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Abstract

In order to study the distribution and evolution of the transient particle and heat fluxes during ELM
bursts, a BOUT++ six-field two-fluid model based on the Braginskii equations with non-ideal physics
effects is used to simulate pedestal collapse in divertor geometry. The profiles from the DIII-D H-mode
discharge #144382 with fast target heat flux measurements are used as the initial conditions for the
simulations. A flux-limited parallel thermal conduction is used with three values of the flux-limiting
coefficient αj , free streaming model with αj = 1, sheath-limit with αj = 0.05, and one value in between.
The studies show that a 20 times increase in αj leads to ∼ 6 times increase in the heat flux amplitude
to the both inner and outer targets, and the widths of the fluxes are also expanded. The sheath-limit
model of flux-limiting coefficient is found to be the most appropriate one, which shows ELM sizes close
to the measurements. The evolution of the density profile during the burst of ELMs of DIII-D discharge
#144382 is simulated, and the collapse in width and depth of ne are reproduced at different time steps.
The growing process of the profiles for the heat flux at divertor targets during the burst of ELMs measured
by IRTV (infrared television) is also reproduced by this model. The widths of heat fluxes towards targets
are a little narrower, and the peak amplitudes are as twice as the measurements possibly due to the lack of
a model of divertor radiation which can effectively reduce the heat fluxes. The magnetic flutter combined
with parallel thermal conduction is found to be able to increase the total heat loss by around 33% since
the magnetic flutter terms provide the additional conductive heat transport in the radial direction. The
heat flux profile at both inner and outer targets is obviously broadened by magnetic flutter. The lobe
structures near the X-point at LFS are both broadened and elongated due to the magnetic flutter.

1 Introduction
To assess the performance requirements of future tokamaks, such as ITER, one must study[1] discharges in
the high edge particle and energy confinement regime known as H-mode [2]. In H-mode the steep pressure
gradients can drive ballooning modes and bootstrap current generates peeling modes[3], and these two modes
are considered to explain the trigger of Type-I edge-localized modes (ELMs) [4] successfully. However,
unmitigated Type-I ELMs can lead to the impulsive heat and particle losses, which are predicted to cause
excessive erosion and damage to plasma facing components (PFCs) in future tokamaks [5]. The nonlinear
simulation of peeling-ballooning (P-B) modes is necessary to understand the ELM physics and find the
methods to mitigate the heat flux problem to PFCs. SOLPS [6] and UEDGE [7] are widely used to simulate
the steady-state energy depositions on divertor targets in the present and future tokamak design work. The
transient heat fluxes during ELMs can be simulated with the modeled transport coefficients with SOLPS [8]
and UEDGE. The self-consistent understanding of the transient evolution of ELMs is important and urgent
to be studied.

The initial-value BOUT++ code has successfully simulated the nonlinear crash phase of ELMs [9, 10]. The
latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes
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and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database [11]. The
six-field two-fluid module has been developed to simulate the ELM crash in shifted-circular geometry [12, 13].
The typical values for transport coefficients in the saturation phase after ELM crashes are Dr ∼ 200m2s−1,
χir ∼ χer ∼ 40m2s−1. The theoretical and simulation results of a gyro-Landau-fluid (GLF) extension of the
BOUT++ code are summarized in Ref. [13, 14], which contributes to increasing the physics understanding
of ELMs.

In this paper, the six-field two-fluid model is used in the divertor geometry of DIII-D ELMy H-mode
discharge #144382. The paper is organized as follow. Sec. 2 is the introduction of the simulation model.
Sec. 3 is the simulations setup with the measured geometry and profiles of DIII-D discharge #144382. The
simulation results for the effects of flux-limited coefficient are explained in Sec. 4, as well as the validation
with experimental measurements. Sec. 5 is the discussions about the effects of the magnetic flutter terms
in parallel thermal conductions. The discussions of the model is also in this section. The last section is
summary.

2 Six-field two-fluid model
In this paper, the electromagnetic six-field two-fluid module under BOUT++ framework are used to simulate
the nonlinear evolution of ELMs in tokamak configuration. Starting from the Braginskii equations, within
the flute-reduction, our six-field model is constituted of 6 evolving equations based on Ref. [15] and [12],
which are written in drift ordering as
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Notice that the third term on the right hand side of Eq. (1) should be 2b× κ ·∇p, which has typos in Ref.
[12]. The Kelvin-Helmholtz term, which is expressed as 1

B0
b×∇⊥ϕ·∇ϖ0 in Eq. (1), is added into this model,

where ϖ0 = b0 · ∇ × V 0net and V 0net is the net equilibrium flow. In this model, all the variables can be
written as F = F0+F1, where F0 represents for the equilibrium part of arbitrary field quantity and F1 is the
perturbed component. Here A∥ is the perturbed parallel vector potential, b = b0 + b1 = b0 +∇A∥ × b0/B
is the unit vector of the total magnetic field, κ = b0 · ▽b0. The definition of pressure in this model is
Pj = Pj0 + pj1 = kBnjTj , pj1 = kB(nj0Tj1 + nj1Tj0 + nj1Tj1) for j species. VE = (b0 ×∇⊥Φ) /B0, and
Φ = Φ0 + ϕ is the total electric potential. Notice that V∥i, V∥e and ϖ only have perturbed part. Here
Ωi = ZieB/mi is the ion gyro frequency, ∇∥ = ∇∥0 − b0 ×∇A∥/B0, ∇⊥ = ∇− b∇∥ and ∇∥0 = b0 ·∇.

In this model, the pressure is assumed to be isotropic, so µ∥i∇2
∥0ϖ is the simple form of parallel viscosity

and perpendicular viscosity is neglected in our model. Here η is defined as the parallel Spitzer resistivity,
ηSP = 0.51× 1.03× 10−4ZilnΛT

−3/2Ω·m. Although hyper-resistivity ηH , also known as electron viscosity, is
generally negligibly small in collisional plasmas, it can be significant in a collisionless plasma. From nonlinear
simulations we have found that the P–B modes trigger magnetic reconnection, which drives the collapse of
the pedestal pressure. The ELM dynamics involves multi-scale interaction between low-n MHD peeling-
ballooning mode and electron scale turbulence. For practical simulation purpose, hyper-resistivity can be
used to set the finest resolved radial scale in simulations for facilitating magnetic reconnection [16]. Either
resistivity η or hyper-resistivity ηH can break the frozen-in flux constraint of ideal MHD theory. The electron
inertial is considered to be one of the mechanism to generate the self-consistent hyper-resistivity[17]. In
this paper, a non-self-consistent hyper-resistivity with SH = 1013, which is used in the following sections, is
available to get through the nonlinear crash of ELM and does not generate hyper-resistive ballooning modes.
The Spitzer-Härm parallel thermal conductivities are defined as κ∥i = 3.9niv

2
th,i/νi and κ∥e = 3.2nev

2
th,e/νe

, where vth,j is the thermal velocity for j particle and νj is the collision rate. Since in hot pedestal the
collisionality is low and this classic κ∥j is not valid to describe the weakly collisional plasmas, the free-
streaming expression κ′fs,j = αjκfs,j = αjnjvth,jqR0, is taken into account of kinetic effects. Here q is the
local safety factor and αj is the flux-limited coefficients, which will be discussed in Sec. 4.2. When αj = 1,
the free-streaming thermal conduction κ′fs,j means that the particle transport through the connection length
without collision. The kinetic effect is traditionally introduced by limiting the heat flux by a fraction of the
free streaming flux. Kinetic effects are typically included in fluid transport codes in the form of the harmonic
average ‘flux limiting’ expressions [18]. Ref. [19] indicates that in weakly collision regime, the flux-limited
heat flux shows the good approximation to the Fokker-Planck model. Therefore, in the edge simulation,
where bridges the low collision region to high collision one, the effective thermal conductivities are written
as

κeff,j =
κ∥jκ

′
fs,j

κ∥j + κ′fs,j
. (10)

Within this form, κeff,j is determined by κ∥j at the bottom of pedestal region where plasmas are in collisional
limit, and is dominant by κfs,j in long mean free path condition. The parallel diffusion terms should be
evaluated along the total magnetic field lines. In the most part of this paper, only the equilibrium magnetic
field lines are considered in the thermal conduction terms unless mentioned, meaning just ∇∥0

(
κ∥j∇∥0Tj

)
is

kept in Eq. (4) and (5). The effects of the magnetic flutter in thermal conduction will be discussed in Sec.
5. Notice that the perpendicular classical diffusivities are neglected here because in this typical P-B unstable
equilibrium, κ⊥ ≪ κ∥. Therefore, we believe that the radial diffusion will not affect the simulation results in
the linear phase and even in the early nonlinear phase, which we will discuss in this paper, but in the late
nonlinear phase, κ⊥ may be important to transport and turbulent processes on transport time scale.

The terms in two square brackets in Eq. (1) represent the gyro-viscous terms brought in by the finite
ion Larmor radius (FLR) effects. These terms are necessary for two-fluid models to keep the whole FLR
stabilizing effects when ion density gradient is steep and temperature is high [14, 20]. In this paper, the net
equilibrium zonal flow is set to be zero.

The Eqs. (1) - (9) are solved using the field aligned (flux) coordinate system (x, y, z) with the shift
radial derivatives [21]. In this coordinate system x is the radial direction and defined as x = (Ψ −
Ψaxis)/(Ψseparatrix − Ψaxis), which is the normalized poloidal flux and Ψ is the poloidal magnetic flux,
y is the parallel direction with a twisted-shift boundary condition and z is the binormal direction. Hereafter,
we use ΨN = x to represent the normalized magnetic flux for simplification.
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(a)

in BOUT++

from profiles

Te

Ti

(b)

(c)
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Figure 1: (a): The simulation domain of DIII-D ELMy H-mode discharge 144382. The region between two
black curves is the simulation domain in this paper. The red curve is the separatrix and the magenta curves
show the first wall of device. (b): The pressure profiles. (c): The density profiles. (d): The temperature
profiles in the simulations. In these three panels, the black curves are used in the simulation which is
interpolated from the experimental measured one in red. In panel (d), the solid curves are Te and the dashed
are Ti.

3 DIII-D equilibrium
In this paper, the equilibrium of DIII-D ELMy H-mode discharge No. 144382 is used for the simulations.
The discharge parameters are IP = 1.16MA, BT = 2.15T, average PNBI = 5.8MW, R = 1.78m, a = 0.58m,
κ = 1.72 and q95 = 4.0 [22]. The geometry of this discharge is lower single-null and the triangularity is low
(δ = 0.35). The ELM frequency at the stationary phase is fELM ∼ 150Hz. The constant normalized beta,
βN = 1.9 and steady density are held by input power feedback during the ELMs. The crash and recovery of
the small Type-I ELM at 2544.5ms were detected with multiple fast acquisition data chords in the pedestal,
scrape-off layer (SOL) and divertor. This ELM produced a drop in the plasma stored energy of 2% (17kJ
from a 0.8MJ plasma). The fast target heat flux measurements by infrared television (IRTV) at 12kHz are
also applied in this discharge to get the evolution of the heat flux on targets during the ELM cycle, so it is
convenient to validate our model.

Fig. 1 shows the domain and the profiles in the simulations. Panel (a) shows that the geometry of
discharge #144382 is a lower single-null magnetic configuration. The simulation domain is shown be the
region between two black curves, which covers the pedestal region and SOL from ΨN = 0.8 to Ψ = 1.2.
For computational efficiency, only one eighth of the torus is simulated in this work. The red curve shows
the separatrix and the peak pressure gradient is located at ΨN = 0.978. The first wall of the device are
drawn by the magenta curves. Panel (b) shows the comparison between the measured pressure profile from
experiments (black) and P0 used in the simulation (red). The experimental pressure profile is obtained from
the kinetic EFIT equilibrium [23]. After the interpolation in the simulation domain, the red curve is almost
the same as the black one. Because there is no information of pressure outside the separatrix from kinetic
EFIT equilibrium, the profile outside the separatrix is assumed to be zero gradient for pressure, densities and
temperatures. The parallel current is assumed to be zero outside the separatrix. Panel (c) shows the profile
of electron density ne and Panel (d) shows the electron temperature Te (solid curves) and ion temperature Ti
(dashed). The black curves represent the profile used in the simulation and the red are from the measurements
for these two panel. The profiles of ne and Te are interpolated from the experimental measurements and
Ti = P0/(kne) − Te, where P0 is exactly same as in g-file. The reason why the measured Ti is not used is
because in our model, the quasi-neutral condition ni = ne is assumed and there is no impurities considered
in the simulation domain during the evolution of ELMs. Panel (d) shows that the derived Ti is close to the
measurements. In this paper, the inner boundary conditions on x direction, where ΨN = 0.8, are ∂ni/∂ψ = 0,
∂Tj/∂ψ = 0, V∥i = 0, ϖ = 0, ▽2

⊥A∥ = 0, ∂2ϕ/∂2ψ = 0. For outer boundary, where ΨN = 1.2, ni = 0, Tj = 0,
V∥i = 0, ϖ = 0, ▽2

⊥A∥ = 0, ∂2ϕ/∂2ψ = 0. The domain of y directions inside the separatrix is twisted-shifted
periodic and z is periodic. The boundary conditions not mentioned here are all set to be Neumann.
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Figure 2: The linear growth rate of discharge #144382. The black-triangle curve which is overlapped by the
x-axis shows the ideal MHD results. The red-diamond curve shows the ideal MHD + Spitzer resistivity. The
magenta-triangle curve is the linear growth rate calculated by 6-field model. This figure shows that the ELM
of #144382 is consistent with resistive-ballooning in the model.

4 Simulation Results

4.1 Linear analysis
The linear instability of DIII-D ELMy H-mode discharge usually determines the characteristic of ELM [3].
The black-triangle curve in Fig. 2 shows the spectrum of the linear growth rate calculated with the ideal P-B
model in BOUT++. For all the toroidal mode number n, the linear growth rate γ = 0, which means that this
discharge is stable for ideal P-B mode. When Spitzer resistivity is considered, the instabilities appear when
n ≥ 20. Therefore, this discharge is unstable for resistive ballooning mode. The linear growth rate calculated
by 6-field model with all the non-ideal physics except thermal conductions are shown as the magenta-triangle
curve in Fig. 2. The growth rates at n > 50 are decreased due to the ion diamagnetic stabilizing effects.
The peak growth rate is around n = 50. The experimental measurements indicate that this is a small ELM
event. This small ELM event is very close to the ideal P-B instability threshold, therefore it is sensitive to
both the equilibrium profiles and physics models. First, the small error from the profile measurements leads
to the uncertainty to determine if unstable modes are ideal or resistive in the actual experiments. Second, in
this simulation, the pressure in the g-file has the large impurity contribution. However, in our physics model
Eqs. (1) - (6), only ion and electron species are kept and the impurity is dropped. From the equilibrium
profiles derived from measurements, if the total pressure is just the sum of ion and electron pressures, the
gradient of pressure is ∼ 10% larger than that in the g-file which takes the impurity profile into the account.

4.2 The effects of flux-limited coefficient αj

As mentioned in Sec. 2, the parallel thermal conduction plays as the key role of the heat transport in SOL.
The classical Spitzer-Härm model can significantly overestimated or underestimate particle and heat fluxes
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to the divertor targets [24, 25]. Therefore, the kinetic effects are necessary to describe the parallel thermal
conduction in SOL when ELMs occur. One of the simple method to implement the kinetic modification is the
flux-limited expression for the parallel thermal conduction. The flux-limited coefficient αj is used to address
the constant fraction of the limited heat flux to the free streaming value, where j ∈ {i, e} and the value
ranges in αj ∈ [0.03, 3] [18]. Ref. [19] compares the Landau-fluid non-local parallel electron heat transport
in low collisionality regime, which is represented by a sum of Lorentzians [26], to the flux-limited expression
and gets the consistent results. This comparison shows that the flux-limited coefficient with the range of
αe ∈ [0.15, 0.3] get at least 18 ∼ 40% larger amplitude of the parallel heat flux than the Landau-fluid or
Fokker-Planck model. Since the previous work only gave a wide range of the value, the flux-limited coefficient
αj is chosen as a calibration parameter in our model. However, for fluid simulations, the value of αj can
affect the amplitudes of the heat flux in SOL dramatically, so it is necessary to know the exact αj in the SOL
and divertor heat flux studies. In this subsection, the scan of αj is performed to find the appropriate value
for the DIII-D simulations. For simplicity, we assume αi = αe = αj , and set the range from the sheath limit

αSH
j ≃ 2.5

(
Ti

Te
+ Zi

) 1
2

(me

mi
)

1
2 ≃ 0.05 to the free-streaming limit αFS

j = 1 [18]. Besides these two limiting
values, αj = 0.1 inside the range is also chosen for the comparisons.

Fig. 3(a) shows the influence of αj on the total energy loss. The y-axis is the ELM size, which is defined
as the ratio of the energy loss due to an ELM to the total energy stored by plasma. For this discharge, the
total energy measured from experiment is 0.8MJ [22]. This figure shows the trend that the ELM size becomes
larger with larger flux-limited coefficient αj . Notice that the ELM size is calculated at t = 0.3ms and averaged
from t = 0.29 to 0.31ms since the energy loss is difficult to get saturated in this simulation. The reason will
be discussed in Sec. 4.3. This is because αj is correlated with the effective thermal conductivity κeff,j based
on Eq. (10), so larger αj also means larger diffusion along field lines, which are shown in Fig. 3(b). Here
the flux-limited thermal conduction dominates κeff,j through the whole simulation domain, including in the
SOL. The reason is that we assume that the density and temperature profiles in SOL to be zero-gradient,
which leads to lower collisionality. Therefore, the collisionality in SOL is still not large enough to make the
Spitzer-Härm thermal conductivity dominant. Although the thermal conduction can suppress large ELMs
which has been discussed in the circular geometry based on the simple five-field two fluid model[27], the
radial transport to SOL becomes more important for the nonlinear simulation on transport time scale in this
more complicated model and geometry. In order to understand the reason, the averaged radial energy fluxes
are calculated by the definition as

Qjr = < pjVr >=

⟨
njTj

(b0 ×∇Φ)r
B0

⟩
+

⟨
κ||j

b0 ×∇A∥

B0
·∇Tj

⟩
. (11)

The radial particle fluxes can be similarly defined as

Γir = < niVr >=

⟨
ni

(b0 ×∇Φ)r
B0

⟩
+

⟨
J∥

Zie
·
(
b0 ×∇A∥

B0

)
r

⟩
, (12)

In both definitions, the first term is derived from the radial component of E×B drift, or named as convective
component. The second term of Eq. (11) is the radial energy flux induced by the magnetic flutter in parallel
energy flux Q∥j , or called conductive component. The second term of Eq. (12) is from the radial component
of the perturbed magnetic field in parallel particle flux contribution. As shown in Panel (a) of Fig. 4, the
averaged profiles of the flux averaged electron radial energy fluxes after t = 200µs are plotted . The black
curves are derived with αj = 0.05, red αj = 0.1 and blue αj = 1.0. The solid curves mean the radial energy
flux induced by E×B drift and the solid curves represent the radial component of q∥j . This figure shows
that the radial energy flux is increased with αj for both the conductive and convective components from the
position of the peak pressure gradient to the separatrix. This behavior means that more energy is lost from
the pedestal region into the SOL with larger αj , and then goes along the field line to the divertor targets.
The panel (b) of Fig. 4 shows the αj scan for the ion radial energy fluxes and the result is similar to electron.
Therefore, the ELM size with larger αj becomes larger, as shown in Fig. 3. This result is different from the
conclusion in Ref. [27], because of two reasons. First, the ELM event is quite large in Ref. [27], and the
ELM size is above 10%, which is much larger than the value shown in Fig. 3(a). The thermal conductivities
play as the dominant role in that circular equilibrium and they can effectively suppress the perturbation in
the region of peak pressure gradient. In this DIII-D equilibrium, the ELM size is small and the dominant
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(a) (b)

Figure 3: (a) The ELM size of different flux-limited coefficients αj . Larger αj leads to larger ELM size. (b)
The radial profiles for thermal conductivity κ∥e at the start of the simulation. The purple curve is the thermal
conductivity calculated from Spitzer-Härm model without any modification of flux-limited expression. The
black is with the flux-limited coefficient αj = 0.05, the red is αj = 0.1 and blue α = 1.0.

radial transport is mainly E×B convection. The κ∥j suppressing effects are not as obvious as that in Ref.
[27]. Second, there is no open field lines in the circular geometry. The larger thermal conduction in SOL
means fast parallel transport of energy along field lines and it is effective to transport energy out of pedestal
due to magnetic flutter. While in circular case, this loss mechanism is absent without the open field lines.

In Fig. 4, compared with the convective and conductive components of the radial energy fluxes, it is found
that αj can affect the relative magnitude between them. For ions, the radial energy fluxes are dominated
by the convective term, and the conductive fluxes are two orders of magnitude smaller for all the tested
flux-limited coefficients. However, for electrons, when αj = 1.0, the conductive flux (the blue dashed curve)
becomes larger than the convective component (the blue solid curve), especially inside the separatrix. For
αj = 0.1 and 0.05, the convective fluxes are still dominant. The electron thermal conductivity is more
than one order of magnitude larger than the ion thermal conductivity, so the impact on electrons is more
sensitive than that on ions. The larger thermal conductivity means larger parallel energy flux, and larger
radial transport due to magnetic flutter, while the convective fluxes from the E×B drift is not affected. This
trend is shown by the dashed curves in both panels of Fig. 4. Therefore, when αj is large enough in this
DIII-D equilibrium, such as the free-streaming limit αj = 1.0 in this paper, the amplitude of the convective
flux can be exceeded by the conductive component.

The comparisons of the profiles at the outer mid-plane with different flux-limited coefficient αj are shown
in Fig. 5. From the three panels, it is easy to see that the Te profile is the most sensitive to αj , and Ti and
ne are less sensitive because the thermal conductivities play the most important role in these simulations.
In Panel (a) of Fig. 5, ne shows the similar profiles for different αj because the thermal conductions does
not affect the continuity equation and the small differences are mainly caused by the E×B drift. The ion
temperature Ti profiles in Panel (b) show some differences at the inner boundary. The large αj , or κeff∥j
prevents the perturbations from propagating to the inner side of the peak pressure gradient region. The
concentration of the perturbations inside the peak gradient region generates large turbulent transport, which
leads to more obvious Tj drop than the equilibrium profile. This conclusion is consistent with Ref. [27]. For
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Figure 4: Panel (a): The profiles of the radial electron energy fluxes with different αj at t = 267µs. Panel (b):
The profiles of the radial ion energy fluxes with different αj . The solid curves represent the radial energy fluxes
induced by E×B drift (convective component) and the dashed curves are induced by the radial component of
the parallel energy fluxes (conductive component). At the peak gradient region to the separatrix, the larger
αj shows the larger radial energy flux which means more energy flows out of the separatrix to SOL.
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(a) (b) (c)

Figure 5: (a): The electron density profiles at the outer mid-plane for different αj at t = 267µs. (b): The ion
temperature profiles. (c): The electron temperature profiles. The black curves are calculated with αj = 0.05,
the red curves are αj = 0.1 and blue are αj = 1.0. The dashed magenta curves means the initial profiles in
our simulations which are derived from experimental measurements.

electron temperature Te, all the perturbations can not propagate to the inner boundary because κeff∥e is much

larger than κeff∥i . In the pedestal foot region between the position of the peak pressure gradient position
and the separatrix, the profile is lower with larger αj , because the larger radial energy flux transports more
energy to the SOL which has been explained in the previous paragraph.

Fig. 6 shows the correlation between heat flux to divertor targets and the flux-limited coefficient αj . Panel
(a) shows the radial distribution of the heat fluxes and Panel (b) is the time evolution of the heat fluxes to
targets. In Panel (a), all of the heat fluxes are distributed outside the separatrix for both inner and outer
target. It is not surprising that the amplitude of the heat flux is correlated with the value of αj , since the
heat fluxes on targets are dominated by the parallel transport along the magnetic field line. The ratio of the
amplitudes of the heat fluxes to the outer target is q(αj = 1.0) : q(αj = 0.1) : q(αj = 0.05) = 6.26 : 1.38 : 1.00,
and at the inner target the ratio is q(αj = 1.0) : q(αj = 0.1) : q(αj = 0.05) = 6.31 : 2.36 : 1.00. A factor of
20 αj variation leads to about 6 times difference in heat flux on both targets. The width of the heat fluxes is
also expanded more widely with larger αj , because the radial energy fluxes are still larger near the separatrix.

After all, the value of αj in our model is very important to describe the amplitudes of the heat fluxes
towards targets and it is necessary to calibrate αj with the experiments. For this DIII-D discharge #144382,
the ELM size was measured as 2% of the total stored plasma energy. From Fig. 3, the case of the sheath limit
value αj = 0.05 shows the closest result. For the heat flux measurement, the peak value at the outer target
after 200µs of the ELM burst is around 300W/cm2. The closest simulation result is also the sheath limit case
with the peak value ∼ 500W/cm2. As a conclusion, from this simulation of the heat flux to divertor targets
with the absence of the neutral particles and the radiation effects, the sheath limited flux-limited parallel
thermal conduction is the most acceptable one. From now on in this paper, αj = 0.05 is used for all the
simulations.

4.3 Validations with measurements and discussions
As discussed in Sec. 4.2, the sheath model of flux-limited thermal conduction αj = 0.05 are used to simulate
the sheath effects of the targets. Within this model the total energy loss is obtained as 18kJ which is very
close to the measured value of 17kJ. This conclusion is different from Ref. [28] which shows that the free-
streaming model of parallel thermal conduction is consistent with the kinetic simulations for Type-I ELMs.
The most important reason is that we simulate the self-consistent 3D parallel and perpendicular transport
with ELM dynamics, including the E×B convection and magnetic flutter, while in Ref. [28], only one spatial
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(a) (b)

Figure 6: (a): The comparison of the radial distribution of heat fluxes to divertor targets 200µs after the
burst of ELM with different αj . (b): The time evolution of the heat fluxes to targets. The dashed curves
are for the inner target and the solid curves are for outer target. For both panels, black curves represent the
case αj = 0.05, red are αj = 0.1 and blue are αj = 1.0. The larger αj leads to larger heat flux to targets.

dimension in the parallel direction is simulated and the cross-field transport rate is simply modeled by the
sound speed at pedestal divided by the characteristic length of parallel direction. As discussed in Sec. 4.2,
the radial transport induced by both E×B and magnetic flutter during ELM is closely correlated with αj .
For larger αj , the more total pedestal energy is transported into the SOL by ELMs, which increases the heat
flux amplitude. The second reason is that the equilibrium in Ref. [28] derived from JET shows quite high
temperature Tped = 1500eV, while this DIII-D discharge has Tped ≃ 200eV. Therefore, the lower temperature,
which also means the higher collisionality, leads to the larger deviation from the free-streaming transport.

Fig. 7 shows the evolution of the electron density profiles ne at outer mid-plane after the start of ELM
[22]. Panel (a) is the measured profiles at the start of the ELM event, 0.29ms and 0.35ms after the ELM
crash. Panel (b) is the simulated ne profiles at the same time interval after the start of ELM event. In both
panels, the black curves represent the initial profile at the start of the ELM. The magenta curves are for
the ne at 0.29ms after the ELM start and red are at 0.35ms. The simulation shows the similar crash range
that the profile drops to the inner boundary ΨN = 0.8 or ρN = 0.89. The difference from the measurement
is mostly because that the density profile is measured at 3007.1ms, which is different from the equilibrium
reconstructed at 2544.5ms, the initial ne0 is not exactly the same as the simulation.

Fig. 8 shows the evolution of the profiles of the heat flux to the lower target during the ELM event
for the simulated discharge [22]. Panel (a) is derived by the fast target heat flux measurements of 12kHz
IRTV. Panel (b) is obtained from the six-field two-fluid model described in previous sections. The magenta
curves for both panels are the heat flux profiles at the start of ELM. The black curves are at 200µs after the
ELM burst, the red are at 280µs and the blue at 370µs. At the outer target, the simulated peak heat fluxes
show the similar expansion to the measurements, from the strike point at R ≃ 1.56m to R ≃ 1.65m. The
increasing progress of the peak heat flux is also shown in the simulation. The peak value keeps growing from
the magenta curves to black, red and blue in both panels. The magenta curve in Panel (b) is too small to
be seen because there is no energy flow into the SOL at the beginning of the simulation. The out-moving
of the peak position at outer target is observed in our model. In panel (a), the peak of the heat flux is
moved to R ≃ 1.62m for the blue curve from the strike point at R ≃ 1.56m for the black and magenta
curves. In Panel (b) this out-moving effect is not so obvious as Panel (a) because the magnetic flutter terms
in parallel thermal conductions, which are able to broaden the heat flux distribution, is not fully considered
in this simulation yet. The effects about the magnetic flutter terms will be shown in Sec. 5. The present
model leads to ∼ 40% narrower of the width of the heat flux to outer target than the measurements. The
amplitudes of the simulated heat fluxes in Fig. 8(b) are as twice as the measured values because there are
only ions and electrons in our simulation. The low-temperature neutrals and impurities near the targets are
not taken into consideration in this model, which can effectively dissipate the incoming energy flow through
radiation and recombination. Therefore, the heat fluxes simulated here is the amplitude towards the targets
and they should be much higher than the measurements. The amplitudes of the heat fluxes in the private
flux region between the inner and outer separatrix in Panel (a) are due to reflections in the IRTV, which have
been significantly reduced in the 2013 DIII-D campaign. There should be very low heat loads here, which is
correctly simulated in Panel (b). The reason why the simulated heat fluxes at inner target show the similar
amplitudes to measurements is that the reflection influences the precision for small fluxes, so the peaks at
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(a) (b)

Figure 7: (a) The measured evolution of the density profiles at outer mid-plane during the crash of ELM.
(b) The simulated evolution of the density profiles at the same time as Panel (a). The crash region of the
density is well repeated by the simulation.
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(a) (b)

Figure 8: (a) The measured evolution of the heat flux profiles on lower targets during the burst of ELM
event of DIII-D discharge #144382. (b) The evolution of the heat flux profiles obtained from BOUT++
simulation. The simulation derives the similar heat flux expansion on targets. The amplitudes are larger
than the measurements because there are no neutrals and impurities in the model.
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Figure 9: The evolution of the toroidal structure of Te1 at outer mid-plane during the burst of ELM. The
four slices show the structures at t = 10, 50, 60 and 100µs after the start of the simulation. The evolution of
the linear filaments to nonlinear filaments are represented. The peak amplitudes here are normalized to 1.

inner target in Panel (a) should be smaller. Another possible reason is that the simulated heat flux at inner
target is underestimated because the magnetic flutter terms in thermal conduction are not considered in
Panel (b) which are able to increase the inner heat flux.

One possible reason that the simulated energy loss is always larger than the measured value is the lack of
energy and particle input in the simulation domain. As mentioned in Sec. 3, the inner boundary condition
applied in the simulation sets no flux flowing into the pedestal region, so there is no additional source in this
model. However, in the experiments, the auxiliary heating, such as NBI and RF, is necessary to maintain
H-mode. This indicates that the additional particle and energy source should be considered in the ELM
simulations. One simple method to consider the external source is to add the particle and energy flux via the
inner boundary condition. This flux-driven boundary condition is able to prevent the fluctuations propagating
into the inner boundary. When the fluctuations grow to the inner boundary with the zero-flux boundary
condition, the energy stored near the boundary will be lost outwards to the separatrix and no mechanism
could stop the lost. Therefore, the total energy loss will keep growing slowly and be very difficult to get
saturated. The external source at the inner boundary might be able to constraint the slowly increasing of
the total energy loss and obtain the smaller simulated energy loss. Another possible effect of the flux-driven
boundary condition is to solve the issue that the simulated ELM bursts faster than the experiments. As
shown in Fig. 7 and 8, both the crash of ne and the increase of heat flux before 200µs are much faster than
the measurements. The particle flux-driven boundary can bring additional particles into pedestal and may
slow down the crash of ne. Similarly, the energy flux-driven boundary may decrease the energy loss and slow
down the heat flux growing at the beginning of the ELM burst near targets. The implementation of the
flux-driven boundary condition will be our next-step work.

The evolution of the toroidal structures of perturbed electron temperature Te1 at outer mid-plane are
shown in Fig. 9. As mentioned in the previous section, one eighth of the whole torus is plotted here. The
first slice is the initial linear filamentary structure at the very beginning of the simulation, t = 10µs. All
the filaments are inside the separatrix. In the simulated region, the mode number in the simulated domain
is 3. The second and third slices show the inverse cascade of the toroidal structure and the mode number
is changed from 3 to 2 due to the nonlinear wave-wave interactions. The fourth slice shows the nonlinear
filaments of the ELM at t = 100µs. At this time, the positive perturbations, shown as the red color, moves
outwards and located outside the separatrix. At this time, the real ELM filaments move into the SOL and
the energy stored in the filaments is transported along the magnetic field line to the divertor targets.

Figure 10(a) shows the time evolution of the toroidal mode structures of the parallel heat fluxes in the
simulated domain at inner plate (top panel), outer plate (middle panel) and outer mid-plane (bottom panel).
At the beginning of the simulation, the toroidal mode number in the simulated domain is set to be 24, as the
dominant mode at the outer mid-plane and the other modes, from 0 up to 128 are set to be sub-dominant.
Notice that the simulated domain is only 1/8 of the whole torus, thus the toroidal mode number labeled in
Panel (a) is divided by 8. The time evolution of the kinetic energy at different toroidal mode n is plotted in
Panel (b) of Fig. 10, and magnetic energy in Panel (c). Both kinetic and magnetic energy show the similar
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Figure 10: (a) The evolution of the toroidal mode structure of heat fluxes at inner plate (top), outer plate
(middle) and outer mid-plane (bottom). The peak amplitudes are normalized to 1 for each time. (b) The
time evolution of kinetic energy with different toroidal mode number n in the simulated domain. (c) The
time evolution of magnetic energy with different toroidal mode number n.

Figure 11: The heat flux on the toroidal plane at t = 400µs. The left panel is the heat flux distribution on
the inner target. The middle one is at the out target and the left one is at outer mid-plane. The heat flux
on targets shows the filamentary structure clearly. The positive peak amplitudes here are normalized to 1.

trends on different toroidal mode number. At the linear phase, the harmonics are excited, so the dominant
mode is 48 in the simulated domain, as shown in Panel (a). In Panel (b) and (c), the n = 48 is the dominant
mode which is consistent with Panel (a). Compared to Fig. 2, this dominant mode is very close to the most
unstable mode n = 50 from the linear analysis. This difference of the toroidal mode number is caused by the
different toroidal segments which we chose for the linear and nonlinear simulations. During this time period,
the perturbations are confined at the closed field line region and there is no heat flux arriving the targets.
At t = 50 ∼ 60µs, the ELM crashes and the simulated toroidal mode number 1 becomes the dominant mode
for a very short period and then changes to 3 (or n = 24 for the toroidal mode number) due to cascade.
During this period, the energy starts to transport out of the separatrix. After t ∼ 70µs, the inverse cascade
precess of electric potential becomes more important and the dominant mode number is changed to 1 and
then to 0. This process indicates that the nonlinear wave-wave interactions are more important during the
ELM crash than the linear behavior [10]. At this time, thermal energy is transported along the magnetic
field lines towards two divertor targets, but not reached yet. At the turbulence phase after t ∼ 200µs, the
zonal component is dominant and all the other modes are at the similar amplitude. The heat flux reached
the outer target at t ∼ 100µs and ∼ 130µs at inner mid-plane, both with the dominant mode number 1. This
shows that the burst of ELM mainly carries the energy to the divertor plates with the simulated toroidal
mode number1 other than the dominant zonal component out of the separatrix.

Fig. 11 shows the simulated 2D heat flux distributions on the toroidal plane at t = 400µs. The x axises
are the radial coordinate and the y axises are the toroidal direction. Compared to the distributions in Fig.
9 and which is plotted before 100µs, the mode number here is changed to 0 according to Fig. 10 due to the
continuing inverse cascade. The heat flux towards inner plate is plotted at the left panel, and the middle
panel is at outer target. The right panel is the heat flux distribution at outer mid-plane. In the left panel
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Figure 12: The time evolution of the growth of the pressure perturbation. The black curves are without the
magnetic flutter terms in Eq. (13) and the red are with flutter terms. The magnetic flutter terms lead to
larger energy loss, but do not affect the growth of the perturbation at linear phase.

the filamentary structures of the heat flux are shown as the yellow color on the orange background outside
the inner separatrix where R < 1.20m. These footprint structures are generated due to ELM magnetic
perturbations since the heat fluxes are mainly along the total magnetic field lines. At the outer target, the
filamentary structures are not so obvious as that at inner target, because the strong ELM perturbations at
LFS generate large radial ExB convection which dominates transport due to the magnetic flutter. Thus, the
heat fluxes along the field lines towards target are not able to show the filamentary structures clearly. The
heat flux distribution at outer mid-plane in the left panel is mainly inside the separatrix where Rsep = 2.27m.
This figure intuitively tells that most of the heat flux is confined inside the separatrix, only a small part (∼ 2%
as in Fig. 3(a) ) is blown out by ELMs into the SOL. The heat flux in the SOL is transported along field
lines towards the divertor targets and distributed over an area near the strike point, but most in the SOL.
The amplitude of heat flux in private flux region is relatively very small.

5 Effects of magnetic flutter in parallel thermal conduction
As discussed in Ref. [29], the magnetic flutter has strong impact on the distribution of heat fluxes towards
divertor targets. Here we try to use our model to understand this effect during the ELM crash event. As
mentioned in Sec. 2, only the equilibrium parallel operator is kept in the calculations of thermal conduction
in the previous simulations. If all the terms are kept, then the thermal conduction in Eq. (4) and (5) can be
written as

∇∥
(
κ∥j∇∥Tj

)
= ∇∥0

(
κ∥j∇∥0Tj1

)
+b0 ×∇ψ · ∇

(
κ∥j∇∥0Tj1

)
+∇∥0

(
κ∥jb0 ×∇ψ · ∇Tj

)
+b0 ×∇ψ · ∇

(
κ∥jb0 ×∇ψ · ∇Tj

)
. (13)

The second, third and fourth terms are generated due to the direction of perturbed magnetic field. Although
this perturbation is considered in all the other terms in Eq. (1) - (5), it is neglected in the parallel thermal
conduction in the previous work because of concerns about numerical pollution due to the extreme anisotropy
between parallel (to the magnetic field) and perpendicular directions (κ∥/κ⊥ ∼ 1010 in fusion plasmas) [16].
Here with the appropriate differential scheme in the operator, we get the ability to study the effects of the
magnetic flutter in parallel thermal conduction.

Through the nonlinear simulations, the magnetic flutter terms are found to increase the total energy
loss, or ELM size by 30%. The growing of the pressure fluctuation is plotted in Fig. 12. Compared with
the two cases, both the black and red curves are almost overlapped at the linear phase, especially during
t ∼ 0.04− 0.06ms, so the introduction of the magnetic flutter terms in parallel thermal conduction does not
affect the linear growth rate. After t ∼ 0.06ms, the fluctuation with flutter becomes larger than the case
without it, and this leads to the larger energy loss. The fluctuation with flutter reaches its saturation value at
t ∼ 0.1ms and is much later at t ∼ 0.15ms if without the magnetic flutter. During this period, the difference
of the energy loss between two cases is enlarged since the larger fluctuations makes more energy to get out
of the pedestal region.

The comparisons of the profiles at t = 267µs affected by the magnetic flutter terms are plotted in Fig.
13. The comparison of the ne profiles are plotted in Panel (a), Ti in Panel (b) and Tein Panel (c). The black
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(a) (b) (c)

Figure 13: (a): The density profiles with and without magnetic flutter. (b): The ion temperature profiles.
(c): The electron temperature profiles. The black curves are without the magnetic flutter terms and the
red are with flutter. The magenta dashed curves means the equilibrium profile. The dashed magenta curves
means the initial profiles in our simulations which are derived from experimental measurements.

curves are for the previous simulation without magnetic flutter terms in parallel thermal conductions and
the red curves are with flutter. The dashed magenta curves means the equilibrium profiles at the beginning
of the simulation. It is obvious that Te profile is the most affected by the flutter terms since κeff,e is much
larger than κeff,i, while ne and Ti are not dramatically changed by flutter terms. The introduction of the
magnetic flutter terms increases the radial energy transport, which leads to the relaxation of the gradient
of Te profile. Therefore, in Panel (c), the profile with flutter is much broader than the without case at the
pedestal region.

The magnetic flutter terms in thermal conduction are able to broaden the radial distribution of parallel
heat flux to the targets. Fig. 14 shows the comparison of the heat flux towards the targets with and without
magnetic flutter at 200µs after the start of the ELM crash. The red curves are for the case with flutter terms
and black are for the case without it. In Panel (a), the red curve at outer target is wider than the black curve.
For the case with flutter, although the peak value at strike point is higher, the heat flux drops suddenly from
∼ 1000W/cm2 to ∼ 400W/cm2 and stay around this value from R ∼ 1.58m to 1.68m. The amplitude of the
red curve is smaller than the black at R ∼ 1.57 − 1.62m, and becomes larger from R ∼ 1.62m. Therefore,
we can say that the heat flux profile is really broadened over the outer target due to the enhancement of
the radial transport induced by the magnetic flutter, so does the heat flux profile to inner target. Panel (b)
is about the time evolution of the heat fluxes towards both inner and outer targets. The dashed curves are
for the inner target and the solid are for the outer one. The amplitudes of the heat fluxes in Panel (b) are
measured at R = 1.62m for outer target and R = 1.24m at inner target, where ΨN = 1.025. Both the red
curves start to increase earlier than the black curves since the magnetic flutter leads to more energy loss
from the beginning of the ELM crash. This figure shows that the difference of the amplitude between two
red curves is much smaller than the black, which represents that the energy loss at inner target is enlarged
by the magnetic flutter. The introduction of the magnetic flutter terms enhances the total parallel thermal
conduction in SOL, and the increase of the energy loss is shown as the two routes toward the targets: both
radial profiles are broadened and heat flux level amplified.

Figure 15 shows the comparison of the wetted length λw between cases with and without flutter from the
burst of ELM until the nonlinear saturation phase towards the inner and outer divertor. The wetted length
is defined as[30]:

λw =

´
q(t)dA

2πRqmax(t)
, (14)
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(a) (b)

Figure 14: (a): The comparison of the radial distribution of heat fluxes to divertor targets at 200µs after the
beginning of the simulation with and without magnetic flutter terms. (b): The time evolution of the heat
fluxes to targets. The dashed curves are for the inner target and the solid curves are for outer target. For
both panels, black curves represent the case without magnetic flutter terms and red are with the terms. The
magnetic flutter terms are able to enlarge the amplitude of the heat flux and widen the width.
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Figure 15: The time evolution of the wetted length λw at inner and outer boundary. The black curve is λw
without magnetic flutter terms at outer target, and the red is the same case at inner target. The green and
blue curves represent λw with flutter at outer and inner target respectively. The magnetic flutter terms are
able to broaden λw especially at inner target.

where q(t) and qmax(t) are the local and maximum of the heat fluxes towards targets. The time averaged
λw after t = 0.1ms without flutter terms is 0.067m at outer target and 0.012 at inner target, while this value
is increased by magnetic flutter terms to 0.071m at outer target and 0.018m at inner target. The magnetic
flutter broadens the width of the heat fluxes, especially at inner target. Therefore, the averaged wetted length
are broadened by magnetic flutter by 50% at inner target and 6% at out target. This result is consistent
with the analysis of Fig. 14(a). Compared to the measurements in Fig. 8(a), the heat flux distribution with
magnetic flutter shows more similar peak position at R ∼ 1.65m and more similar expansion from R ∼ 1.56
to 1.70m on the outer target. For outer target, if without flutter, λw is broadened by 2.7 times due to the
burst of ELM according to the amplitudes at the first highest peak at t 60µs and the valley before this time.
If with flutter, λw is broadened by 1.6 times at t 70µs. Compared with the results of JOREK code in Fig.
4 of Ref. [30], our simulations in Fig. 14(b) and Fig. 15 show high frequency fluctuation because of multi
toroidal modes kept in our model. The turbulence leads to such fluctuation.

The 2D distribution of the heat flux near the X-point on the poloidal cross section is shown in Fig. 16.
In the both panels, the red color means the heat flux flowing in the clockwise direction on the poloidal
cross section and the blue means counter-clockwise. The heat fluxes inside the separatrix are dominated by
turbulent transport, and there is no definite poloidal direction. The E×B convection is important at the
pedestal region and leads to such turbulent structure. The situation is opposite in the SOL, particularly in
divertor region. The heat flux has clear directions and is towards the target near both inner and outer divertor
since the parallel transport is dominant when outside the separatrix. The ELM bursts the energy out of the
last closed surface at the outer mid-plane and the flux is transported along the field lines in the SOL, from
the mid-plane at LFS to both targets. Compared to the inner target, there are several lobe structures near
the outer target around the X-point. The influence of the magnetic flutter in thermal conduction is shown in
the black circles in both panels. The lobe structures are broadened and elongated for the case with flutter.
As Eq. (13) shows, the magnetic flutter in thermal conduction mainly acts on the direction perpendicular
to the equilibrium magnetic field line, thus both radial and poloidal transport are enhanced. The elongation
of the lobe structures near outer target is related with the broadening of the heat flux distribution towards
target, as shown by the red curve in Fig. 14 (a). The second peak from the strike point at R ∼ 1.65m is due
to the long enough lobe structure which reaches the outer target.

6 Summary
In order to study the distribution and evolution of the transient heat flux during ELMy H-mode in divertor
geometry in tokamaks, the electromagnetic six-field two-fluid model is revised. The nonideal physics effects,
such as Spitzer resistivity, ion FLR effects, parallel thermal conductions, hyper-resistivity, etc., are taken into
the consideration. The DIII-D ELMy H-mode discharge #144382 is used as the lower single-null equilibrium
of the simulation. In this discharge, a small Type-I ELM at 2544.5ms was detected with multiple fast
acquisition data chords in the pedestal, SOL and divertor. The heat flux profiles were also detected by the
fast target heat flux measurements by IRTV at 12kHz. The linear analysis shows that this ELM is ideal
MHD stable and destabilized by resistive-ballooning mode.
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(a) (b)

Figure 16: The poloidal contour plots of the heat flux near X-point and divertor. Panel (a): The heat flux
without magnetic flutter terms in the parallel thermal conduction. Panel (b): The heat flux with magnetic
flutter. The comparison of the poloidal structures of heat flux shown in the circles shows that the lobe
structure near X-point is longer and wider when flutter is considered.

The flux-limited expression plays as the kinetic modification from the classical Spitzer-Härm-Braginskii
model of the parallel thermal conduction in SOL. Based on the precious research on flux limited coefficient
αj , it is set as a calibration parameter in our model. In order to validate with the measurements, three
models of αj are studied here. The larger αj leads to larger conductive radial energy fluxes through both ion
and electron channels. Therefore, the enlarged radial energy fluxes leads to the increase of the total ELM
size since more energy is transported out of the separatrix and lost towards divertor targets in SOL. The 20
times difference of the αj value of free-streaming from sheath limit model results in more than 6 times of
the amplitudes of the heat fluxes towards both inner and outer targets, and the widths of the fluxes are also
expanded. Since most of the energy loss is from the electron channel, the Te profile becomes broader with
larger αj . To validate with the experimental measurements of DIII-D, the six-field two-fluid model with the
sheath limit model of parallel thermal conduction are used, as it is able to get the closest total energy loss
18kJ during the burst of ELM to the measured value 17kJ. The evolution of the density profile during the
burst of ELM is reproduced by this model. The collapse width and depth of ne are well simulated at different
time step. The increasing process of the profiles of the heat flux at divertor targets measured by IRTV is
also simulated by this model. The simulated heat flux width is ∼ 40% narrower than the measurements
and the amplitude is around two times larger because there are no recombination and radiation effects of
neutrals near the targets considered in this model. The evolution of the heat fluxes towards targets is much
faster in the simulation than the measurements because the lack of the auxiliary heating source in the model,
which is able to constrain the speed of the energy loss at pedestal region and can be simulated by flux-driven
boundary conditions. The implementation and coupling of the neutral module and the flux-driven boundary
conditions will be our future work.

Magnetic flutter combined with parallel thermal conduction is found to be able to increase the total energy
loss by ∼ 33% since the magnetic flutter terms provide the additional conductive radial heat transport. Thus
the profiles get more flatten with magnetic flutter, especially for Te, which also indicates more energy loss.
The larger energy loss leads to larger amplitudes of the heat fluxes towards both inner and outer divertor
targets. The heat flux profile at both inner and outer target is broadened obviously by magnetic flutter.
The averaged wetted length during the saturation phase at inner boundary is increased by 50% by magnetic
flutter and 6% at outer target. The lobe structures near X-point at LFS are both broadened and elongated
due to the magnetic flutter.
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