
LLNL-CONF-665779

Parallel Strategies for Solving Large Unit
Commitment Problems in the California
ISO Planning Model

G. Cong, C. Meyers, D. Rajan, T. Parriani

December 29, 2014

IEEE International Parallel and Distributed Processing
Symposium
Hyderabad, India
May 25, 2015 through May 29, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Parallel Strategies for Solving Large Unit
Commitment Problems in the California ISO

Planning Model
Guojing Cong

IBM TJ Watson Research Center
Yorktown Heights, NY USA

Carol Meyers and Deepak Rajan
Lawrence Livermore National Laboratory

Livermore, CA USA

Tiziano Parriani
University of Bologna and OPTIT srl

Bologna, Italy

Abstract—We present our study of solving large unit commit-
ment problems in the California ISO planning model. The model
calculates hourly day-ahead unit commitments, and all instances
need to be solved close to optimality within an hour. It takes
CPLEX, the current state-of-the-art solver, up to 5 and 10 hours
to solve the deterministic instances and the 5-scenario stochastic
instances, respectively. The 20-scenario instances are practically
unsolvable as no feasible solutions are found after 24 hours.

We consider improving solution times through distributed-
memory parallelization. Prior techniques such as distributed
branch-and-bound perform poorly for our problems. We propose
coordinated concurrent search to solve the deterministic instances
on a cluster. For stochastic instances, we propose a parallelization
strategy that combines scenario-based decomposition and asyn-
chronous solves guided by intermediate results from progressive
hedging. Our decomposition creates linear subproblems instead
of quadratic ones that are oftentimes intractable.

On a cluster of 16 IBM Power7 machines, our parallel
implementation achieves on average 12.7 and 22 times speedup
for the deterministic instances and the 5-scenario stochastic
instances, respectively. All problems are solved within an hour to
near optimality including the previously unsolvable 20-scenario
stochastic instances.

Index terms— integer linear programming, optimization meth-
ods, parallel algorithms, power generation planning

I. INTRODUCTION

The state of California plans to produce 33% of its electric
energy from renewable resources by the year 2020 [1]. The
increased penetration of intermittent renewable generation will
substantially increase the variability and uncertainty in the gen-
eration resources available to system operators. A stochastic
day-ahead unit commitment optimization model [2] is used
by the California Independent System Operator (CAISO) to
assess the impact of such high renewable penetrations. For
CAISO and other power system operators, fast solution to the
unit commitment problems is critical to producing the least
cost energy while meeting reliability needs [3], [4].

The stochastic model employs at its core a deterministic
unit commitment planning model developed by CAISO [5].
The deterministic model is based on a description of the
Western Energy Coordinating Council grid and its operational
specifications. It includes more than 2,400 generating units
over 42 zones in 11 states with 120 transmission lines between
zones. Wind and solar inputs are included at a zonal level.
The model calculates hourly day-ahead unit commitments for

all generating units, with integer commitments for generation
units in California and fractional commitments elsewhere. As a
result, this deterministic mixed-integer program (MIP) is fairly
large, with roughly 400,000 constraints, 600,000 continuous
variables, 10,000 integer variables, and 2,000 binaries.

The stochastic model is formulated as a two-stage mixed-
integer stochastic optimization extension of the deterministic
model. The scenarios are defined by different renewable gener-
ation trajectories. Unit commitments for long-start generators
are treated as first-stage decisions, and economic dispatch
values and unit commitments for short-start generators are
treated as second-stage decisions. Variables and constraints in
the stochastic version of the CAISO model are roughly linear
multiples of the corresponding values in the deterministic
model, scaling with the number of scenarios used. The com-
putation for such stochastic models is prohibitive for standard
MIP solvers.

CPLEX [6] is a state-of-the-art MIP solver on shared-
memory machines. For all stochastic problem instances and
many of the deterministic instances in the California Energy
Commission study, CPLEX does not find solutions within the
0.05% optimality gap required by CAISO in under an hour
[2]. It takes up to 10 hours to solve the stochastic instances
with only 5 scenarios. No solutions are found for instances
with 20 or more scenarios after 24 hours on an IBM Power
755 (P755). They are practically unsolvable.

We improve the solution times for these problems through
distributed-memory parallelization. Our target system is a clus-
ter of 16 P755 machines. P755 is a symmetric multiprocessor
(SMP) with 4 chips and 8 cores per chip. Each core runs at
3.61GHz and is capable of 4-way simultaneous multithreading
(SMT). Each core has 32KB L1, 256KB L2, and 4MB L3
caches. The network used is 10Gb/s ethernet.

Our experiment shows that straightforward parallelization
on a cluster, i.e., distributed branch-and-bound (B&B), barely
improves the solution times. New methodologies are needed
for solving large deterministic problems and stochastic prob-
lems with many scenarios.

We first propose coordinated concurrent search to solve the
deterministic problems. Instead of parallelizing the B&B tree
search, our implementation conducts B&B search concurrently
on each machine. A different search strategy is employed for

each search. We coordinate the searches by sharing bounds and
feasible solutions found by the solvers. Our implementation
achieves on average 12.7 times speedup, and all deterministic
models are solved within an hour.

The stochastic problems in the CAISO model are so large
that even the linear programming (LP) relaxations become
hard to solve. Parallelization strategies including coordinated
concurrent search that require solutions to the LP relaxation
of the original problem are not effective. We adopt an ap-
proach similar to progressive hedging [7] that decomposes
the problem by scenario into subproblems. The smaller sub-
problems are solved in parallel. While progressive hedging
rarely converges for large problems, our approach does not
depend on full convergence for a solution. Instead, we use
the intermediate results from each hedging iteration to guide
multiple asynchronous, parallel solves on a series of smaller,
derived problems. On average our implementation achieves
22 times speedup for the 5-scenario stochastic instances. The
previously unsolved 20-scenario instances are solved within
an hour.

The rest of the paper is organized as follows. Section II
introduces MIP and the performance of CPLEX with our
problems, and Section III presents our parallelization strategies
for deterministic models. Section IV introduces stochastic op-
timization and their performance challenges for MIP solvers,
and Section V presents our parallel, guided solve technique.
Section VI concludes with future work.

II. MIP AND CPLEX PERFORMANCE

MIPs are NP-hard, and they are typically solved with the
B&B search scheme. B&B enumerates candidate solutions that
form a rooted tree, and the branches in the tree represent the
subsets of the solution set. B&B maintains an upper bound and
a lower bound, and prunes the tree nodes outside the bounds
to reduce the potentially huge search space. When the two
bounds converge within a tolerance (optimality gap) or when
there are no more nodes to explore, B&B terminates.

A variety of techniques are used to speed up B&B. Some
strategies judiciously partition the feasible space and choose
the node to be solved next (see [8]). Others strengthen the
relaxations with extra constraints (see [9]). Automated heuris-
tic schemes such as rounding methods and diving methods
help obtain better feasible solutions (see [10]). Bixby et al.
have shown that 100x improvement in solution times can
be achieved with these techniques [11]. Modern solvers also
employ shared-memory parallelism to speed up the search
process.

CPLEX is arguably the best industry-standard MIP solver
[6]. Figure 1 shows its performance on P755 for 6 determin-
istic instances (M1–M6) and 6 stochastic instances (S1–S6).
The horizontal line is at 1 hour (3600 seconds). Only two
of the twelve instances, M3 and M5, are solved within an
hour. Slightly more than 1 hour is needed for M2 and M6.
It takes CPLEX significantly longer to solve M1 and M4.
The stochastic instances are much harder to solve than the

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

M1 M2 M3 M4 M5 M6 S1 S2 S3 S4 S5 S6

ti
m

e
 (

s
e

c
o

n
d

s
)

input

time

Figure 1. CPLEX performance. Optimality gap is 0.05%

deterministic ones. For example, CPLEX spends more than
10 hours on S5 and S6.

CPLEX by default employs one thread per core on the
machine. A total of 32 out of 128 threads are used on
P755. Naturally we want to investigate whether increasing
the number of threads will reduce the solution times. The
performance of CPLEX for the deterministic instances, with
8, 16, 32, 64, and 128 threads, is shown in Figure 2.

 2000

 4000

 8000

 16000

 8 16 32 64 128

T
im

e
 (

s
e

c
o

n
d

s
)

threads

 Performance on Power7 with .05% tolerance

M1
M2
M3
M4
M5
M6

Figure 2. Scaling of CPLEX: more threads do not reduce solution times

In Figure 2, the best performance is not achieved with 32
threads for most instances. Interestingly, better performance
is observed with 16 threads but not with 64 or more threads
for M1, M4, and M5. Furthermore, the scaling is quite erratic
with no clear correlation between the execution time and the
number of threads1. Koch et al. [13] observed similar behavior
with another popular MIP solver Gurobi [14] for instances

1The threads in this experiment are bound to the CPUs in a fashion that
keeps them as far away from each other as possible. See [12] for the discussion
of thread binding on P755. Erratic scaling is observed with other binding
modes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 20 40 60 80 100 120 140 160

n
u

m
b

e
r

o
f

n
o

d
e

s

progress

 available parallelism

M1
M2
M3
M4

Figure 3. Available parallelism in the B&B search tree for 4 instances
represented by the number of unexplored nodes. The “progress” axis shows
virtual time reported through CPLEX

from MIPLIB [15]. This behavior seems counter-intuitive,
since sufficient work exists that can be parallelized, as shown
in Figure 3.

Figure 3 tracks the number of nodes in the B&B search
tree waiting to be explored as the search progresses. For the
four instances presented, M1, M2, M3, and M4, the number
of nodes in the B&B tree quickly increases to many thousands
and more. These nodes can be processed in parallel.

Poor scaling of CPLEX for the CAISO problems (and
for MIPs in general) is due mainly to two factors. First,
B&B with more threads not only explores existing nodes
faster but also generates more nodes when the search space
is huge. It is possible for parallel B&B to create additional
unnecessary work that a single-threaded search may never have
had to consider. Second, modern highly optimized MIP solvers
such as CPLEX exhibit very dynamic runtime behavior, and
oftentimes completely different search paths are followed in
different runs that represent different amount of total work.
While these factors pose challenges to parallel B&B searches,
they are leveraged by our new parallelization strategy to
improve performance, as shown in Sections III-A and III-B.

III. DISTRIBUTED-MEMORY PARALLELIZATION

Distributed-memory B&B is the natural extension of shared-
memory B&B on a cluster. The performance of CPLEX pre-
sented in Section II suggests that straightforward implemen-
tation may not improve the overall performance significantly.

We implement distributed B&B in MPI using a master-
worker paradigm. The master manages the search tree and
dispatches nodes to the workers at predefined intervals. The
distributed tree is implemented as a heap with the associated
bound (e.g., lower bound for minimization problems) of a node
as key. Each worker works on the assigned nodes running
CPLEX. When it runs out of work, a worker takes some nodes
from the distributed tree maintained at the master. The master
replenishes the distributed tree by grabbing nodes from the

internal tree of other workers.
In our experiment, the parallel efficiency, measured by the

number of processed tree nodes per unit time, scales well
with the number of MPI processes. However, the absolute
performance is worse than CPLEX. We observe between 20%
to 200% slowdowns.

A. Concurrent search

We adopt a parallelization strategy different from parallel
B&B for our problems. We run an independent B&B search
from each machine in the cluster, and we use a different
configuration for each solver. Instead of tree nodes to be ex-
plored, the parallelism comes from the performance variability
of MIP solvers (i.e., it has been observed that a slight change
in configuration results in vastly different execution time [16]).
When the searches explore different regions of the space,
running multiple concurrent solves statistically improves the
chances of finding goods solution faster. This idea is similar
to the concept of ramp-up used in other distributed-memory
MIP solvers such as PICO [17] and ParaSCIP [18].

We create many configurations by setting different values to
the parameters of CPLEX. There are hundreds of parameters
that impact the search behavior of CPLEX. For example, some
control whether cover cuts and clique cuts are generated, some
control the MIP dive strategy, and some control the feasi-
bility pump and local branching heuristics. Combinations of
parameters can easily provide enough parallelism for current
massively parallel systems. We include the list of the most
helpful parameter sets that we found in Appendix A.

We implement concurrent search in a master-worker
paradigm. The master starts multiple remote workers and
randomly assigns a parameter set to each CPLEX worker.
The worker reports its best bounds to the master. The master
terminates the search when the predefined optimality gap is
reached.

We first experiment with two workers on two nodes. The
parameter set primal for the first worker disables cuts so that
the worker focuses on improving the primal bound. The second
worker with the dual parameter set focuses on improving
the dual bound. For our six deterministic instances, the best
primal bounds are always reported by the first worker, and the
best dual bounds are always reported by the second worker.
Concurrent search seems effective as both workers contribute
to closing the gap.

Unfortunately, concurrent search with the primal and dual
parameter sets turns out to be (slightly) slower than CPLEX
for all six instances. We increase the number of workers in
our experiment to include more configurations. We use four
parameter sets, primal, dual, default (the default parameter
set for CPLEX), and nh-search (neighborhood search), and
identify the workers that return the best primal and dual
bounds. For all six problems, default beats primal, dual, and
nh-search, and the best bounds are always reported by the
default worker. Further increasing the number of workers to
sixteen, we occasionally observe workers other than default

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500

G
a

p
 (

%
)

Time (s)

primal
dual

default
nh search

Figure 4. Optimality gap for different workers

reporting the best bounds, and even then the speedup is quite
modest (within 5%).

Our experiment shows that the default configuration of
CPLEX is a good fit for our problems. At the same time,
it also shows that completely independent searches are not an
efficient parallelization strategy (at least for our problems).

B. Coordinated concurrent search

In concurrent search, although default is oftentimes the first
worker to reach the target optimality gap, it is not always
ahead of other solvers during the solution process, as shown
in Figure 4.

Figure 4 tracks the evolution of the optimality gap for the
four workers in concurrent search for M5. We see that dual is
able to reduce the gap to 0.18 % at around 500 seconds, much
earlier than the first drop in default at around 750 seconds.
Also primal is able to reduce the gap faster than default at
around 1800 seconds. nh-search lags behind the others and is
not able to contribute to the search.

Figure 4 shows that some of the workers find good feasible
solutions sooner than the default solver. Instead of keeping the
solvers completely independent of each other, we propose a
new approach that coordinates the search by sharing the best
feasible solutions and bounds. Tighter bounds can help the
solvers prune the search space, and better solutions present
new candidates for the search to start from. Both should
speedup the solution search process.

We implement the coordination through the call-back inter-
face in CPLEX. Call-backs allow a practitioner to guide and
customize the solution search. We first proposed coordinated
concurrent search as a mechanism to utilize massively parallel
computers for problems with hard linear programming (LP)
relaxations in an earlier IBM-Lawrence Livermore National
Labs project [19]. Carvajal et al. independently adopted a
similar idea and demonstrated the performance advantage of
coordinated concurrent solves for MIPLIB problems on a
single SMP [20].

In our implementation, the master installs two callbacks: an
infocallback and a heuristiccallback at the workers. Through
the infocallback, a solver reports its best local primal bound,
dual bound, and feasible solution (incumbent) to the master
at regular intervals. The master keeps track of the reported
bounds and solutions from all workers, and identifies the
global best. Whenever a new solution is reported, the master
checks whether it becomes the current best, and if so, it
broadcasts the new bounds and solution to all workers. At
the worker side, the heuristiccallback is called at every viable
node in the branch-and-cut tree. In this function we compare
the local incumbent with the solution received from the master.
If the one from the master is better, we install the new solution
for CPLEX to work on. Callback interfaces in CPLEX are
described in detail in [21].

Coordinated search jump-starts each solver to the current
best feasible solution instead of its own local incumbent that
may have already been pruned in the search elsewhere. Each
solver gets a chance to contribute to the search when it receives
the current best solution from the master.

We evaluate coordinated concurrent search with 4, 8, and
16 solvers, and identify the solvers with the final best primal
and dual bounds at termination. Each solver takes a different
parameter set. The results are shown in Table I.

4 8 16
Model dl prml dl prml dl prml

M1 2 3 2 2 7 9
M2 2 2 5 7 5 12
M3 2 2 7 7 10 7
M4 0 1 1 6 5 6
M5 0 3 2 2 2 2
M6 3 2 2 2 7 2

Table I
SOLVERS THAT PROVIDE THE BEST PRIMAL (PRML) AND DUAL (DL)

BOUNDS

In Table I the best primal and dual bounds are no longer al-
ways returned by the default solver; other solvers now provide
the best bounds as well. Table I suggests that parameter sets 0,
1, 2, 3, 6, and 7 may be particularly suitable for our problems.
They are aggressive root cuts, aggressive probe, no cuts,
default, neighborhood search, and more probes, respectively
(See Appendix A for detailed parameter settings).

Figure 5 shows the evolution of the optimality gap for four
workers, primal, dual, default, and nh-search, in coordinated
concurrent search. The input instance is again M5. In compar-
ison to Figure 4, the optimality gap of each solver in Figure 5
evolves in lock step. When the gap is reduced at one solver,
a reduction at other solvers soon follows. In Figure 5, primal,
dual, and nh-search all contribute to reducing the optimality
gap. For M5 the coordinated search is much faster than both
concurrent search and CPLEX.

We next investigate the scaling behavior of coordinated
search. We run with 1, 2, 4, 8, and 16 workers, and each
worker uses 32 threads. As the parameter set used in each
run is obviously different, the scaling does not reflect the

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

G
a

p
 (

%
)

Time (s)

primal
dual

default
nh search

Figure 5. Optimality gap in coordinated, concurrent solvers

efficiency of parallelizing a specific algorithm. It instead shows
whether computing resources are effectively utilized to search
for potentially good solutions in a vast search space.

 250

 500

 1000

 2000

 4000

 8000

 16000

 1 2 4 8 16

T
im

e
 (

s
e

c
o

n
d

s
)

#SMPs

 Performance with .05% tolerance

M1
M2
M3
M4
M5
M6

Figure 6. Coordinated search on a cluster of 16 P755s, in log-log plot

Figure 6 shows the scaling of coordinated concurrent search
for six deterministic instances. Performance in general im-
proves with the number of SMPs (solvers). The speedups are
between 2.6 (for M5, the easiest instance for CPLEX) and 55.8
(for M4, the hardest instance for CPLEX) at 16 SMPs. The
performance degrades for M4 from 2 SMPs to 4 SMPs, and
drastically improves at 8 and 16 SMPs. This is because one
parameter set used for 8 and 16 SMPs is particularly effective
in searching for good solutions for M4.

Coordinated concurrent search can also reduce the solution
time on a single SMP. We experiment with two workers each
with 32 threads on P755. The parameter sets used are more
heuristic and default.

The performance comparison on one SMP between coordi-
nated concurrent search with 2 workers and CPLEX is shown
in Figure 7. For all instances coordinated search is faster than

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

M1 M2 M3 M4 M5 M6

T
im

e
 (

s
e

c
o

n
d

s
)

inputs

coorindated, concurrent solver

coordinated(2x32)
CPLEX(32)

1hour

Figure 7. Performance comparison. In coordinated, one solver is CPLEX
default, and the other uses the more heuristic strategy

CPLEX. Significant performance improvement is observed for
deterministic models M1, M2, M3, and M4. All instances are
solved within an hour.

IV. STOCHASTIC UNIT COMMITMENT PROBLEMS AND
DECOMPOSITION SCHEMES

The number of variables and constraints in stochastic unit
commitment problems scales linearly with the number of
scenarios. As a result, they are much harder to solve than
the deterministic ones.

default solver

tim
e

(h
ou

rs
)

number of scenarios

CPLEX unable to solve 20 scenario
instance under 24 hours

20

10

 0

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 8. Time to optimal solution grows exponentially

Figure 8 shows the performance of CPLEX as a function
of the number of scenarios in the CAISO stochastic model.
The execution time grows exponentially with the number of
scenarios in the input.

The LP relaxation alone becomes hard to solve as the
number of scenarios increases. It takes CPLEX more than an
hour to solve the LP relaxation of a 20-scenario instance. Most
distributed searches (including our coordinated concurrent
search) need the LP solution before any parallelization occurs.
They are not effective for such instances. As more scenarios
are likely to be incorporated into such models in the future [2],

an entirely different approach is needed to leverage distributed
parallelization.

We propose a decomposition-based parallelization approach
to exploit the structure in the stochastic model. We divide
a stochastic problem into smaller deterministic subproblems.
These subproblems can be solved either by CPLEX or by
coordinated concurrent search, and their solutions are then
used to construct a solution to the original problem.

Before we present our decomposition-based parallelization
strategy, we introduce stochastic optimization and briefly de-
scribe various decomposition schemes.

A. Stochastic optimization and decomposition approaches

A stochastic optimization problem is often formulated as
a two-stage optimization problem. Given a set of scenarios
ωs, s ∈ [1, S] with corresponding probabilities ps, let x and y
be the first- and second-stage decision variables, respectively.
The deterministic equivalent of a stochastic problem is formu-
lated as

min
∑
s

ps(c
Txs + qTs ys)

subject to
x1 = x2 = · · · = xs (1a)
Axs = b (1b)
Tsxs +Wsys = hs (1c)
x ∈ X, y ∈ Y

Here qs is the cost vector for the second-stage variables.
Constraints (1b) and (1c) model the first- and second-stage de-
cisions, respectively, and constraint (1a) ensures that the first-
stage decisions are identical across scenarios. This formulation
is dual decomposable. If we eliminate the coupling constraint
(1a), the problem is decomposed into separate subproblems,
one for each scenario.

Several dual decomposition approaches, for example, La-
grangian and augmented Lagrangian methods ([22], [23])
and Dantzig-Wolfe decomposition (e.g., see [24]), have been
proposed. Decomposition creates subproblems that can usually
be solved in parallel. However, it remains a challenge to
construct a solution to the original problem from solutions
to the subproblems (e.g., see [25]).

B. Progressive hedging

Unlike branch and price and other column generation tech-
niques, our decomposition is based on progressive hedging
(PH) [7] and does not need to solve a master problem that gets
progressively harder. Here we briefly introduce PH for linear
programming, and discuss our adaptation of PH for MIP in
Section V.

PH is an iterative algorithm. For iteration i, a subproblem

is defined for each scenario s as:

(SP is) min ps(c
Txs + qTs ys) + f̂ ′s(xs, i)

subject to
Axs = b

Tsxs +Wsys = hs

x ∈ X, y ∈ Y

Denoting the optimal solution to subproblem s in iteration i
as x∗is , the penalty function f̂ ′s(xs, i) is defined as:

f̂ ′s(xs, i) = λisxs +
1

2
ρi(xs − x̄i)2 ∀i > 0 (3)

f̂ ′s(xs, i) = 0 i = 0 (4)

where ρi > 0 for all i is the penalty factor, x̄i =∑
s∈S psx

∗i−1
s , and λis is defined as

λis = λi−1s + ρi−1(x∗i−1s − x̄i) ∀i > 0 (5)
λis = 0 i = 0 (6)

Prior studies ([26], [27]) show that good penalty factors are
data dependent. In one study [26], for each iteration i and each
first-stage variable j, the factor is defined as

ρ̃ij =
|cj |

(maxs x∗is,j −mins x∗is,j)

At an iteration, problem SP is is solved for each scenario
s ∈ [1, S], and the solutions x∗s are used to update the penalty
function that attempts to guide the solve of all first-stage
variables x∗ so that constraint (1a) is satisfied.

The first-stage variables that have the same value in the
solutions of all subproblems are called converged variables.
PH halts if convergence is reached for all first-stage variables.
In practice, when the norm

δ = {‖x̄i − x̄i−1‖2 +
∑
s∈S

ps‖x∗is − x̄i‖2}
1
2

drops below a certain threshold, convergence is considered to
be reached [28]. Here δ measures the distance from conver-
gence. Similarly, the norm δj is defined for xj . δj measures
the convergence distance for xj .

For stochastic linear programs, PH converges to the optimal
solution ([29], [30]). For problems with integer decision vari-
ables, theoretical convergence of PH is lost. Some studies (e.g.,
[26], [31]) apply PH to stochastic integer programs to obtain
heuristic solutions. Others (e.g., [32]) consider only special
cases (e.g., all integer variables are binary).

V. PHGS: A SOLVER FOR TWO-STAGE STOCHASTIC
PROBLEMS

Although the independent subproblems in an iteration of
PH are much smaller than the original problem and can be
solved in parallel, the integer variables still pose a serious
computational challenge. As the penalty function f̂ ′s(xs, i) is
quadratic, the resulting quadratic mixed integer programmings
are significantly harder than the linear ones. In our experiment

it takes CPLEX over 10 hours on P755 to solve a single
quadratic subproblem from a 20-scenario instance. Paralleliza-
tion through decomposition alone will not solve our instances
fast enough. We seek to find a good linear alternative for the
penalty function to speedup the computation.

A. Transforming quadratic subproblems into linear ones

The quadratic term 1
2ρ
i(xs − x̄i)2 in the penalty function

(3) of PH forces the first-stage variables to converge to the
average x̄i among all scenarios, as illustrated in Figure 9 (a).
The figure shows λx, 1

2ρ(x − x̄)2, cx, as dotted lines, and
λx + cx + ρ/2(x − x̄)2 as a solid line. Significant deviation
of x from x̄ (4 in the figure) is severely penalized by the
quadratic function and discouraged.

Simply removing the quadratic term 1
2ρ
i(xs − x̄i)2 from

f̂ ′s(xs, i) yields a linear function that unfortunately does not
penalize variables deviating from x̄i. The variables oscillate
between two values between iterations.

We approximate the quadratic distance from x̄i with the
absolute distance 1

2ρ
i|xs− x̄i|. For scenario s, the new penalty

function becomes

f̂s(xs, i) = λisxs +
1

2
ρi|xs − x̄i| (7)

f̂s(xs, i) is piece-wise linear.
Compared with the original quadratic penalization, the pe-

nalization is weak for deviation from x̄. In Figure 9 (b), again
f̂s(xs, i) is minimized at x̄. However, being linear, f̂s(xs, i)
does not penalize deviation from x̄ as much as f̂ ′s(xs, i) in
Figure 9 (a). A weak penalty function can result in slow or
no convergence.

Another problem with a linear f̂s(xs, i) is that, depending
on the values of c and λis, some subproblems may become
unbounded even with a bounded original problem. In the
original PH with penalty function f̂ ′s(xs, i), any ρ > 0
guarantees bounded subproblems (if the original problem is
bounded). This no longer holds for a linear f̂s(xs, i). Figure 9
(c) illustrates an unbounded subproblem with the linear penalty
function. Compared with Figure 9 (b) where ρ = 2, the
objective in Figure 9 (c) is no longer minimized at x̄ when
ρ = 2

3 . In fact, the problem is now unbounded.
We remedy the deficiencies of our linear penalty function

by introducing a new penalty factor ρ. For f̂s(xs, i), the
cost of the jth first-stage variable xs,j is minimized at x̄ij
if the penalty factor satisfies ρij ≥ 2(cj + λis,j). Let φj =
mins:(cs,j+λi

s,j)<0(cs,j + λis,j) and γ > 0, we define

ρij =

{
(ρ̃ij)

2, if ρ̃ij > −2φj

(−2φj + γ)2, otherwise

Now for every first-stage variable xs,j , ρij is adjusted so
that the overall cost defined by c, λ and ρ̃ij is greater than
zero for any xs,j ≥ x̄ij . The new penalty factor also enforces
larger penalty on x deviating from x̄. We use γ = 1 in our
experiments.

With f̂s(xs, i), the subproblems can now be solved by
CPLEX in minutes instead of hours. It shows that our objective

0 2 4 6 8 10 12 14
x

10

5

0

5

10

cx

λx

ρ

2
(x−x̄)2

cx+λx+
ρ

2
(x−x̄)2

(a)

0 2 4 6 8 10 12 14
x

10

5

0

5

10

cx

λx

ρ

2
|x−x̄|

cx+λx+
ρ

2
|x−x̄|

(b)

0 2 4 6 8 10 12 14
x

10

5

0

5

10

cx

λx

ρ

2
|x−x̄|

cx+λx+
ρ

2
|x−x̄|

(c)

Figure 9. Examples of penalty functions: c = 0.5 for x, and λis = −1. In
(a) f̂ ′s(xs, i) is quadratic with ρi = 2; in (b) f̂s(xs, i) is linear with ρi = 2;
and in (c) ρi = 2

3
.

function is not only linear but also effective for the hard
problems from the CAISO instance.

B. PH-guided solve

In prior studies (e.g., see [32]) PH rarely converges for large
problems. With f̂s as the penalty function, we evaluate the
convergence of PH for our problems.

Figure 10 (a) shows the minimum, maximum, and average
values of δj for xj in each PH iteration for a 5-scenario
instance. Although δj becomes fairly small after the first
iteration, complete convergence is not achieved even after 11
iterations. Figure 10 (b) shows the average value of δ in each
iteration for a 20-scenario instance. δ steadily decreases in the
first six iterations and then holds stable. PH does not converge
for any of our stochastic instances.

2 3 4 5 6 7 8 9 10 11
Iteration

0

10

20

30

40

50

60

70

80

90

δ

(a) 5 scenario instances

2 4 6 8 10 12
Iteration

0

10

20

30

40

50

60

δ

(b) 20 scenario instance

Figure 10. Evolution of δ.

Without convergence, PH is not able to produce feasible
solutions. We propose PH-guided solve (PHGS) that does not
rely on the convergence of PH for finding feasible solutions.
PHGS uses the intermediate results from PH to derive a
series of progressively easier-to-solve problems. PHGS creates
a new problem from the original problem after each PH

iteration by setting the converged variables to their converged
values. The problem is solved asynchronously by a generic
solver (e.g., CPLEX or concurrent coordinated search) on a
remote machine. As each new problem is in effect the original
problem with added contraints, a solution to the original
problem can be easily constructed from the solution to any
of these problems. Even though PH does not converge, PHGS
is able to find solutions extremely close to optimal for our
problems.

Computation-wise, floating-point continuous variables
rarely converge at the exact same values, and we introduce a
tolerance that balances solution quality and convergence. A
first-stage variable is called ε−converged, for ε > 0, if the
variation among the values of all scenarios is less than ε.
Increasing ε will increase the number of converged variables
in an iteration, and decreasing ε will increase the amount of
computation and improve solution quality.

Algorithm 1 PHGS (P , s, ρ, ε)

1: i← 0, λ0 ← 0, ρ0 ← ρ, f̂s(xs, 0)← 0
2: async invoke a generic solver G0 on P
3: repeat
4: decompose P into s subproblems S1, S2, · · · , Ss
5: for 1 ≤ l ≤ s in parallel do
6: solve Sl with penalty function f̂s
7: end for
8: z ← {xj | ∀s |xs,j − x̄j | < ε }
9: if |z| = |x| then {all variables converged}

10: break
11: end if
12: i← i+ 1
13: Pi ← fix(P, z)
14: async invoke a generic solver Gi on Pi
15: for 1 ≤ j ≤ |x| in parallel do
16: φj ← mins:(cs,j+λi

s,j)<0(cs,j + λis,j)

17: ρ̃ij ←
|cj |

(maxs x∗i
s,j−mins x∗i

s,j)

18: if ρ̃ij > −2φj then
19: ρij ← (ρ̃ij)

2

20: else
21: ρij ← (−2φj + 1)2

22: end if
23: end for
24: f̂s(xs, i)← λisxs + 1

2ρ
i|xs − x̄i|

25: until time out or one of Gi finds a satisfactory solution

The formal description of PHGS is shown in Algorithm 1. In
Algorithm 1, P is the original stochastic optimization problem,
and Pi is the new problem created after the i-th PH iteration.
Pi is solved asynchronously. Whenever any of these solves
finds a satisfactory solution (e.g., a feasible solution close to
optimal), the search is terminated. A feasible solution for Pi
together with the converged variables constitutes a feasible
solution for P .

In the algorithm, async, similar to the spawn keyword in
Cilk [33], spawns a parallel process. fix(P,z) produces a new

problem from P by fixing the converged variables to their
converged values. Fixing converged variables is used in a
different context to accelerate the convergence of progressive
hedging [31]. We implement async using the remote object
interface in CPLEX [21].

Lines 2 and 14 in Algorithm 1 start asynchronous solves
on remote machines. Lines 4 to 7 decompose the problem and
solve the subproblems. Lines 15 to 24 update the parameters
after a PH iteration. The algorithm terminates when a satis-
factory solution is found (PH converges or the direct solves
find a satisfactory solution) or when it times out (always a
possibility for NP-hard problems). As more variables converge
with the PH iterations, the instances for generic solver G
become smaller and easier.

C. Experimental Results

We evaluate the performance and solution quality of PHGS.
In our experiment we use six 5-scenario instances and one 20-
scenario instance. In PHGS we use CPLEX with the default
parameter set as the generic solver.

gap % PHGS gap % PHGS
Instance It 1 It 2 Instance It. 1 It. 2

S1 0.1 0.11 S2 0.01 -0.01
S3 0.09 0.09 S4 0.23 0.12
S5 0.03 -0.02 S6 0.02 0.02

Table II
COMPARISON OF SOLUTION QUALITY FOR 5-SCENARIOS INSTANCES

Table II compares the solution quality of PHGS with that
of CPLEX for the 5-scenario instances. Recall that after
solving the subproblems in each iteration, PHGS creates a new
problem for the generic solver. In column “It. 1” and “It. 2” of
Table II, we report the gap in percentage between the solutions
obtained by CPLEX and the feasible solutions returned by
PHGS, for the first and second iterations, respectively. PHGS
is often able to produce solutions within the 0.05% optimality
gap. For S2 and S5, it actually produces solutions slightly
better (closer to optimality) than the ones found by CPLEX.

Figure 11 compares the solution times of CPLEX and PHGS
for the 5-scenario instances. In this experiment we use 7 P755s
for PHGS– one for each subproblem and two for the generic
solvers. The speedups achieved by PHGS over CPLEX are
between 13 and 35, with an average around 22. PHGS is able
to solve all instances within half an hour.

Table III shows the execution times and solution quality
for 6 iterations of PHGS with the 20-scenario instance on our
target cluster. The gap between the solutions from the guided
solves and the best known lower bound (LB) is reported in
the second column. The lower bound comes from the LP
relaxation, while the feasible solutions returned by PHGS
provide the upper bounds. In this case, direct solve with
CPLEX is not able to produce any feasible solution in 24
hours. Table III shows that the solutions produced by PHGS
are extremely close to optimal.

 100

 1000

 10000

 100000

S1 S2 S3 S4 S5 S6

ti
m

e
 (

s
e

c
o

n
d

s
)

input

Stochastic optimizations

CPLEX
PHGS

Figure 11. Performance comparison of PHGS on a cluster of 7 P755s with
CPLEX on a single P755

iteration time (s) LB gap (%)
1 466.37 0.02
2 186.71 0.02
3 214.35 0.01
4 202.39 0.01
5 260.27 0.01
6 439.67 0.01

Table III
RESULTS FOR THE 20-SCENARIOS INSTANCE

VI. CONCLUSIONS AND FUTURE WORK

We employ novel parallel techniques to solve both de-
terministic and stochastic unit commitment problems in the
CAISO model. More details about the model can be found
in a public study done by CAISO [34]. Our implementation
achieves significant speedups and is able to solve the previ-
ously unsolvable 20-scenario stochastic instances within an
hour. Our coordinated, concurrent search achieves significant
speedups over CPLEX for some very hard unit commitment
instances from other ISOs. Although developed for CAISO,
our approach for solving stochastic problems does not rely on
structures specific to the CAISO problems, and we expect our
solver effective for other models formulated with PLEXOS.
As in production most ISOs use industry standard modeling
software and solvers (such as PLEXOS and CPLEX), our
solvers for both deterministic and stochastic instances can
be used directly without poring into low-level model-specific
structures that in theory may speedup the solution time but is
unrealistic in practice.

In our study we also evaluated other decomposition ap-
proaches. Bender’s decomposition does not work well in the
presence of integer second stage variables, while Dantzig-
Wolfe decomposition takes a long time to complete a few
iterations, and does not converge.

The methods proposed in our study suggest several ar-
eas for further investigation and analysis. The behavior of
PHGS can be fine-tuned by the various parameters. Finding

the best parameter sets for concurrent coordinated search
may be approached from a machine learning perspective.
To effectively utilize the massive computing resources on
modern supercomputers, PHGS, parallel B&B, and concurrent
coordinated search may be combined, and careful engineering
is needed.

Given the recent interests in managing uncertainty, we plan
to experiment PHGS with more stochastic problem instances
from the power grid.

REFERENCES

[1] California State Senate, “Bill Number 2,” April 12 2011.
[2] T. Edmunds, A. Lamont, V. Bulaevskaya, and et al., “The value of

storage and demand response for renewable integration,” California
Energy Commission, Tech. Rep. in press, 2014.

[3] P. Ruiz, C. Philbrick, E. Zak, K. Cheung, and P. Sauer, “Uncertainty
management in the unit commitment problem,” IEEE Transactions on
Power Systems, vol. 24, pp. 642–651, 2009.

[4] K. Cheung, Y. Feng, D. Gade, and et al., “Stochastic unit commitment
at ISO scale: an ARPAe project,” in Proceedings of 2014 IEEE Power
and Energy Society General Meeting. IEEE, 2014.

[5] California Independent System Operator, “Integration of renewable
resources: Technical appendices for California ISO renewable integration
studies,” California ISO, Tech. Rep., 2010.

[6] “IBM ILOG CPLEX Optimizer,” http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/.

[7] R. T. Rockafellar and R. J.-B. Wets, “Scenarios and policy aggregation
in optimization under uncertainty,” Mathematics of operations research,
vol. 16, pp. 119–147, 1991.

[8] J. T. Linderoth and M. W. P. Savelsbergh, “A computational study
of search strategies for mixed integer programming,” INFORMS J. on
Computing, vol. 11, no. 2, pp. 173–187, Feb. 1999.

[9] L. A. Wolsey, Integer programming. New York, NY, USA: Wiley-
Interscience, 1998.

[10] T. Berthold, “Primal heuristics for mixed integer programs,” Master’s
thesis, Technischen Universität Berlin, 2006.

[11] R. Bixby and E. Rothberg, “Progress in computational mixed integer
programming—a look back from the other side of the tipping point,”
Annals of Operations Research, vol. 149, pp. 37–41, 2007.

[12] G. Cong and K. Makarychev, “Optimizing large-scale graph analysis
on multi-threaded, multi-core platforms,” in Proceedings of the 2012
IEEE International Parallel & Distributed Processing Symposium, ser.
IPDPS ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.
414–425.

[13] T. Koch, T. Ralphs, and Y. Shinano, “Could we use a million cores
to solve an integer program?” Mathematical Methods of Operations
Research, vol. 76, pp. 67–93, 2012.

[14] “Gurobi optimizer,” http://www.gurobi.com/.
[15] T. Koch, T. Achterberg, E. Andersen, and et al., “MIPLIB 2010,”

Mathematical Programming Computation, vol. 3, no. 2, pp. 103–163,
2011.

[16] E. Danna, “Performance variability in mixed integer programming,” in
Workshop On Mixed Integer Programming, Columbia University, New
York, May 2008, coral.ie.lehigh.edu/∼jeff/mip-2008/talks/danna.pdf.

[17] “PICO: Parallel integer and combinatorial optimization,” http://www.cs.
sandia.gov/∼caphill/proj/pico.html.

[18] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch, “ParaS-
CIP: A parallel extension of SCIP,” in Competence in High Performance
Computing 2010, C. Bischof, H.-G. Hegering, W. Nagel, and G. Wittum,
Eds. Springer Berlin Heidelberg, 2012, pp. 135–148.

[19] G. Cong and J. Magerlein and D. Rajan and C. Meyers, “Exploring
distributed memory parallel CPLEX,” Lawrence Livermore National
Laboratory, Tech. Rep., Aug 2014.

[20] R. Carvajal, S. Ahmed, G. Nemhauser, and et al., “Using diversification,
communication and parallelism to solve mixed-integer linear programs,”
Operations Research Letters, vol. 42, no. 2, pp. 186 – 189, 2014.

[21] IBM ILOG CPLEX Optimizatio Studio V12.5 , on line, IBM Corporation,
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp.

[22] C. C. Carøe and R. Schultz, “Dual decomposition in stochastic integer
programming,” Ops Research Letters, vol. 24, pp. 37–45, 1999.

[23] A. Belloni, A. Lima, M. Maceira, and C. Sagastizábal, “Bundle relax-
ation and primal recovery in unit commitment problems. the Brazilian
case,” Annals of Ops Research, vol. 120, pp. 21–44, 2003.

[24] G. Lulli and S. Sen, “A branch-and-price algorithm for multistage
stochastic integer programming with application to stochastic batch-
sizing problems,” Management Science, vol. 50, pp. 786–796, 2004.

[25] M. E. Lübbecke and J. Desrosiers, “Selected topics in column genera-
tion,” Operations Research, vol. 53, no. 6, pp. 1007–1023, 2005.

[26] J. Watson, D. L. Woodruff, and D. Strip, “Progressive hedging inno-
vations for a stochastic spare parts support enterprise problem,” Naval
Research Logistics, 2007.

[27] J. M. Mulvey and H. Vladimirous, “Solving multistage stochastic
networks: An application of scenario aggregation,” Networks, vol. 21,
pp. 619–643, 1991.

[28] A. D. Silva and D. Abramson, “Computational experience with the
parallel progressive hedging algorithm for stochastic linear programs,”
in Proceedings of 1993 Parallel Computing and Transputers Conference
Brisbane. Citeseer, 1993, pp. 164–174.

[29] T. Helgason and S. W. Wallace, “Approximate scenario solutions in the
progressive hedging algorithm,” Annals of Ops Research, vol. 31, pp.
425–444, 1991.

[30] R. Wets, “The aggregation principle in scenario analysis and stochastic
optimization,” in Algorithms and model formulations in mathematical
programming. Springer, 1989, pp. 91–113.

[31] J. Watson and D. L. Wodruff, “Progressive hedging innovations for a
class of stochastic mixed-integer resource allocation problems,” Compu-
tational Management Science, vol. 8, no. 4, pp. 355–370, 2011.

[32] T. G. Crainic, X. Fu, M. Gendreau, and et al., “Progressive hedging-
based metaheuristics for stochastic network design,” Networks, vol. 58,
pp. 114–124, 2011.

[33] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, and et al., “Cilk:
An efficient multithreaded runtime system,” J. Parallel & Distributed
Comput., vol. 37, no. 1, pp. 55–69, 1996.

[34] California ISO, “33 percent renewables integration
step 2 production simulation plexos model,” https:
//www.caiso.com/Pages/documentsbygroup.aspx?GroupID=
FB4D76D2-826B-412B-AC50-BB1E38F26C58.

APPENDIX A
LIST OF PARAMETER SETS

Parameter sets used in coordinated search are shown in
Table IV.

set parameters
aggrootcuts CPX PARAM CLIQUES=1

CPX PARAM CLIQUES=1
CPX PARAM COVERS=3

CPX PARAM FLOWCOVERS=1
CPX PARAM FRACCUTS=2

CPX PARAM GUBCOVERS=1
CPX PARAM IMPLBD=2

CPX PARAM MIRCUTS=1
CPX PARAM MCFCUTS=1

CPX PARAM FLOWPATHS=1
CPX PARAM ZEROHALFCUTS=1

aggprob CPX PARAM PRESLVND=2
CPX PARAM PROBE=3

nonodecuts CPX PARAM COVERS=1
CPX PARAM IMPLBD=1

allprimal CPX PARAM STARTALG=1
CPX PARAM SUBALG=1

moreins CPX PARAM RINSHEUR=100
neighborhoodsearch CPX PARAM FRACCAND=10000

CPX PARAM FRACPASS=10
moreprob CPX PARAM PROBE=1

noprob CPX PARAM PROBE=-1
aggrheur CPX PARAM HEURFREQ=3

CPX PARAM RINSHEUR=20
noheur CPX PARAM HEURFREQ=-1

morerheur CPX PARAM HEUREFFORT=1e+75
nonodeheur CPX PARAM HEURFREQ=10000000

CPX PARAM RINSHEUR=100000000
startprimal CPX PARAM STARTALG=1
startbarrier CPX PARAM STARTALG=4

fastnodes CPX PARAM COVERS=4
CPX PARAM IMPLBD=1

CPX PARAM HEURFREQ=100000000
CPX PARAM RINSHEUR=100000000

dual CPX PARAM CLIQUES=3
CPX PARAM COVERS=3

CPX PARAM DISJCUTS=3
CPX PARAM FLOWCOVERS=2

CPX PARAM FRACCUTS=2
CPX PARAM GUBCOVERS=2

CPX PARAM IMPLBD=2
CPX PARAM MIRCUTS=2

CPX PARAM ZEROHALFCUTS=2
CPX PARAM MCFCUTS=2

steepedge CPX PARAM DPRIIND= 2
purebb CPX PARAM HEURFREQ=100000000

CPX PARAM RINSHEUR=100000000
CPX PARAM CUTPASS=-1

fewcuts CPX PARAM CUTPASS=1
nocuts CPX PARAM CUTPASS= -1
primal CPX PARAM HEURFREQ =1

CPX PARAM RINSHEUR=2
CPX PARAM CUTPASS= -1

Table IV
PARAMETERS FOR CPLEX AS WORKERS IN COORDINATED SEARCH.

THESE PARAMETERS ARE SUBJECT TO CHANGE IN FUTURE RELEASE OF
CPLEX

bledsoe2
Typewritten Text
Prepared by LLNL under Contract DE-AC52-07NA27344

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

