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a b s t r a c t

We present a computational model of three-dimensional and unsteady hemodynamics within the pri-
mary large arteries in the human on 1,572,864 cores of the IBM Blue Gene/Q. Models of large regions of the
circulatory system are needed to study the impact of local factors on global hemodynamics and to inform
next generation drug delivery mechanisms. The HARVEY code successfully addresses key challenges that
can hinder effective solution of image-based hemodynamics on contemporary supercomputers, such as
limited memory capacity and bandwidth, flexible load balancing, and scalability. This work is the first
demonstration of large fluid dynamics simulations of the aortofemoral region of the circulatory system
at resolutions as small as 10 �m.

Published by Elsevier B.V.

1. Introduction

A longstanding goal within the field of computational biome-
chanics has been to understand the principles that govern vascular
disease localization and progression [20,5,28]. Such image-based
simulations can yield insight into the impact of local factors
on global hemodynamics, direct the design of next-generation
drug delivery mechanisms, and inform surgical planning. Although
important progress towards this goal has been made using var-
ious algorithmic methods [11,29,12,21,13,32], the computational
demands of these simulations have historically restricted the res-
olution and size of the circulatory system that can be modeled.

In recent years, there has been a great deal of work in the area of
computational hemodynamics. These studies are typically limited
to small regions of the body or use a one-dimensional setting to
describe the human arterial network [26,1,30]. Xiao et al. presented
the first model of full unsteady and three-dimensional hemody-
namics in the primary large arteries from head to foot. While this
was a significant advance in computational fluid dynamics, the goal
was to demonstrate the feasibility of the 3D framework. However,
the resolution presented was insufficient to reach grid indepen-
dence [32]. In that work, the finite element mesh consisted of
14,438,720 linear tetrahedra and 2,674,545 nodes. High resolution
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studies based on 3-D reconstructions of patient-specific data are
typically focused on either the cerebral vasculature [9,13,7] or
the cardiovascular region [3,10,19]. The current state of the art in
the numerical investigation of hemodynamics in patient-specific
geometries are those by Bernaschi et al. which studies the coronary
arteries in a bounding box of 300 billion grid points containing one
billion fluid nodes [3,4]. Work presented here goes beyond these
scales, simulating a vertical section of the aortofemoral section of
the circulatory system spanning 614 cm at 10 �m resolution, con-
sisting of more than 128 billion fluid nodes. To the best of our
knowledge, our work is the first large-scale study of blood flow
in a region of this size and level of detail.

Building realistic models of transport phenomena in the human
circulatory system presents a formidable computational challenge
due to the geometric complexity of the system, memory require-
ments associated with high-resolution grids, and load balancing
issues associated with the processor core counts required. Our
proposed solution extends the design and parallel efficiency of
HARVEY [22], a computational fluid dynamics code based on the
lattice Boltzmann method (LBM). One fundamental hurdle for high-
resolution fluid simulations is the size of the underlying data grid
and associated memory requirements. In order to study key macro-
scopic risk factors in patient-specific data, a resolution of at least
20 �m is required [18]. For full body simulations, this resolution
corresponds to 18.4 billion fluid nodes in a bounding box of 8.8
trillion total grid points. These data sizes create an additional chal-
lenge to load balance, as work must be assigned to over one million
tasks without computing or storing global data. We present a
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multi-step iterative load balance algorithm that allows for the dis-
tribution of large, complex arterial geometries on a 3D process
grid. Efficiently modeling the hemodynamics in the large primary
arteries also required data-reordering techniques to increase spa-
tial locality, both optimized data structures and access patterns to
reduce the overall memory footprint and efficient communication
layout to overcome bandwidth limitations.

In this work we make the following contributions: increasing
the number of fluid nodes that can be simulated by an order of
magnitude (thereby increasing potential system size and/or res-
olution), incorporating preprocessing to reduce storage and I/O
burdens, and enabling an unprecedented scale of hemodynamic
simulation demonstrated by the 10 �m resolution simulation of
the aortofemoral region of the circulatory system.

2. Methodology

This work relies on the lattice Boltzmann method (LBM), an
alternative to the conventional Navier–Stokes equation, introduced
by both teams of McNamera and Zanetti [17] and Higuera and
Jimenez [15]. LBM comes from kinetic theory and is a minimal
form of the Boltzmann equation based on the collective dynamics
of fictitious particles that represent a local ensemble of molecules
moving between the points of a regular Cartesian lattice. The time
advancement is explicit and the computational stencil is formed by
local neighbors of each computational node, making it particularly
well-suited for massively parallel simulations (c.f. [6,31,23]).

The governing equation describes the evolution of the distri-
bution function denoted by fi(�x, t), describing the probability of
finding a particle at grid point �x, at time t, with discrete veloc-
ity �ci. In this work, we use the 19-speed cubic stencil, with the
Bhatnager-Gross-Krook (BGK) collision formulation with a single
relaxation time. The grid spacing is defined by �x, where discrete
velocities connect grid points to first and second neighbors on the
19-point stencil. The fluid populations are advanced in a timestep
�t through:

fi(�x + �ci�t, t + �t) = fi(�x, t) − ω�t[fi(�x, t) − f eq
i

(�x, t)] (1)

The local equilibrium, f eq
i

(�x, t), is the result of a second-order
expansion in the fluid velocity of a local Maxwellian with speed �u
and is defined by:
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where � denotes the density, �u the average fluid speed, cs = 1/
√

3
the speed of sound in the lattice, and wi the weights attributed to
each discretized velocity as determined by the lattice structure. Due
to the use of explicit time-stepping, LBM requires small time-steps
that scale with �x2. In the case of the 10 �m simulations discussed
in this work, approximately 3 million time-steps would be required
to simulate one cardiac cycle.

We implement the Zou-He boundary conditions [33], in which
a pulsating velocity is imposed at the inlet through a plug profile
at the entrance to the vessel and a constant pressure is imposed
at the outlets. While the inlet condition does not assert the known
parabolic profile that drops to zero close to the wall, it allows a total
flow to be imposed at a set value. In a short distance past the inlet,
the parabolic profile is recovered. This method uses information
streamed from the bulk fluid nodes alongside a completion scheme
for the unknown particle populations whose neighbors are outside
the fluid domain. This method can be executed with second-order
accuracy [16]. In this paper, the modification introduced by Hecht
and Harting [14] is used in which the velocity conditions are spec-
ified on-site, thus removing the constraint that all nodes of a given
inlet or outlet must be aligned on a plane that is perpendicular to

one of the three main axes. Furthermore, this addition allows the
boundary conditions to be applied locally. A no-slip boundary con-
dition is imposed at the walls via the full bounce-back method. For
more details regarding the lattice Boltzmann method, see Ref. [27].

3. HARVEY implementation details

All simulations presented here were carried out using the HAR-
VEY code. Despite the excellent scalability reported previously[24],
significant restructuring of the code had to be done to enable the
resolution and scale of the systems studied in this work. Details
of the original implementation can be found in Ref. [22]. All simu-
lations were run on the Sequoia machine at Lawrence Livermore
National Laboratory, a 98,304 node IBM Blue Gene/Q machine
(1,572,864 cores).

In order to simulate the hemodynamics in the aortofemoral
geometry at a high-resolution, we had to overcome the following
challenges:

• Memory footprint. Large numbers of grid points are required to
reach convergence of macroscopic quantities of interest. These
requirements impose a high demand in terms of on-node mem-
ory requirements.

• I/O bandwidth. Setting up the large, high-resolution grids through
the existing preprocessing and initialization stages involves I/O
operations on petabytes of data, causing the simulation setup to
actually overwhelm the overall simulation time even for the large
number of time steps, ∼106, needed to model a full cardiac cycle.

• Scalability. As each Blue Gene/Q core has only 1 GB of available
total memory, the scope of this problem requires use of the entire
LLNL Sequoia system of 1,572,864 cores. Effective utilization of
such a large core count means that traditional parallelization
tools like global communication tables are not feasible options.

• Load imbalance. The geometry of the human vasculature
is incredibly complex. The bounding box holds grid points
representing fluid, inlets, outlets, walls, and exterior points. Dis-
tributing the workload across hundreds of thousands to millions
of cores requires careful attention to load balance.

We address these challenges by extending the capability of HAR-
VEY through (i) embedding of preprocessing and use of buffered
meshing to avoid global bottlenecks and reduce I/O stress, (ii) the
introduction of indirect addressing to reduce the memory foot-
print, (iii) development of a multi-step load balancing scheme that
prioritizes locality and memory reduction, (iv) removal of global
communication tables to improve scalability.

3.1. Parallel preprocessing

The original implementation of HARVEY used multiple prepro-
cessing steps to construct the 3D spatial grid from the surface mesh
and set up neighbor lists and communication tables. This strategy
becomes infeasible at the target scales of this work, as the full 3D
mesh must be read from disk and distributed across tasks, creat-
ing both an I/O and memory bottleneck. Instead, we have integrated
these routines into HARVEY so that only the surface mesh is used in
the initial load balance and the volume grid (Fig. 1) can be generated
in place on local MPI tasks.

Communication tables can be generated during setup using only
local information due to the use of a structured process grid, i.e.
tasks need only talk to their process grid neighbors to discover who
owns fluid nodes in their stencil.
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Fig. 1. Bounding boxes of aorta geometry computed by multi-step load balance
algorithm.

3.2. Minimizing memory footprint

One fundamental challenge to high-resolution lattice Boltz-
mann simulations of large arterial geometries is the size of the
underlying data grid and the associated storage requirements,
particularly during the setup and load balance phases of the cal-
culation. For smaller scale calculations, it is possible to store global
information to simplify the construction of the grid from the surface
mesh, build communication tables, and load-balance the workload
across tasks. At larger length scales, however, such storage is no
longer feasible. For example, the bounding simulation box of the
aortofemoral geometry shown in Fig. 2a has physical dimensions
168 mm × 115 mm × 614 × mm, which corresponds to a data grid of
33,530 × 22,992 × 122,808 grid points at 5 �m resolution. An inte-
ger array of the node types for a single xy-plane would consume
3.1 GB, over three times the total memory available to a single Blue
Gene/Q core.

In the full simulation box, however, only a small subset of grid
points actually represent fluid points. As shown in Table 1, the cere-
bral vasculature exhibits a 0.412% fluid density, the aorta 2.36%,
and the aortofemoral 1.08%. In such cases where the volume of
the flow domain makes up a small percentage of the bounding
box, maintaining the entire domain in memory leads to a large
waste of storage and can lead to a high degree of load imbalance.
To avoid such issues we use an efficient data structure based on
indirect addressing which allows nearly arbitrary geometries to be
handled at a minimal additional cost. Similar to the topologically
unstructured grid introduced by Schulz et al. [25], we only store the
locations of grid points that represent boundaries or fluid. During

Fig. 2. Mesh geometries used as HARVEY input: (a) aortofemoral, (b) aorta, and (c)
cerebral.

the preprocessing routine, we calculate and store the location and
node type of each neighbor by relying on the underlying stencil
organization. This procedure results in an 18◦ stencil that contains
the necessary information about each neighbor being stored for
each non-exterior point. This can be used to establish the communi-
cation tables discussed in the following sections. The use of indirect
addressing means that the distribution function size is minimized
and equal to the product of the number of local fluid nodes (Nloc)
and number of stencil points (Nstencil).

3.3. Improving load balance

In HARVEY, we apply a three-dimensional Cartesian grid across
the simulation box. Grid points are then classified as fluid, inlet,
outlet, wall, or dead, i.e. those falling outside the mesh. This grid
of fluid and wall nodes is constructed at runtime from a triangular
surface mesh supplied as input. Overlapping slices of the triangular
mesh are distributed across z planes of a 3D process grid. Within
these slices, the grid points just inside the mesh are determined
from the angle-weighted pseudo-normals[2] of the closest triangle.
This defines a shell of grid points that border each side of the mesh.
The rest of the interior nodes are filled in by sweeping across a
single grid dimension and assigning all unidentified nodes between
known interior points as fluid nodes. Any interior point that borders
a point outside of the mesh is labeled as a wall node. Because only
a single full grid dimension is needed to identify which nodes are
inside the mesh, we can buffer this calculation and distribute the
results to avoid memory bottlenecks.

Load balance is handled iteratively and work is computed as a
function of each Cartesian direction. The algorithm prioritizes local-
ity and limited memory usage by avoiding global data as much as
possible, using a multi-step approach:

1. Estimate work of each xy-plane using mesh boundaries.
2. Assign ownership of xy-planes to process planes.
3. Read triangular mesh and compute local grid points.
4. Compute total work of each xy-plane.
5. Reassign ownership of xy-planes, recompute local grid points.
6. For each local xy-plane, compute work as a function of y.
7. Assign y-strips of local grid points to y-strips of tasks.
8. Distribute local strips across tasks in x-direction.

The load balancer currently uses a simple work model that is
proportional to the number of fluid nodes on a task, but any per-
formance model could be used, provided the estimated work can
be computed from local data. The final two steps (distributions in
the y- and x-directions) assign tasks in groups when multiple spa-
tially disconnected sections of work are detected. This prevents the
creation of large local bounding boxes that span different arterial
branches and which could cause a memory bottleneck.

3.4. Reduced memory stencil operations

Once load balance is complete, each task “owns” the fluid nodes
within its rectangular bounding box and computes the particle dis-
tribution function for these nodes at every time step. Determining
the neighbors of a given fluid node could be done once and stored,
but would require storage equal to the distribution function itself.
To save memory, rather than storing an explicit neighbor list for all
stencil points of each fluid node, we store the array index of each
fluid point on a regular grid throughout the bounding box, with
non-fluid nodes indicated by negative values. Stencil operations can
then be applied to this bounding box array to determine the indices
of the corresponding fluid nodes and which ones border wall, inlet
or outlet nodes. This reduces the local memory requirement of
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Table 1
Computational details of the cerebral, aorta and aortofemoral geometries.

Cerebral Aorta Aortofemoral

20 �m resolution
fluid nodes 607,924,802 3,175,878,044 16,033,887,284
data grid 4288 × 4951 × 6955 5375 × 2719 × 9212 8383 × 5748 × 30702
Fluid fraction 0.412% 2.36% 1.08%

10 �m resolution
Fluid nodes 4,922,115,786 25,502,717,509 128,666,443,295
Data grid 8575 × 9902 × 13909 10750 × 5437 × 18424 16765 × 11496 × 61404
Fluid fraction 0.412% 2.36% 1.08%

neighbor calculations by a factor of fbbNstencil, where fbb is the frac-
tion of the bounding box occupied by fluid nodes.

Communication tables are computed during initialization and
stencil points owned by neighboring tasks updated every iteration
using non-blocking MPI Isend and Irecv calls. To maximize cache
performance and data reuse, local data is sorted to group sent points
and received points to contiguous array locations.

4. Simulations

To demonstrate the scalability of the code in a range of regimes,
we chose three different simulation geometries: aortofemoral
(Fig. 2a), aorta (Fig. 2b), and cerebral (Fig. 2c). Patient-specific vol-
umetric image data was obtained via CT imaging. The aortofemoral
is the vasculature of a 21 year-old female. The cerebral vascula-
ture was that of a 31 year-old female and the aorta was from an
8 year-old female. Data was obtained from the Open Source Medi-
cal Software Corporation. The geometry was created by identifying
the centerline paths through the vessels and connecting series of
2D segmentations along these lines. Each vessel was constructed
individually and a Boolean addition used to combine the vessels
into one model.

The three different geometries represent systems of varying
size, surface-fluid-ratio, and complexity (in terms of the number of
inlets and outlets). Table 1 demonstrates the data size associated
with each geometry. This emphasizes the overall data demands
of such high-resolution simulations. For the aortofemoral system,
the overall bounding box has the dimensions of 16765 × 11496 ×
61404 at 10 �m resolution. For a lattice Boltzmann model requir-
ing two 8-byte doubles for each stencil direction, this would require
3.6 Petabytes of storage capacity. It is also important to note that
increasing the grid resolution from 20 �m to 10 �m results in an
8-fold increase in the number of grid points required.

Experiments have shown that the shear rate observed in vessels
of the sizes studied here is in the range in which the elastic behav-
ior of blood becomes insignificant. As such, in this work, blood is
considered to be a Newtonian, isotropic, and homogenous fluid [8].
The viscosity is assumed to have a value of 0.04 g/(cm s) and the
density of blood is taken as 1.06 g/cm3. A rigid-wall approximation
is used.

5. Performance and scalability

In this section, we present strong scaling measurements on the
full 1.5 million core LLNL Sequoia Blue Gene/Q machine. All simula-
tions were run with 16 MPI tasks per 16-core Blue Gene/Q compute
node and one thread per task. Results for all three geometries are
shown in Fig. 3. The average iteration time was computed from the
maximum time spent by any task in the main lattice Boltzmann
iteration loop. For consistency, all I/O beyond simple standard out-
put was disabled. In cases where multiple MPI process grids were
used with the same number of nodes, only the result with the fastest
overall time-to-solution is shown.

Fig. 3. Strong scaling of cerebral, aorta and aorta-femoral geometries at 10 and
20 �m resolutions. Dashed lines indicate perfect scaling from the smallest task
count.

All systems showed excellent strong scalability, with paral-
lel efficiencies ranging from 34% (519-fold speedup over a 1536x
increase in task count) for the 20 �m cerebral geometry to 96%
(11.5-fold speedup over a 12× increase in task count) for the
10 �m aortofemoral geometry. Communication time was a rela-
tively small fraction of the total iteration time, ranging from 0.4%
to 19% depending on the system size and resolution (see Fig. 4). The
significant increase in relative communication time cannot simply
be explained by the inevitable increase in the surface-to-volume
ratio of processor domains as the total number of tasks increases,
which to first order will only scale as the cube root of the total num-
ber of tasks. This model would predict a maximum communication
fraction of 5% for the 20 �m cerebral geometry rather than the 19%
we observe, indicating that other factors such as load imbalance

Fig. 4. Maximum communication time as a fraction of total iteration time of cere-
bral, aorta and aorta-femoral geometries at 10 and 20 �m resolutions.



74 A. Randles et al. / Journal of Computational Science 9 (2015) 70–75

Fig. 5. Load imbalance of cerebral, aorta and aorta-femoral geometries at 10 and
20 �m resolutions.

are responsible for the significant increase in communication time
at scale.

For systems of a few hundred thousand MPI tasks and below,
the load imbalance was below 20%, but became substantial at full
scale, e.g. as large as 96% in the 20 �m cerebral geometry. We define
load imbalance as the difference between the average time and
the maximum time spent in the iteration loop, normalized by the
average iteration time:

� =
(

tmax

tavg
− 1

)
(3)

Therefore, although one might initially conclude from
Figs. 3 and 4 that the code is becoming communication-bound
at full scale, Fig. 5 shows that load imbalance accounts for the
majority of the deviation from ideal strong scaling. Moreover, the
similar shapes of Figs. 4 and 5 indicate that the tasks with the
highest overall workload correspond to those with the highest
communication volume. This is likely exacerbated by the fact that
the load balance algorithm currently does not take into account
the differences in total communication volume between tasks
with many neighbors (e.g. in the middle of arteries) and tasks with
relatively few (e.g. at edges or on smaller branches). Although the
overall performance is quite good for a lightweight load balancer
on these geometries at this scale, we anticipate that further
performance gains can be realized by integrating a more robust
performance model into the load balancer.

In addition to improving load balance, we plan to further
decrease the overall time-to-solution by implementing newly
developed data access patterns to reduce the cost of data move-
ment in bandwidth-bound regions of the code. We have also begun
developing optimized kernels to exploit specialty hardware such
as SIMD vector units and will explore whether similar kernels can
be used to make efficient use of heterogeneous architectures, e.g.
GPU machines.

6. Conclusion

We presented computational advancements to the HARVEY
code designed to enable scalable simulations of large, high-
resolution arterial geometries. Our results show strong scalability
for three different systems on 1.5 million Blue Gene/Q cores, where
parallel efficiencies of 35–96% were observed. As this work is the
first direct simulation of a significant fraction of the full circula-
tory system carried out at resolutions as high as 10 �m, we believe
that it will set the stage for the next generation of high-fidelity
hemodynamics simulations.
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