layer Descriptions

Figure 1 shows excluded volume chemical potentials measured from 221 PM EDL simula-

tions, wherein ion valences are chosen to span the range of weakly-charged ions. Fig. 1(a)

also shows steric contributions computed from fully periodic Monte Carlo simulations of un-

charged WCA particles, which explicitly exclude electrostatic correlations and wall-ordering

effects. For comparison, predictions for µEV
ex from both CS- and Bik-LDAs are shown as a

function of local packing fraction Φ within three distinct spatial regimes: in the bulk (Fig. 1a),

for ion-wall distances between 3-6σ (Fig. 1b), and within 3σ from the wall (Fig. 1c). CS

predictions are practically indistinguishable from values measured from MD simulations in

the bulk (Fig. 1a), provided we use the effective hard-sphere diameter given by Eq. (38).

Bik-LDA, however, only gives reasonable agreement in the dilute limit (Φ → 0), and pre-

dicts a steric contribution that diverges at much lower Φ than is observed. If, by contrast,
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the ion size were chosen to fit the divergence, the Bik-LDA would under-predict throughout

the range of Φ. In all cases, then, the CS-LDA outperforms the Bik-LDA over all volume

fractions.

Far from the electrode, PM ions interact as they would in a purely homogenous sys-

tem (Fig. 1a). CS accurately describes bulk-like excluded volume interactions in both dilute

and highly-packed regimes. Closer to the wall, steric contributions cannot be described solely

from the local volume fraction. In the intermediate region between the bulk and wall, the

PM chemical potential no longer collapses onto CS due to emergent size-induced correla-

tions at Φ & 0.40 (Fig. 1b). Adjacent to the electrode, both LDAs fail dramatically beyond

Φ & 0.10, where ion ordering becomes significant (Fig. 1c).

Having compared Bik-LDA and CS-LDA models with measured excluded volume chemi-

cal potentials from PM EDLs of different ion charges, sizes, and bulk concentrations, we now

turn to a closer evaluation, looking at detailed profiles of a smaller subset of simulations.

Specifically, we examine weakly-charged ions over a range of wall surface charge densities.

We use these simulations to elucidate where and when the LDA approach breaks down for

low-valence PM EDLs, which cannot approach closer than the Bjerrum length (σ > λB). We

simulate 8 sets of PM EDLs, each of which has a different ion diameter σ. Eleven different

surface charge densities (0 ≤ Σ̃ < 7.1) are simulated for each σ, yet the bulk volume frac-

tion ΦB is enforced to be constant for all Σ̃ simulated for each σ. Both the Bjerrum length

(λB/λD = 0.0068± 0.0002) and screening lengths (λ̄D = 14.6± 3%) were held fixed for these

88 simulations.

Figure 2 compares the surface charge density versus voltage predictions from the Debye-

Hückel, Gouy-Chapman, Bikerman, and Carnahan-Starling local-density approximations

against the Primitive Model simulation results. In the limit of small voltages (or, equiv-

alently, low surface charge densities), capacitance curves measured from MD simulations

and computed from LDAs all collapse onto the (expected) linear DH-LDA capacitance. The

MD results depart from the DH, GC, and Bik-LDAs predictions once the dimensionless sur-
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(c)

0.08 < �/�D < 2.4

(a)

(b)

0.08 < �/�D < 2.4

Figure 1: Local-density approximations for the excluded volume excess chemical potential
and Primitive Model measurements from weakly- and strongly-charged electric double layers
0 ≤ Σ̃ ≤ 15. (a) Bulk measurements from PM EDLs [markers] and uncharged WCA particles[
µWCA

ex

]
collapse onto the Carnahan-Starling LDA

[
µCS

ex

]
when using the effective hard-sphere

diameter from Eq. (38) in Eq. (29). The Bikerman LDA
[
µBik

ex

]
fails at all but infinitesimal

volume fractions, even when determining a best fit with the effective lattice size as a free
parameter. (b) Between 3-6 ion diameters from the electrode, CS fails to capture µEV

ex for
Φ & 0.40 due to significant ion ordering. (c) Adjacent to the electrode, CS works only for
semi-dilute volume fractions Φ . 0.10.
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Figure 2: Surface charge density versus total potential drop from 8 sets of PM EDLs that
differ in bulk volume fraction. All simulations collapse onto LDA predictions in the low
charge limit {Σ̃, φ̃0} → 0. Beyond φ̃0 & 1, Debye-Hückel and Gouy-Chapman diverge
and Bikerman always underestimates the integrated capacitance (Σ̃/φ̃0) so only semi-dilute
curves are included for clarity. Carnahan-Starling qualitatively matches PM capacitance,
but consistently gives higher values at increased charge densities and bulk volume fractions.

face charge density Σ̃ or potential drop φ̃0 become O(1). The DH and GC-LDAs, which

neglect steric effects, always over-predict the capacitance of PM EDLs once the volume

fraction becomes non-zero.

The Bik-LDA is better than GC in that it does not predict divergent capacitances.

Instead, it underestimates the capacitance because the Bikerman excluded volume chemical

potential, Eq. (25), grossly over-predicts measured values for µEV
ex (Fig. 1). Over the studied

range of ΦB ≤ 0.42, the energy required to pack lattice ions exceeds that of spherical WCA

ions. PM counter-ions reach higher concentrations than Bik-LDA predicts, which in turn

leads to greater simulated capacitances at large voltages.

Capacitance curves computed using the CS-LDA, on the other hand, capture the mea-

sured MD results well even at higher φ̃0 and ΦB, with noticeable deviations appearing for

ΦB = 0.37 and 0.42. From Fig. 1(c), the CS-LDA accurately predicts µEV
ex except near the

electrode where, like GC and Bikerman, it under-predicts µEV
ex when compared with simu-

lations. This underestimation leads the CS-LDA to slightly over-predict the capacitance of
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(a) (b)

(d)(c)

(e) (f)

(h)(g)

�̄B = 0.17 �̄B = 0.42

Figure 3: Individual components of the chemical potential measured from PM EDL simu-
lations, and compared against predictions from the CS-LDA, at moderate (Φ̄B = 0.17, left
column) and high (Φ̄B = 0.42, right column) bulk volume fractions. The ideal component
of the chemical potentials for (a-b) co-ions, µ̃+

ideal = ln ñ+, and (c-d) counter-ions; (e-f) local
electrostatic potential; and (g-h) excess chemical potential due to excluded volume.
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strongly-charged electrodes Σ̃ & 5 and appreciable bulk volume fractions ΦB ≥ 0.10.

Given how well the CS-LDA captures the total capacitance over a wide range of electrode

surface charge densities and bulk volume fractions (Fig. 2), we now examine the detailed spa-

tial profiles within the EDLs, as predicted by CS-LDA and measured in PM MD simulations,

for moderate and large bulk volume fractions (Fig. 3). We focus on the first ten ion diam-

eters from the wall, beyond which the simulated and CS-LDA chemical potential profiles

both converge to their bulk values. Notably, size-induced oscillations are evident in the PM

simulations for both ΦB = 0.17 and 0.42, at moderate to high Σ̃. Such oscillations cannot

be captured by the CS-LDA, or indeed any LDA model. Co-ion densities become exceed-

ingly small, ñ+ ≈ exp(−10), near the surface, where Φ is the highest and the CS-LDA is

most prone to failure. The oscillatory region for counter-ions is more pronounced at higher

charge densities and larger bulk volume fractions. As expected from capacitance measure-

ments (Fig. 2), the CS-LDA predicts an electrostatic potential φ̃ that is slightly lower than

measured from PM profiles.

Figures 3(a - b) reveal the ideal component of the co-ion chemical potential, µ̃+
ideal = ln ñ+,

to agree well with CS-LDA predictions, with size-induced oscillations appearing only at high

volume fractions. Size-induced oscillations in the ideal counter-ion chemical potentials (Fig.

3c-d) are much more pronounced than for co-ions, with obvious ringing even at the lowest

surface potentials. Such oscillations are even stronger at higher bulk volume fractions, ex-

tending many ion diameters into the bulk. The total electrostatic potential drop, however,

shows no oscillatory ringing for PM EDLs (Fig. 3e-f), with surprisingly good agreement

between CS-LDA and PM MD simulations. The total potential drop for a fixed Σ̃ increases

with ΦB, as excluded volume interactions force screening to occur over longer distances.

Finally, the excess chemical potential due to excluded volume, measured using Widom in-

sertion for the PM EDLs, is over-predicted by the CS-LDA at Σ̃ = 6.8 for ΦB = 0.17, and

at lower Σ̃ for the higher volume fraction ΦB (Fig. 3g-h).

Note that the Widom insertion technique becomes unreliable in highly concentrated
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regions, e.g. near highly-charged walls and concentrated electrolytes, as overlapping WCA

ions would require an exceedingly large number of insertions to properly average. EDLs

with large packing fractions are prone to ion layering, as seen in the ln ñ− measurements

(Fig. 3c-d). The general LDA approach, which neglects pairwise ion interactions, would fail

to describe these highly correlated PM EDL regimes. Despite the emergence of extended

correlated regions within PM EDLs, whose oscillations cannot be captured by any LDA,25

the measured capacitance curves appear to be predicted quite well by the CS-LDA.

4.2 Characterizing Correlations

In general, spatial correlations of ions near electrodes can be due to either electrostatic or

steric forces, and can occur both parallel and perpendicular to the wall. Because we simulate

a limited class of electrolytes with weakly-charged ions, we assume Coulomb correlations are

negligible by comparison to size-induced correlations for PM EDLs characterized by λB � σ.

Fig. 3 reveals that even weakly-charged PM ions form correlated layers near the wall, with

oscillations in the ideal and excluded chemical potential profiles that grow with increasing

applied charge density and bulk volume fraction. Outside of some correlation length `cor

(identified below), however, CS-LDA predictions describe the PM simulations well.

There is some flexibility in defining `cor: after all, the CS-LDA describes the (integrated)

capacitive curves quite well. In principle, one could compare PM to LDA profiles and de-

fine `cor wherever deviations exceed some meaningful threshold. However, this estimate for

`cor would depend upon the particular LDA that is chosen, and/or some chosen threshold.

Instead, we define `cor to correspond to the distance beyond which oscillations in ρ̃ are indis-

tinguishable from statistical bulk fluctuations. In so doing, we identify `cor from simulated

PM free charge density profiles in a manner that is independent of any particular LDA model.

Figure 4 illustrates the approach on PM EDLs with Φ̄B = 0.42, simulated for a range

of applied surface charge densities. A quintic spline interpolant ρ̃spline is generated from

simulated free charge density profiles, measured at 250 distinct positions. Positions zN of
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extrema in ρspline are then located numerically, by solving dρ̃spline/dz̃ = 0. These extrema may

reflect either excluded volume correlations, or statistical noise. Oscillations are attributed to

steric ion correlations if adjacent maxima and minima have O(σ/2) spacing, in which case

`cor is found by identifying the farthest such extremum from the wall. Although no specific

LDA model was used in Fig. 4, `cor coincides well with the onset of discrepancies between

predicted (CS-LDA) and measured free charge density profiles.

⌃̃ = 6.4

5.1

3.9
3.5
3.1
2.3
2.0
1.6
1.0
0.49

Figure 4: A model-free method to determine `cor from simulated PM free charge densities
with Φ̄B = 0.42. We generate spline interpolants from discrete profiles, find extrema zN, and
identify `cor (I) by examining deviations of potentially correlated regions ρ̃(z < zN) from
exponential fits of bulk-like regions ρ̃fit. Although `cor appears to coincide with onset of
deviations from CS-LDA profiles, this approach is independent of CS or any specific LDA.

We apply this algorithm to the 88 PM EDL simulations of weakly-charged ions with fixed

Bjerrum and screening length shown in Fig. 2. A contour plot of `cor, normalized by σ, as

a function of ΦB and Σ̃, appears in Fig. 5. PM EDLs with low Σ̃ and ΦB exhibit negligible

correlations, while EDLs with large Σ̃ and ΦB exhibit the thickest correlated regions, with

correlation lengths up to 7σ, consistent with Figs. 3 and 4.

Having extracted `cor from PM EDLs, we now explore the properties of the correlated
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Figure 5: Contour plot of the correlation length `cor measured from 88 PM EDLs, where λB

and λD is held constant, using the technique described in the text and shown in Fig. 4. The
correlation length grows with increasing surface charge density and bulk volume fraction.

region. Since size-induced oscillations are the result of ion layering, the ion diameter is the

appropriate characteristic length scale for the correlated region. We thus non-dimensionalize

Poisson’s Eq. (10) by the ion diameter and express the potential relative to the surface

potential (rather than the bulk potential φB = 0)

2qenB

(
λD

σ

)2

∇̃2

(
φ− φ0

φT

)
= −ρcor. (39)

From Equation (39), we define the reduced correlated free charge density

ρ̃cor ≡
ρcor

2qenB

(
σ

λD

)2

= ρcor
σ2

ΣrefλD

. (40)

We integrate Eq. (39) once to obtain the correlated surface charge

Σ̃cor ≡ −Σcor
σ

ΣrefλD

=

∫ `cor/σ

0

ρ̃cordẑ , (41)
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and again to obtain the voltage drop across the correlated region

∆φ̃cor ≡ −
(
φcor − φ0

φT

)
=

∫ ˜̀
cor

0

(∫ ˜̀
cor

0

ρ̃cor(ŝ)dŝ

)
dẑ. (42)

The ratio of Eqs. (41) and (42) gives the integrated capacitance of the correlated EDL region.

Figure 6: Surface charge density versus electrostatic potential dropped across the correlated
layer of dilute and concentrated CS-LDA and PM electrolytes. CS-LDA captures the cor-
related capacitances at each bulk volume fraction. A best fit of data for all bulk volume
fractions reveals correlated PM EDLs to follow a 3/4 power law for nearly three decades of
charge density and surface potential measurements.

A log-log plot of Σ̃cor vs. ∆φ̃cor reveals the correlated EDL capacitance to collapse onto

a power-law over nearly three decades of computed values (Fig. 6), with a best-fit exponent

around 3/4. Somewhat surprisingly, the CS-LDA predicts the capacitance of the correlated

layers – whether the PM electrolytes are semi-dilute, moderate, or highly-concentrated. This

agreement suggests that the CS-LDA describes the ‘mean’ EDL behavior (i.e. the curve

that would result if correlation-based oscillations were removed) so well that it can capture

integrated quantities like EDL capacitance, even if it misses detailed structure.
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5 Conclusions

The governing philosophy of this work has been to compare molecular simulations of EDLs

formed by Primitive Model electrolytes (which account explicitly for pairwise ion-ion inter-

actions) against EDLs predicted using various LDAs that have been designed to account for

finite ion size. By non-dimensionalizing variables in our systems, rather than working with

parameters specific to a particular electrolyte, we intend for our results to be extended to a

wide range of electrolytes of specific interest to future researchers. Our results span a wide

variety of (dimensionless) ionic strength, ion valence, screening length, ion size, and surface

charge densities.

One important, qualitative result of this work is that the Bikerman LDA – which is ar-

guably the simplest to implement, owing to its analytical tractability – is essentially incapable

of capturing any quantitative features of PM EDLs. Choosing the lattice size to match the

low-Φ regions of the EDL leads to predictions of premature divergences (e.g. close-packing

occurs at potentials that are much too low); whereas choosing the lattice sizes to match the

expected divergences (e.g. Φ at random close packing) leads to significant underestimation

of steric effects at lower Φ. Such qualitative discrepancies arise due to the difference between

lattice-constrained ions and hard-sphere (or hard-sphere-like) ions. The Bik-LDA, therefore,

is much better suited to qualitative studies of steric effects, where analytical simplicity en-

ables one to easily compute the qualitative consequences of steric repulsions, rather than

any quantitative predictive capabilities.

The Carnahan-Starling LDA, on the other hand, is remarkably effective at capturing

many important features of PM EDLs. In particular, capacitance curves for PM and CS-

LDA EDLs match extremely well, and detailed EDL profiles (e.g. of electrostatic potential,

counterion and cation densities, and chemical potentials) are well-predicted by the CS-EDL.

MD simulations do reveal oscillatory ion densities and chemical potentials due to steric

repulsions between ions, which cannot be captured by any LDA model. Nonetheless, the

CS-LDA accurately describe the diffuse portion of PM chemical potential profiles (Figs. 1-3),
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and even captures the capacitance of the oscillatory (correlated) portions of PM EDLs. This

has both positive and negative consequences: it implies that CS-LDA computations can

be used to faithfully predict the capacitance of even moderately correlated EDLs, yet also

that measurements of integrated quantities (like capacitance) tend to mask oscillatory EDL

structures. Attempts to extract detailed EDL profiles (or to test the suitability of LDAs)

from measurements of such integrated quantities may therefore be misleading. As recently

emphasized by Gillespie,19 accurate models of the density profiles require local averages of

ion concentrations that LDAs inherently neglect. While we did not consider them here,

models that use locally averaged concentrations to determine excess chemical potentials due

to the excluded volume may much better describe near-electrode effects.

While the present work has treated a fairly broad swath of parameter space, it does

omit various physical effects that can play important roles in EDL structure and dynamics.

Ion size asymmetries, for example, will clearly modify the details of the steric contributions

to the excess chemical potential of co- and counter-ions in EDLs. Co-ions that are much

smaller (or larger) than counter-ions will introduce a weaker (or stronger) steric penalty.

Analogous chemical potentials for multiple hard-sphere sizes have been described by the

Boubĺık, Mansoori, Carnahan, Starling, and Leland (BMCSL)19,23,32,44 equation of state,

and it would be interesting to analyze such effects in a manner analogous with this work.

Moreover, we expect the structure of EDLs in electrolytes containing two or more species

of counter-ions, each with a distinct size, valence, and/or charge specificity,12 will differ

considerably from the binary electrolytes studied here. Finally, this work has omitted any

explicit treatment of the solvent, instead incorporating solvation shells in terms of an effective

ion size. One could imagine modifying the current approach to treat solvent explicitly using

the BMCSL, with (uncharged) solvent molecules of one size, interacting with (charged) ions

of a different size.

The present work reveals both the qualitative and quantitative consequences of finite ion

sizes in the structure and properties of electric double-layers, and of the ability of various
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LDAs to account for finite ion size in predicting quantitative features of EDLs. We hope

that our work establishes a framework for future studies that account for the additional

physicochemical phenomena.
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