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Section 1  

Introduction 

Objective, impact, and summary  

Value of information (VOI) provides the ability to distinguish between useful and frivolous 

information gathering for a geothermal prospect, either hydrothermal or for enhanced geothermal 

systems. Useful information provides a value greater than the cost of the information; wasteful 

information costs more than the expected value of the information. In this project we applied and 

refined VOI methodologies on selected geothermal prospects. This will directly contribute to 

GTP priorities by: 

 

 decreasing drilling cost by assessing the development risk with and without additional 

information.  

 advancing subsurface imaging capabilities by providing a workflow for determining the 

“worth” of geophysical data in context of the production decision. 

 

The goal of the project was to develop and document a value of information workflow that 

utilizes real field data from a geothermal field. The objective was to use calibrated field data in 

order to compare the exploration information (i.e. surface geophysics, well logging data, etc.) to 

the drilling or production results (flow, temperature, etc). The data analyzed uses data provided 

in-kind by an industry partner (Chevron) in an existing geothermal field. The result an estimation 

of whether a particular set of information is worth acquiring or purchasing. 

 

The methodology was designed so that operators can apply the workflow to establish which 

types of data should be collected for a new field. This will be based on the past performance of 

the information in determining geothermal parameters that control the economic potential of a 

geothermal reservoir. Previous work (Trainor-Guitton et al., 2014; 2013a,b) demonstrated the 

use of synthetic datasets to estimate the reliability of the VOI estimate. Here, this work is 

extended to real data sets from an operating geothermal production field. 

Work accomplished this year  

As mentioned above, the goals of the current work are to conduct a VOI study on a real 

geothermal dataset. The dataset is from the from the Darajat geothermal field in Indonesia. 

Darajat is a vapor-dominated volcanic reservoir in West Java that generates approximately 260 

Mw from three power plants (Rejeki et al., 2012). The underlying geology consists mainly of 
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pyroclastics and lavas, with permeability controlled largely by lithology. Geophysical surveys 

included a magneto-telluric (MT) survey that allowed construction of a conductivity model.  The 

goal is to determine how well electrical conductivity is useful as a predictor of well stream flow 

rates using VOI.  

 

The work was broken down into a set of four milestones: 

 

Q1: Dataset will be in hand and preliminary statistical analysis performed (calibration) on 

available variables. COMPLETE. 

Q2: Preliminary VOI result using statistics of one calibrated dataset (e.g. the value of MT 

(conceivably in monetary units) given the reliability measure from field data and a few different 

prior uncertainty measures). COMPLETE. 

Q3: Refinement of VOI results using statistics of calibrated dataset; possible additional variables 

added (e.g. remove previous assumptions, improve previous analysis and/or provide further 

analysis such as spatial uncertainty). COMPLETE. 

Q4: Final VOI result using statistics of dataset. The value of MT (and perhaps other techniques) 

will be provided, along with a workflow of how this transfers to other datasets. 85% 

COMPLETE. 

 

Progress was good, although progress on the third and fourth milestones was delayed. The 

progress on each milestone will be detailed in the next section. Several publications were made 

or completed during the time period. These are included or attached to this report. 

 

Whitney J. Trainor-Guitton, G. Michael Hoversten, Gregg Nordquist, Rindu Grahabhakti Intani, 

Robert Mellors, and Jeffery Roberts, 2015,Value of MT inversions for geothermal 

exploration: accounting for multiple interpretations of field data & determining new 

drilling locations, originally submitted and accepted to the World Geothermal Congress, 

accepted, and now withdrawn. 

 

Trainor-Guitton, W. J., G. M. Hoversten, A. Ramirez, J. Roberts, E. Juliusson, K. Key, and R. 

Mellors, 2014a, The value of spatial information of for determining well placement: a 

geothermal example, GEOPHYSICS 79, 5(2014); pp. W27-W41 (15 pages) 

http://dx.doi.org/10.1190/geo2013-0337.1, Online Publication Date: 25 Aug 2014 

 

Trainor-Guitton, W., M. Hoversten, E. Juliusson, A. Ramirez, J. Roberts, and R. Mellors, 2014b, 

Value of Information Assessment using Calibrated Geothermal Field Data, Proceedings 

of the 39th Stanford Geothermal Workshop, Feb. 24-26, 2014, Stanford, CA. 
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Section 2  

Milestones and progress 

Q1 Milestone: Dataset will be in hand and preliminary statistical analysis performed 

(calibration) on available variables. 

 

The goal is to determine how well electrical conductivity can determine possible steam flow 

rates and to make this assessment with real field data. In October 2013, Chevron provided 3D 

electrical conductivity model and 23 steam flow measurements from the Darajat geothermal field 

in Indonesia. The 3D conductivity model derives from a 3D inversion of MT survey data from 

the Darajat field.  

 

EarthVision tools were used to define several possible interpretations of the clay cap, which is 

indicative of geothermal alteration and used to determine locations for drilling.  Initially, 

contours of the steam flow data were also generated using EarthVision to extrapolate steam flow 

measurements. In a separate Python code, comparisons were made between steam flow 

measurements and “co-located” electrical conductivity: conductivities that are within the clay 

cap that were deemed within a search radius of 650m.  

 

Q2 Milestone: Preliminary VOI result using statistics of one calibrated dataset (e.g. the 

value of MT (conceivably in monetary units) given the reliability measure from field data 

and a few different prior uncertainty measures). 

 

Several modifications were made to the calibration definition after several teleconferences with 

Chevron. First, it was decided to use the raw steam flow measurements rather than the contoured 

values. Second, the conductance (the product of conductivity and thickness of the clay cap) is 

expected to better correlate with steam flow than conductivity alone, as the thickness of the clay 

cap is expected to thin with higher temperatures. These modifications, along with a preliminary 

VOI results, were presented at the Stanford Geothermal Workshop in February 2014. 

 

Q3 Milestone: Refinement of VOI results using statistics of calibrated dataset; possible 

additional variables added (e.g. remove previous assumptions, improve previous analysis 

and/or provide further analysis such as spatial uncertainty). 

 

Several enhancements were made in this quarter. These were incorporated in a submitted and 

accepted World Geothermal Congress paper (see Appendix). Several prior uncertainties were 

incorporated to achieve different VOI results given different perceive initial risks.  
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A comparison of clay cap models, based on two different methods, was conducted. One model 

was defined using gridded and contoured 1D MT inversion models. The other model used the 3D 

inversion model. The resulting VOI for each model differed but not significantly from the 

perspective of decision analysis as the different VOI’s were within $4,000 of each other, and 

therefore, the decision to purchase MT or not would be the same given the result of these VOI’s. 

 

A spatial analysis was performed by using the calibration to determine future drilling locations in 

Darajat. The calibration is a probabilistic relationship between electrical conductance and steam 

flow. This was used to identify locations within the Darajat field that have the highest probability 

of success, given conductance’s past performance to predict steam flow. The value metric was 

then mapped back onto the conductance field of the Darajat geothermal field.  

 

Q4 Milestone: Final VOI result using statistics of dataset. The value of MT (and perhaps 

other techniques) will be provided, along with a workflow of how this transfers to other 

datasets. 

 

After examining the results of the mapping of the value metric on the geothermal field, it was 

realized that the results could be further improved by a different treatment of conductance’s that 

are not represented in the original calibration set. Certain ranges of conductance’s are not 

classified as “co-located” to steam flow measurements, thus they are “missing” in the calibration 

set (the subset of data that determines the relationship between conductance and steam flow). In 

the VOI analysis, these conductance’s are given equal probability of relating to all the steam 

flow classifications, which is a fair or conservative method for handling them.  However, when 

VOI maps were made, this approach led to low values being assigned where there is known high 

steam flow production. Therefore, some type of extrapolation methods are required in handling 

these conductance values that aren’t represented in the calibration set. This revision has not yet 

been completed. It was decided not to present the work until the revised higher-resolution 

process is complete. Therefore, the WGC paper, which used the low-resolution analysis, will be 

withdrawn, but it is intended to present at Geothermal Resource Council 2015 or Stanford 

Geothermal Workshop 2016. 

 

We consider that this milestone is 90% complete, since sensible VOI methodology and 

subsequent VOI metrics have been produced. However, this problem of “missing” data is a result 

of using real field data, and it will be important and useful to demonstrate better ways of 

handling it for future applications. 
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Appendix A  

World Geothermal Congress Paper 

Whitney J. Trainor-Guitton1, G. Michael Hoversten2, Gregg Nordquist3, Rindu Grahabhakti Intani4, Robert 

Mellors1, and Jeffery Roberts1 

1Lawrence Livermore National Laboratory, 7000 East Avenue 

trainorguitton@llnl.gov 

2Chevron Energy Technology Company, San Ramon, CA 

3Chevron Geothermal Services Company, Makati City, Philippines 

4Chevron Geothermal Power Indonesia, Jakarta, Indonesia 
 

Keywords: value of information, resource assessment, magnetotellurics 

How well does geophysical data improve our geothermal prospecting decisions? How much is 

this information worth? These types of questions can be answered using the value of information 

(VOI) method. VOI quantifies how relevant any particular information source is, given a 

decision with an uncertain outcome; thus, the estimated VOI can be used to justify the purchase 

of additional data when exploring for geothermal resources. Previously, a value of information 

(VOI) methodology using synthetic data for the exploration geothermal problem was presented 

(Trainor-Guitton et al., 2014). Evaluating the reliability of a geophysical method to decipher key 

spatial subsurface features is relatively straightforward with synthetic data since many different 

“true” subsurface models can be tested.  

Perhaps a more useful analysis is to decipher the reliability of field data that has been 

“calibrated,” e.g. production parameters have been observed that are approximately collocated 

with the geophysical data. Specifically, we consider a 3D electrical resistivity model that has 

been constructed from MT (magnetotellurics) data via geophysical inversion. We are especially 

interested in how multiple interpretations of the inversion model can be incorporated into the 

reliability analysis. Typically, MT data are used to detect the electrically conductive clay cap 

which can be indicative of geothermal alteration occurring just above the resource. Several 

interpretations of the clay cap (a 3D feature) are possible and may result in different estimates of 

the effectiveness of the MT technique to detect electrically conductive targets that can be 

indicative of potential geothermal resources, representative of the well data (steam flow, 
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permeability and pressure). We will present several alternative interpretations that will highlight 

the challenges and advantages of using field data to estimate the value of geophysical 

information. Our results, however, indicate that the final VOI estimate was not strongly 

dependent on the different interpretations of the MT data set. Additionally, we demonstrate how 

these VOI evaluations can be used to guide future drilling locations. 

The value of information (VOI) quantifies how relevant and reliable any particular information 

source is, and quantifies its value when making a decision with an uncertain outcome. VOI can 

be used to justify the costs of collecting and processing the planned data. It has been used in oil 

exploration (see review by Bratvold et al., 2009). We apply it here to geophysical data from a 

geothermal field. Previous work (Trainor-Guitton et al., 2013a,b) tested the applicability for 

geothermal exploration using synthetic datasets. 

VOI is a method from the field of decision analysis. Decision analysis concepts are often 

described in terms of lotteries and prizes (Pratt et al., 1995). By choosing to drill or not, a 

decision maker is choosing whether or not to participate in a lottery with certain perceived 

chances of winning a prize (drilling into a profitable reservoir); however, this lottery also 

involves the chances of losing money (drilling into an uneconomic reservoir). VOI estimates the 

possible increase in expected utility (winning a lottery with a bigger prize) by gathering 

information before making a decision, such as where or if to drill a production well. In its 

simplest form, the VOI equation can be expressed as: 

 𝑉𝑂𝐼 = 𝑉𝑤𝑖𝑡ℎ 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 − 𝑉𝑝𝑟𝑖𝑜𝑟     (1)  

where V is the value, the metric used to quantify the outcome of a decision. The higher the value, 

the more “successful” an outcome of a decision is. Therefore, value is the revenue gained minus 

the costs incurred for any particular decision action taken. The simplest representation of the 

decision in geothermal exploration is “to drill or not” for one particular location; if heat, 

permeability and fluids exist in that location, then the value outcome of that decision will be 

high. Otherwise, the value outcome will be a monetary loss. 

We consider how well the clay cap, as delineated by a 3D MT data inversion, can indicate 

magnitude of the steam flow by utilizing a dataset from an operating geothermal field. The 

electrically conductive materials imaged by MT are created by geochemical alteration when hot 

fluids circulate within subsurface geologic units (Gunderson et al., 2000). However, if the hot 

fluid source ceases to exist, the electrically conductive material will remain, thus a clay cap does 

not guarantee current geothermal activity (Karlsdóttir et al., 2012). 

The contributions presented in this paper are twofold. First, our work illustrates the 

implementation of a VOI methodology given the uncertainties of geothermal exploration and 

multiple interpretations of the clay cap from a 3D MT inversion. We utilize an existing dataset of 

steam flow measurements to deduce trends between steam flow and electrical conductivity, 

thereby using the past performance of the geophysical technique to predict steam flow. The 

VOI’s produced can be used to determine if MT should be collected again in a field with similar 

geological and geophysical attributes. The second set of results presented here demonstrate how 

the VOI evaluations can serve as a guide on deciding where to drill for new production wells in 

undeveloped areas given that the MT information has already been collected in that area.  

The paper is organized as follows. First the steam flow and MT data sets are described. Then we 

describe how the 3D cube of electrical conductivity is used to infer the location and margins of 
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the clay cap: the potential margins or boundaries of the geothermal reservoir. Third, we will 

describe the different set of assumptions used to determine three different clay caps and the 

colocation between the electrical conductivity of the clay cap and a steam flow measurement. 

The various conductivity and spatial thresholds produce various interpretations of the “calibrated 

dataset.” Fourth, these multiple interpretations will provide three estimates of the MT’s 

reliability to delineate the boundaries of the geothermal reservoir. Finally, we will use these 

reliabilities to 1) calculate VOI’s (values of information) of MT and 2) provide guidance on 

where future drilling should be focused. 

 

Darajat is vapor geothermal field located in West Java, Indonesia. It is located about 150 km to 

the southeast of Jakarta and has an elevation ranging from 1,750 to 2,000 meters above sea level. 

First production from the field was started in 1994 with installation of a 55 MW plant. 

Additional capacity was added in 2000 and 2007 to bring the total production capacity to 271 

MW from three power plants.   
The Darajat geothermal field is located along a range of Quaternary volcanic centers in West Java.  It is spatially associated with 

an eroded andesitic stratovolcano, Gunung Kendang.  The reservoir is dominantly comprised of thick lava flows and intrusions in 

a stratovolcano central facies, with relatively higher porosity, thick pyroclastic sequences of proximal to medial facies that were 

deposited more toward the margins. Structures trend predominantly NE-SW but  also include N-S and NW-SE trending faults 
(Rejeki et al., 2010).     

 
Figure 1: Location of the Darajat geothermal field in West Java 

 

The steam flow dataset contains the average production over one year for 23 different wells. The 

steam flow data approximately spans an area of 2.6 km by 4.2 km and a depth range of 600m to 

1800m below the surface. Figure 2 displays a histogram of these steam flow measurements. The 

steam flow measurements are composite flows for all feed zones from each well. 
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Figure 2: Histogram of steam flow data from 23 wells. 

For this VOI demonstration, we categorized the steam flow magnitude into seven groups or bins, 

represented by θi: 

 𝜃𝑖   𝑖 ∈

{
 
 
 

 
 
 
7,
6
5
,

𝜃 ≥  30 𝑘g/s
25 ≤ 𝜃 < 30 kg/s
20 ≤ 𝜃 < 25 kg/s

4, 15 ≤ 𝜃 < 20 kg/s

3,
2,
1,

10 ≤ 𝜃 < 15 kg/s
5 ≤ 𝜃 < 10 kg/s
0 ≤ 𝜃 < 5 kg/s

  (2)  

We define our prior uncertainty with respect to steam flow production using these steam flow 

categories. Let us represent this by 

 𝒛(𝜃𝑖)   𝑖 = 1,… ,7,  (3)  

where vector z represents the non-dimensional steam flow categories that may be realized from 

production wells. Future work could incorporate spatial aspects of this steam flow possibility. 

The steam flow categories can be used to represent the economic (value) outcome of a drilling 

decision at any location (x,y,z).  

Figure 2 reveals that the steam flow data does not include any measurements <5 kg/s. This is 

understandable since the wells are drilled with the intention of placing them where steam flow 

will be high. This bias in the data, however, will pose challenges in assigning what 

conductance’s are representative of this steam flow category, described in Section 2.3. Table 1 

summarizes the probability of occurrence for each of the steam flow categories (𝑃𝑟(Θ =
𝜃𝑖)) according to the data (a) and three other hypothetical prior probabilities (b-d) that will be 

used later for the value of information analysis. These probabilities should be derived from 

expert opinion and all other data available for the particular site. The priors in columns b-d are 

chosen for demonstration purposes and are not related to the Darajat field per se. 
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Table 1: Prior probabilities of steam flow categories according to the data and other projections 

 

↓Steam Flow Rate 

(kg/s) 

a) 

Percentage 

of steam 

flow data in 

each 

category 

b) Least 

optimistic 

𝑃𝑟(Θ = 𝜃𝑖) 

c) 

Intermediate 

𝑃𝑟(Θ = 𝜃𝑖) 

d) Most 

optimistic 

𝑃𝑟(Θ = 𝜃𝑖) 

θi >30  30.4% 10% 13% 40% 

25≤ θi≤ 30 17.4% 10% 13% 10% 

20≤ θi ≤ 25 17.4% 10% 13% 10% 

15 ≤ θi ≤ 20 8.7% 10% 13% 10% 

10 ≤ θi ≤ 15 13.0% 10% 13% 10% 

5 ≤ θi ≤10 13.0% 10% 15% 10% 

θi ≤ 5 0% 40% 20% 10% 

 

The MT data used for this analysis consists of 85 remote referenced stations which were 

distributed over and outside the boundaries of the Darajat geothermal field.  The data were 

collected in 1996-97 and 2004 and were used to interpret the distribution and extensions of the 

electrically conductive clay cap beyond the first development area (Rejeki et al., 2010).  For the 

interpretation of the clay cap, two approaches were used.  For the 3D inversion of the data set, 

the off-diagonal impedances between 100 seconds and 100 Hertz were inverted using the 3D 

algorithm of Newman and Alumbaugh (2000).  The impedance errors derived from the multi-

station robust processing were used subject to a 10% error floor. The starting model was a 10 

Ωm half-space beneath the topography. The inversion reduced the RMS data misfit from 87 to 

1.3. For the 1D approach for defining the clay cap, 1D inverted models using the Transverse 

Electric (TE) mode were used to define the resistivity and thickness of the conductive layer. 

Our methodology estimates the prediction power of MT given a collocated steam flow dataset. 

First, we consider the decision of “to drill or not,” and we make several evaluations of the 

efficacy of MT via several interpretations of the MT inversion model. It is possible to extend the 

methodology to the more complex decision of “where to drill.” We assume that the decision 

outcome only depends on the possible steam flow of a reservoir.  

We have one 3D model of conductivity inverted from the MT dataset described above which 

overlies where the steam flow measurements were made. First, we use only this inversion model 

to determine possible relationships between the electrical conductivity property and the steam 

flow magnitude. Typically, the high conductivity layer can be used to estimate the likely margins 

of the geothermal system (Cumming, 2009). We attempt to assess whether the thickness and 

conductivity information of the clay cap can be used to distinguish between higher and lower 

steam flow.  
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As we assume that the “clay cap” margins can be used to infer the boundaries of the geothermal 

resource, we define a conductivity threshold in order to delineate the location and thickness of 

the clay cap. We use a bottom threshold value of σ=0.12 S/m. Thus, a top and bottom surface is 

defined where the electrical conductivity begins to decrease from the threshold value of σ=0.12 

S/m. The resulting cap is pictured in Figure 3. 

a) b)

 
Figure 3: a) Cross sectional view and b) top view of clay, defined by threshold σ=0.12 S/m. Wells containing steam flow 

measurements shown in multicolor. 

Next, we determine which conductivity locations within the clay cap that can be correlated with 

the steam flow measurements. We suggest that steam flow measurements closer to the cap are 

more likely to influence the electrical conductivities and geometry of the clay cap. Therefore, we 

expect a stronger relationship between the steam flow measurements that are closer to the clay 

cap.  

We begin by defining 625m as the maximum distance between a steam flow measurement and 

any point within the clay cap. We choose this distance because it represents the lower quartile of 

all distances between the clay cap conductivities and steam flow locations. Figure 4a) displays 

the midpoint of the steam producing zone of Well 15 as a red box along the well path (red) and 

the conductivity values of the clay cap. First, the location of the closest conductivity 

measurement to the well midpoint is determined. Then, the neighboring conductivity values in 

the clay cap are averaged within a radius of 100 m to compare to the steam flow of that well. 

Figure 4b) displays only the conductivities measurements that are within 100m of the closest 

conductivity point for Well 15. 
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a) b)  
Figure 4: a) Well 15 midpoint (red box along red path) with conductivities of clay cap. b) Only the conductivities within 

100m of the closest conductivity point to Well 15’s midpoint. 

This is repeated for any steam flow-clay cap pair that is less than 625m away. Figure 5a plots the 

geometric average of these neighboring conductivities versus the nearest steam flow 

measurement. Six of the 23 steam flow measurements locations were within the maximum 

threshold of 625m. Of this set, the conductivities show a slight positive correlation (0.36) with 

steam flow. 

 
Figure 5: 2D scatterplot of co-located a) electrical conductivities (geometric average) b) thicknesses (arithmetic average) 

and c) conductance (all from 0.12S/m clay cap) and steam flow (maximum distance 625m). The size of the symbols reflects 

number of conductivities used in the average calculation and the color represents the distance 

This same process is done for the clay cap thickness at these neighboring locations. Figure 5b 

displays the arithmetic average of the clay cap thickness versus the 6 steam flow measurements, 

and Figure 5c displays average conductance (the product of conductivity and clay cap thickness). 

Unlike Figure 5a, these two plots now show a relatively strong negative correlation with steam 

flow: -0.67 and -0.73 respectively. The negative correlation of steam flow with conductance 

(which is dominated by the thickness) is expected since greater temperatures (>200˚C) will alter 

the highly conductive smectite clays into more resistive illitic or chloritic clays (Ussher et al., 

2000). The clay cap for this analysis is defined on the basis of conductivity, and therefore it is 

expected to dominantly represent the distribution of smectite. Since places that have been altered 

to illite will have lower conductivity they tend not to be included in the clay cap interpretation as 

used in this analysis.  Thus, if the interpreted clay cap based on the MT data is capturing only the 

higher conductive smectite, one would expect a shallower base and a thinning of the clay cap 

over areas where the permeability is higher.  Therefore, we only consider and include the 
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conductance (not conductivity or thickness alone) for the next two interpretations of clay cap for 

comparison with the steam flow measurements. 

Next, we tested how sensitive these results are to the threshold which defines the clay cap. We 

now define the clay cap with the threshold of 0.1 S/m. This clay cap, shown in Figure 6, is 

slightly thicker than the clay cap defined by the threshold of 0.12 S/m (Figure 3). 

a) b)  
Figure 6: Cross sectional view of clay cap from the inversion that imposes fault boundaries defined by threshold σ=0.10 

S/m. Wells containing steam flow measurements shown in multicolor. 

This thicker clay cap produces more pairs of steam flow/conductivity location pairs when using 

the maximum distance of 625m.  Figure 7 only plots the eight steam flow measurements versus 

their neighboring conductance, since this relationship may be more revealing of reservoir 

temperature. The resulting correlation coefficient is -0.7.  

 
Figure 7: 2D scatterplot of co-located conductance (from 0.10S/m clay cap) and steam flow (maximum distance 625m). 

The size of the symbols reflects number of conductivities used to calculate the average and the color represents the 

distance 

Another very commonly applied approach for interpretation of the clay cap is to use 1D models 

to define the conductive layer. In this case the distribution and characteristics of the conductive 

layer are interpreted from 1D interpretations of the TE mode. The characteristics of of the 

conductive layer which include elevations of base and top, thickness and conductance for the 

layer are calculated for each MT station and then gridded and contoured to produce maps and 
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cross-section.  These  are then used by the interpreter interpret the clay cap and to extrapolate 

away from the wells. Figure 8 shows the interpretation of the top and base of the clay cap which 

was made using these data. This interpretation will tend to have a thicker cap than the defined 

conductivity cutoff value used in the 3D inversions above because it also contains higher 

resistivity parts of the cap.  

a) b)  
Figure 8: Clay cap defined by electrical conductivity, methylene blue analysis, and temperature isotherms 

The clay cap base for this interpretation is much closer to steam flow measurements. The lower 

quartile of distances between the clay cap base and steam flow locations is ~500m, 125m less 

than clay cap base with electrical resistivity alone. Therefore, 20 wells were within 500m of the 

clay cap. Figure 9 contains the geometric averages of conductance versus the steam flow 

measurements (equivalent to Figure 7); the correlation coefficient is -0.53. The clay cap 

interpreted from the integrated analysis is thicker than the previous two (Figure 5c and Figure 7). 

 
Figure 9: Averages of Conductance within 500m of steam flow measurements using the top and base of clay cap as 

determined by geology, methylene blue analysis and the MT inversion model 
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As described in the Introduction, a data reliability or likelihood is necessary to evaluate VOI. 

The reliability quantifies the uncertainty in the relationship between the electrical conductance 

and the steam flow magnitude. We have two interpretations of the clay cap from the 3D MT 

inversion and one from 1D models . In order to have sufficient measurements to compute  

statistics, we will use all conductivity measurements separately from each clay cap used to 

calculate the geometric means of conductance on the x-axes of Figure 5c, Figure 7 and Figure 9. 

Therefore, three data reliabilities will be computed corresponding to the three clay cap 

calibrations (Figure 5c, Figure 7 and Figure 9). Figure 10, Figure 11, and Figure 12 depict the 

counts of every conductance measurement from Figure 5c, Figure 7 and Figure 9: the clay cap 

defined by a threshold of 0.12 S/m, 0.10 S/m and with the  gridded 1D models respectively. The 

counts in the histograms are represented by cij, where c is the total number of measurements that 

fall within conductance bin j and are associated with one of the seven steam flow categories i 

(Equation 2). 

 

 
Figure 10: From clay cap defined by 0.12 S/m : counts (blue bars) of conductance measurements in bin j (horizontal axis) 

that correspond to steam flow bin i (different vertical rows).  
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Figure 11: From clay cap defined by a) 0.10 S/m: counts (blue bars) of conductance measurements in bin j (horizontal 

axis) that correspond to steam flow bin i (different vertical rows). 

  
Figure 12: Counts (blue bars) of conductance measurements in bin j (horizontal axis) that correspond to steam flow bin i 

(different vertical rows). From clay cap defined by 1D MT models 

The data likelihood (which is also the reliability) considers how likely a conductance bin is given 

that we know the steam flow categories (𝜃𝑖) associated with it. Therefore, the counts in bin ij are 

normalized by the total number of measurements in that steam flow category (i): 

 𝑃𝑟(𝐺 = 𝑔𝑗|Θ = 𝜃𝑖) =
𝑐𝑖𝑗
∑ 𝑐𝑖𝑗𝑖

  

𝑖 = {1,2,3,4,5,6,7} 𝑗 = 1,… , 𝐽  

(4)  
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where the electrical conductance is represented by g. The denominator, ∑ 𝑐𝑖𝑗𝑖  , represents 

normalization by the sum of all data points within that steam flow category ( 𝜃𝑖). For example, in 

Figure 10 for 𝜃𝑖 > 30 and 50S< conductance ≤ 60S, 𝑃𝑟(𝐺 = 𝑔𝑗|Θ = 𝜃𝑖) =
2

2
= 100%, because 

the steam flow category 𝜃𝑖 > 30 exclusively has measurements in this conductance bin. 

However, for the next conductance bin up (60S< conductance ≤ 70S), the likelihood for 𝜃𝑖 > 30 

drops to 𝑃𝑟(𝐺 = 𝑔𝑗|Θ = 𝜃𝑖) =
10

20
= 50% because two other steam flow categories are 

associated with this conductance. Next, we want to establish the information posterior which 

establishes a “misinterpretation rate” or how uniquely a conductance bin can distinguish between 

any of the steam flow categories 𝜃𝑖. According to Bayes law, the posterior (𝑃𝑟(Θ = 𝜃𝑖|𝐺 = 𝑔𝑗) 

in Eqn. 5 below) is equal to the product of the prior probability (𝑃𝑟(Θ = 𝜃𝑖)) and the likelihood 

(𝑃𝑟(𝐺 = 𝑔𝑗|Θ = 𝜃𝑖)) scaled by the marginal (𝑃𝑟(𝐺 = 𝑔𝑗)): 

 
𝑃𝑟(Θ = 𝜃𝑖|𝐺 = 𝑔𝑗) =

𝑃𝑟(Θ = 𝜃𝑖)𝑃𝑟(𝐺 = 𝑔𝑗|Θ = 𝜃𝑖)

∑ 𝑃𝑟(Θ = 𝜃𝑘)
𝑁+1
𝑘=1 𝑃𝑟(𝐺 = 𝑔𝑗|Θ = 𝜃𝑘)

=
𝑃𝑟(Θ = 𝜃𝑖)𝑃𝑟(𝐺 = 𝑔𝑗|Θ = 𝜃𝑖)

𝑃𝑟(𝐺 = 𝑔𝑗)
  𝑖

= {1,2,3,4,5,6,7} 𝑗 = 1,… , 𝐽 

(5)  

The corresponding posteriors of the different counts in Figure 10, Figure 11, and Figure 12 are 

the solid colored lines in Figure 13, Figure 14, and Figure 15 respectively. When the posterior is 

close to 1 or 0 (right hand y-axis label), this indicates that the data in that conductance bin is 

more informative (the misinterpretation rate is lower). The posteriors in Figure 13, Figure 14, 

and Figure 15 were calculated using the least optimistic prior shown in Table 1 to include the 

possibility of encountering a low or zero steam flow. For conductance values that were not 

represented in each of the particular calibration data sets (e.g. where no bars exist), the posterior 

probability is distributed according to the prior probability across the 7 steam flow bins. 

Therefore, we see that the steam flow θ<5 category is given a high probability for conductance 

bins where no data was represented in the calibration data. The count bars are the same in Figure 

13, Figure 14, and Figure 15 as in Figure 10, Figure 11, and Figure 12 respectively, however 

each is now colored from dark green to red. These will be explained in Section 3.3. 

Visually, the red posterior (steam flow > 30 kg/s) from the clay cap defined by the 0.12 S/m 

threshold (top of Figure 13s) has a high posterior (~1) value for the conductance bins at G=50 S. 

This will contribute to a higher VOI evaluation. The posterior for θ>30 for the 0.10Sm clay cap 

is similar: consistently high for conductance bins 50-90 S.  However, in the integrated analysis, 

the conductance bins of 90-110 S (the lowest conductances) are more equally distributed 

between these three steam flow bins. Thus, the posterior is not high for the highest steam flow 

within these conductance bins (90-110 S) rather the highest posterior here is for the bins of 140-

160 S, as only these conductances values were uniquely related to steam flow > 30 kg/s.   
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Figure 13: Counts (blue bars) and posteriors (solid lines) for the clay cap interpretations defined at 0.12 S/m. For each 

conductance bin, the sum of the posterior across the steam flow categories equals 100%. The colors of the conductance 

bars correspond to the value calculated for each conductance bin (equation 10): upper quartile is darkest green, while red 

is the lowest quartile. 

 
Figure 14: Counts (blue bars) and posteriors (solid lines) for clay cap interpretation defined at 0.10S/m. For each 

conductance bin, the sum of the posterior across the steam flow categories equals 100%. The colors of the conductance 

bars correspond to the value calculated for each conductance bin (equation 10): upper quartile is darkest green, while red 

is the lowest quartile. 



Document Title Lorem Ipsum Dolor Sit Amet, Consectetur Adipiscing Elit Aenean Malesuada Pharetra Orci Imperdiet Placerate 

Lawrence Livermore National Laboratory Unclassified 22 

 
Figure 15: Counts (blue bars) and posteriors (solid lines) for the clay cap interpretation with combine 1D MT. For each 

conductance bin, the sum of the posterior across the steam flow categories equals 100%. The colors of the conductance 

bars correspond to the value calculated for each conductance bin (equation 10): upper quartile is darkest green, while red 

is the lowest quartile. 

This section describes the calculations necessary to estimate the value of imperfect information 

using the information posteriors plotted in Figure 13. First, the Vprior or the prior value is 

described. 

We will now describe how each prior model is linked to possible economic outcomes. This will 

be summarized in the quantity Vprior, which translates our prior uncertainty (our current state of 

information) into an expected (or average) outcome from our decision.   

Recall that decision analysis frames the decision as the chance to enter the geothermal lottery 

with perceived chances of winning a prize (e.g. drilling into a profitable reservoir). By utilizing 

Vprior, a decision-maker can logically determine when one should participate in this lottery given 

both the prior uncertainties and possible gains and losses. The value metric allows for 

comparison between outcomes from different decision alternatives, which can be represented by 

function da.  

 𝑣𝑎
(𝑡)(𝜃𝑖) = 𝑑𝑎(𝒛(Θ = 𝜃𝑖)

(𝑡))  

𝑎 = 1,2    𝑖 = 1,… ,7    𝑡 = 1, . . 𝑇 

(6)  

We assume only 2 possible alternatives (a = 1 or 2): drill/produce the reservoir or do nothing. 

Table 1 defines the 14 possible outcomes, which is a result of these 2 decision alternatives and 

the 7 possible reservoir categories. The columns represent the decision alternatives (a=1 and 

a=2) and the rows the different steam flow categories (𝜃𝑖).  
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Table 2: Table of nominal value outcomes for the 2 possible decision options (columns) and 7 possible economic viability 

categories of the unknown subsurface (rows). 

Decision option→ 

↓Steam Flow Rate 

(kg/s) 

𝑣𝑎=1
(𝑡) (𝜃𝑖) 
a = 1 

(drill under 

cap) 

𝑣𝑎=2
(𝑡) (𝜃𝑖) 
a = 2 

(do 

nothing) 

θi >30  $700,000 $0 

25≤ θi i≤ 30 $300,000 $0 

20≤ θi ≤ 25 $125,00 $0 

15 ≤ θi ≤ 20 $40,000 $0 

10 ≤ θi ≤ 15 $0 $0 

5 ≤ θi ≤10 -$200,000 $0 

θi ≤ 5 -$500,000 $0 

Table 2 represents hypothetical, monetary values that could represent relative gains (payouts-- 

shown in black-- when you drill a well with economic production rates) or losses (loss on 

investment –shown in red--when you drill an uneconomic well). Specific (and more realistic) 

gains and losses for a particular field site can be easily substituted in Table 1 and into the 

methodology.  This would be necessary to use the resulting VOI’s to determine if a particular 

data type is worth purchasing at a specific field site. The values in Table 1 are simply for 

demonstration purposes so that the behavior of the VOI quantities can be visualized.  

All the necessary quantities have been introduced to calculate Vprior.  

 

𝑉𝑝𝑟𝑖𝑜𝑟  = max
𝑎
(∑𝑃𝑟(Θ = 𝜃𝑖)𝑣𝑎(𝜃𝑖)

7

𝑖=1

)    

𝑎 = 1,2 

(7)  

In words, Vprior quantifies the best the decision-makers can do with the current uncertainty (no 

MT data has been collected), which are reflected in the prior probabilities 𝑃𝑟(Θ = 𝜃𝑖).  Vprior 

identifies which decision alternative gives on average the best outcome (done through the max
𝑎

). 

When considering a specific location for geothermal exploration, these prior probabilities should 

come from a geologist and/or other experts with knowledge of the geologic structure and history. 

For our base case (column a of Table 2), we assume 𝑃𝑟(Θ = 𝜃1) = 40% (steam flow < 5 kg/s) 

and all other categories 𝑃𝑟(Θ = 𝜃𝑖) = 10% 𝑖 = 2, . . ,7. Two other prior probabilities are 

included to demonstrate the influence of the prior on the final VOI: both reflecting an increase in 

optimism that the highest steam flow category has greater chance of occurring.  The column b) 

of Table 2 is the Intermediate prior, where the probability of the lowest steam flow class has 

dropped to 20% from 40% and the greatest steam flow class is now 13%, up from 10%.  The 

most optimistic prior (column c) reverses the probabilities for the greatest and smallest steam 

flow bins from the base case.       
Table 3: Table of 3 possible prior probabilities (columns) for the 7 possible economic viability categories of the unknown 

subsurface (rows), additionally the resulting Vprior, Vperfect and VOIperfect for these priors (Vperfect and VOIperfect will be 

explained in 3.2). 

Prior Uncertainty→ 

↓Steam Flow Rate 

(kg/s) 

a) Least 

optimistic 

𝑃𝑟(Θ = 𝜃𝑖) 

b) 

Intermediate 

𝑃𝑟(Θ = 𝜃𝑖) 

c) Most 

optimistic 

𝑃𝑟(Θ = 𝜃𝑖) 
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30≤ θi 10% 13% 40% 

25≤ θi i≤ 30 10% 13% 10% 

20≤ θi ≤ 25 10% 13% 10% 

15 ≤ θi ≤ 20 10% 13% 10% 

10 ≤ θi ≤ 15 10% 13% 10% 

5 ≤ θi ≤10 10% 15% 10% 

θi ≤ 5 40% 20% 10% 

Vprior $0 $21,450 $256,500 

Vperfect $116,500 $151,450 $326,500 

VOIperfect $116,500 $130,000 $70,000 

 

Returning to the lottery example, when Vprior is 0, the decision-maker should “not participate in 

the lottery” (i.e. don’t drill) given the current state of information. Vprior=0 tells the decision-

maker that the decision alternative to “do nothing” will yield the higher outcome on average. 

Vprior=0 reflects the potential for large losses when you “participate in the lottery” or drill to 

produce a geothermal reservoir. The decision-maker would only be wise to participate in the 

lottery when Vprior > 0. The three different Vprior’s for each of the prior probabilities are shown 

inTable 3, which use the value outcomes of Table 2. For the base case prior probabilities (the 

least optimistic), Vprior =$0. Vprior increases to $21,450 and $256,500 for the intermediate and 

most optimistic priors. Intuitively this makes sense since both priors reflect higher probabilities 

for higher-valued outcomes. 

The value of perfect information can be calculated using Equation 1, by substituting in Vperfect for 

the value with information (Vwith information). VOIperfect assumes that an information source exists 

that will always identify the correct economic viability category θi without errors. Like Vprior, 

Vperfect only depends on the prior uncertainty and potential gains/losses of the problem.  

 

𝑉𝑝𝑒𝑟𝑓𝑒𝑐𝑡  = ∑𝑃𝑟(Θ = 𝜃𝑖)

7

𝑖=1

(max
𝑎
 𝑣𝑎(𝜃𝑖)) 

(8)  

Here, we see that for each steam flow rate category θi, we can choose the best decision 

alternative a (this is reflected in max
𝑎

 being calculated before the weighted average). With perfect 

information, we always know when the reservoir is uneconomic, and therefore we will always 

choose not to participate in the lottery. Thus, we remove the chance of loss by collecting perfect 

information. With our current state of information, we would not enter the lottery when the 

potential losses were too high relative to the gains. But with a flawless information source to 

allow us to avoid these losses, we may choose to participate in the lottery. Since it assumes error-

free information, the VOIperfect quantity will give an upper bound on what we could expect for 

any information source. For the base case example, using the values in Table 1, Vperfect = 

$116,500. Following Equation 1 

 𝑉𝑂𝐼𝑝𝑒𝑟𝑓𝑒𝑐𝑡  = 𝑉𝑝𝑒𝑟𝑓𝑒𝑐𝑡 − 𝑉𝑝𝑟𝑖𝑜𝑟 (9)  

Thus, since Vprior =$0, VOIperfect = $116,500.  
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Now we consider imperfect MT data and we estimate its reliability when distinguishing between 

the seven different possible steam flow categories θi. The data is from a specific location, and we 

are using it to generate the required information posterior(𝑃𝑟(Θ = 𝜃𝑖|𝐺 = 𝑔𝑗)), which influences 

VOI, but everything else (priors, value outcomes, etc.) is completely unrelated to the location 

and settings of the actual data set. The information posterior (𝑃𝑟(Θ = 𝜃𝑖|𝐺 = 𝑔𝑗)) is the form 

actually used to calculate the value with imperfect information Vimperfect. 

 

𝑉𝑖𝑚𝑝𝑒𝑟𝑓𝑒𝑐𝑡 =∑Pr(𝐺 = 𝑔𝑗)

𝐽

𝑗=1

{max
𝑎
[∑𝑃𝑟(Θ = 𝜃𝑖|𝐺 = 𝑔𝑗)𝑣𝑎(𝜃𝑖) 

7

𝑖=1

]} 

(10)  

Here, the posterior accounts for how often one may incorrectly infer a steam flow category given 

the inverted electrical conductance. The posterior is used to weigh the averaged outcome of each 

alternative and category combination 𝑣𝑎(𝜃𝑖). Since the decision is made after conductivity data has 

been collected, the best alternative (max
𝑎

) is chosen given the interpreted category. Lastly, 

Vimperfect is weighted by the marginal probability Pr(𝐺 = 𝑔𝑗), how often any of the particular 

inverted resistivities occur relative to other conductivity bins. 
 

Table 3: Table of nominal Vimperfect and VOIimperfect for the 3 clay cap interpretations (columns) for 3 different 

priors. 

Prior 

Probability: 

Clay Cap 

defined by 

threshold: 

0.12 

Siemens/m 

0.10 

Siemens/m 

Integrated 

interpretation 

from MT, 

methylene 

blue, 

temperature 

Least 

optimistic 

(base case) 

Vimperfect $100,800 $100,500 $97,500 

VOIimperfect  $100,800 $100,500 
$97,500 

Intermediate 
Vimperfect $128,000  $127,800 $122,700 

VOIimperfect  $106,500 $106,300 $101,200 

Most 

optimistic 

Vimperfect $310,800 $309,300 $307,200 

VOIimperfect  $54,300 $52,800 $50,700 

 

Table 3 includes both the value with imperfect information (Vimperfect) and the value of imperfect 

information (VOIimperfect). The value of imperfect information (VOIimperfect) is calculated using 

Equation 1 where now the Vimperfect is used in place of the generic term of Vwith information.  

 𝑉𝑂𝐼𝑖𝑚𝑝𝑒𝑟𝑓𝑒𝑐𝑡  = 𝑉𝑖𝑚𝑝𝑒𝑟𝑓𝑒𝑐𝑡 − 𝑉𝑝𝑟𝑖𝑜𝑟 (11)  

 

As expected, all the VOIimperfect’s estimates are lower than their respective VOIperfect’s ($116,500, 

$130,000, $70,000). This demonstrates how the highest value outcome will not be realized 

because of the imperfectness of the data that can mislead the decision maker about the economic 

viability of the reservoir. The three VOIimperfect results are not significantly different from 

each other for any of the prior probability cases. The VOIimperfect assessed from the clay cap 

defined at 0.12S/m is slightly higher for all three cases which can be explained by the posterior 

being ~1 for the highest steam flow category (Figure 13). 
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The next set of results demonstrates how the information posteriors (𝑃𝑟(Θ = 𝜃𝑖|𝐺 = 𝑔𝑗)) and 

the decision outcomes (Table 1) can be used to determine new locations for drilling that may 

have higher likelihood of success. Essentially, each conductance bin (j) can be assigned a value 

which is calculated in the inner two evaluations of Equation 9 

 

𝑣𝑗 = {max
𝑎
[∑𝑃𝑟(Θ = 𝜃𝑖|𝐺 = 𝑔𝑗)𝑣𝑎(𝜃𝑖) 

7

𝑖=1

]} 
(11)  

The first evaluation is a weighted average of possible outcomes (𝑣𝑎(𝜃𝑖) ) using the posterior as the 

weights. The next operation is the non-linear max
𝑎

, which identifies the best alternative given the 

misinterpretations possible for that conductance bin. The color of the bins (dark green, green, 

light green and red) in Figure 13, Figure 14, and Figure 15 reflect the four quartiles of 𝑣𝑗  for each 

conductance bin j. Therefore, in the case where the posterior nearly definitively identifies the 

highest steam flow category (as in the case of Figure 13, steam flow > 30), the 𝑣𝑗  will be highest. 

But if no conductance range (bin) exists that exclusively (or close to exclusively) can identify the 

higher steam flow category, the 𝑣𝑗’s will reflect this. This is seen in Figure 13 for conductance of 

~175 S, where the bars are red. In short, 𝑣𝑗  depends on both the posterior and the value attached 

to steam flow category most related to that conductance bin.  

 

For this particular field, a future drilling campaign is considered in an area covered by the 

current MT inversion, but no drilling has taken place and therefore, no existing steam flow 

information is available. We can plot the 𝑣𝑗’s according to the MT inversion model and look 

specifically at the area under consideration for future drilling. This may guide future well 

locations by using the past performance of MT to locate high steam flow.  

 

However, the conductance’s represented in the current MT inversion, may not be included in the 

calibrated data set. For example, there are no conductance’s <50 S that were “collocated” to a 

steam flow datum (Figure 10, Figure 11, and Figure 12), but the conductance maps of the 

different clay cap interpretations (shown in Figure 16, Figure 17, and Figure 18) have large areas 

with conductance’s < 50 S (shown in dark and light purples). Therefore, the posterior for these 

values are distributed according to the assigned prior probabilities as described in Section 2.3. 

Thus conductance’s < 50 S have 𝑣𝑗’s in the lowest quartile, since they are tied to the steam flow 

< 5kg/s. This interpretation could be changed, but since these conductance’s were not related to 

any production data, this could be considered a conservative approach.    
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Figure 16: Plane View of field. Area within red solid line and the two black circles denotes location of possible future 

drilling campaign. a) conductance of clay cap interpreted with 0.12 S/m threshold b) value (4) for each conductance bin 

(vj) calculated using posterior in Figure 13. 

Figure 16a displays the conductance (S) of the clay cap and Figure 16b displays the 

corresponding values in dollars (Equation 10) for the clay cap interpreted only with a 0.12S/m 

threshold. Overlain is the map of the field with surface traces of the faults (dashed black) and the 

area under consideration for future drilling (red solid line). Thus, by mapping back the value of 

each conductance bin, 𝑣𝑗’s provides some spatial guidance on where drilling future development 

wells may produce a high valued result, given the relationship of current production with the 

interpreted MT data. Figure 17 and Figure 18 contain the conductance and value for the clay 

caps interpreted by the 0.10 S/m threshold and the integrated analysis respectively.  

Figure 16 and Figure 17 display very similar value patterns which makes sense since they differ 

by only a small conductivity cut-off.  They display higher value outcomes around the northeast 

and northwest margins of the resource (the black arrows point to this feature) that follows the 

arching fault on the western boundary of the field. They also both have another northwest-

southeast green (high value) feature intersecting the northern section of the red circle (white 

arrows). Recall, that the value is a function of both the conductance bin’s ability to exclusively 

identify a steam flow category (θ) and how economic that category is. Generally for these two 

calibrations, conductance bins <100S but >50 S had the strongest relationship with the highest 

steam flow. 

However, the integrated analysis, Figure 18, shows a green feature that is slightly shifted north 

(black arrows) of what is shown in Figure 16 and Figure 17. Additionally, the integrated analysis 

demonstrates there is more promise (green) in the central section of the exploration area than the 

two threshold calibration methods (white arrows). This is a direct result of how the conductance 

bins ~180-210S had the most exclusive relationship with the highest steam flow category (θ>30 

kg/s). Therefore, there green features of Figure 18 correlate with this range of conductance bins. 
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Figure 17: Plane View of field. Area within red solid line denotes location of possible future drilling campaign. a) 

conductance of clay cap interpreted with a 0.10 S/m threshold. b) value for each conductance bin (vj) calculated using 

posterior in Figure 14. 

 
Figure 18: Plane View of clay cap interpreted with integrated analysis. Area within red solid line denotes location of 

possible future drilling campaign. a) conductance calculated from MT inversion model b) value for each conductance bin 

(vj) calculated using posterior in Figure 15. 

VOI is used to determine whether a particular type of data is worth acquiring and thus, the VOI 

must be calculated before the intended data is collected. We use a calibrated data set (electrical 

conductivity model from MT collocated with steam flow measurements) to estimate the past 
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performance of MT to delineate the boundaries of the clay cap. Therefore, we assume that this 

VOI will be used to decide whether or not to purchase MT data at analog field sites in the future. 

Specifically, we estimated the reliability of the data to reveal the principal uncertainty to the 

decision (θi representing steam flow for our example). In turn, we described how the value of 

imperfect information could be calculated given this reliability. We use a hypothetical decision 

scenario of “to drill or not” to define the other drivers of VOI: the prior probability, the value 

outcomes of Table 1.  These would need to be refined in order to use these VOI estimates to 

determine whether or not to purchase the information. 

This study indicates that the different interpretations of the clay cap do not greatly impact the 

assessed VOI of the MT data.  From a decision analysis stand point, the different VOIimperfect’s 

are indistinguishable since they are within $4,000 of each other, and therefore, the decision to 

purchase MT or not would be the same given the result of these three VOIimperfect’s 

We also used VOI to aid in determining future drilling locations. These relied on the information 

posteriors calculated for each clay cap interpretation and the value outcomes of Table 1. All three 

demonstrated consistent patterns with the known fault traces. As expected, the value maps for the 

two calibrations that only relied on electrical conductivity thresholds were quite similar. The 

value map (Figure 18b) that used temperature, electrical conductivity and methylene blue data 

had slightly different “green” (higher potential drill sites) features than the other two (Figure 16b 

and Figure 17b). The three value maps can be used by the operators and local experts to provide 

information on how they may prioritize and target their next well(s). 
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