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1. INTRODUCTION AND SUMMARY

In many problems in fundamental physics, we must simultaneously deal with uncertainty in the 

underlying equations of motion and with uncertainty in our ability to solve them. In turbulence, we 

have only the latter [1].  As noted by renowned physicist Richard Feynman, the turbulence problem 

is still referred to as the last unresolved classical physics problem [2]. 

The presence of strong nonlinear interactions makes turbulence a truly multiple scale problem.  The 

challenge in direct numerical simulations (DNS) of a very high Reynolds number flow is to account 

for all the scales, starting from the largest where the energy injection occurs to scales that are 

roughly two times the Kolmogorov dissipation wavenumber. The Reynolds number, Re, is around 

108 for airplane wing and fuselage [3] and even higher for turbulent flows in space and 

astrophysical setting [4]. Specifically, the Reynolds number, which is the ratio between the inertial 

forces to the viscous actions, is defined as

Re= UL/ν  -- (1)

where U, L are the characteristic velocity and length scales, and ν is the kinetic viscosity [5]. 

Fig. 1 shows the distinctive spectral scales from a large collection of the wind tunnel and 

geophysical experiments (reproduced from Ref. 6). 

In such a computationally intensive field, we have witnessed an unprecedented advancement of the 

capabilities of the supercomputers. For grid generated turbulence or turbulent flows in a periodic 

box, brute-force DNS has already matched or surpassed experiments [7]. Pope [8] even suggested 

that we have entered an era of sufficient computer power.



Fig. 1. The compensated longitudinal energy spectra are plotted against the longitudinal wavenumbers. The data are 

obtained from a collection of the wind tunnel and geophysical flows (reproduced from Ref. 6, with permission from 

Cambridge Univ. Press). The values of the Reynolds numbers are based on the Taylor microscales.

In this chapter, the classical “turbulence problem” is narrowed down and redefined for scientific 

and engineering applications.  From an application perspective, accurate computation of large-scale 

transport of the turbulent flows is needed. Here, an analysis that allows for the large-scales of very 

high Reynolds number turbulent flows to be handled by the available supercomputers is inspected. 

Current understanding of the energy transfer process of the turbulent flows, which forms the 

foundation of our argument, is discussed. Two distinctive interactions, namely, the distance and 

near-grid interactions, are inspected for large-scale simulations. The distant interactions in the 

subgrid scales in an inertial range can be effectively modelled by an eddy damping. The near -grid 

interactions must be carefully incorporated. The data redundancy in the inertial range is 

demonstrated.

Furthermore, the minimum state is defined as the turbulent flow which has the lowest Reynolds 

number that captures the energy containing scales of the astrophysics problems in a laboratory or 

simulation setting.  The transition criterion for the time-dependent flows is presented. 



3

Two types of applications are briefly summarized. First of all, the spatial and temporal criterions 

have found applications to a range of high energy density physics experiments. Secondly, the 

procedure for estimating the numerical viscosity for implicit large-eddy simulations (ILES) has

been advanced. 

2. “TURBULENCE PROBLEM” REDEFINED

Most important properties of a high Reynolds number turbulent flow are determined by the 

transport dynamics of the large-scales. Therefore, it makes sense to focus computing resources on 

capturing these scales accurately. From an application perspective, accurate and time-dependent, 

three-dimensional computations of the large-scales may be all that is needed. It is therefore 

necessary to choose the grid-size in a uniform fashion, using the boundary between the large-scales 

and inertial range. 

In support of this argument, it will be illustrated that the self-similarity properties lead to the data 

redundancy; an advantage that should be fully exploited.  The universality of the inertial range is 

indeed remarkable. At high Reynolds number, this universality can be observed by the 

establishment of an extended inertial range (Fig. 1) or the asymptotic behaviour of the normalized 

energy dissipation rate. Indeed, the characteristic time scale of the energy containing eddies, U/L, 

should be in the same order of magnitude as the time scale of the energy dissipation rate ε/U2. 

Here, the energy dissipation rate is denoted as ε.  Therefore, a dimensionless ratio, D, can be 

introduced as,

. (2)

Recently, a significantly amount work has been devoted to investigate the behaviour of D as a 

function of Re [see Figs. 2 and 3; Refs. 9-13]. 

This article notes that (1) two distinct interactions have been identified; (2) a model that 

incorporates both interactions already exists; (3) a refined boundary between the energy containing 

and inertial ranges can be located; (4) the self-similarity in the inertial range has been demonstrated. 

As a result, a scaling argument to scale the extremely high Reynolds number flows to high, but

manageable Reynolds number in order to fit into the existing supercomputers is proposed.

D  L /U 3



Fig. 2. Non-dimensional parameters: (a) lf /u
3 based on laboratory data, with lf  denoting a longitudinal integral scale

– from Ref. [11], with L denoting the integral scale.

Fig. 3. Non-dimensional parameters: based on computational simulation data – from Ref. [12], with L

denoting the integral scale.

A. Filter classification and their spectral support 

The objective of the filters is to separate the large-scales as faithfully as possible. Therefore, the 

filtering operation, which divides the flow into the subgrid and resolvable scales, should not 

adversely affect the large-scale properties. 

Zhou et al. [14] pointed out that the resolvable scale interactions are affected when the filters with 

same spectral support are utilized. The so called “Type A category” filters include familiar 

D  L / u3



Gaussian [15] and exponential filters [16]. The subgrid scale field, as well as the subgrid stresses, 

can be directly evaluated from the resolvable scale field (see for example, References 17-19). 

Fig. 4. Region of integration for the sharp-cut filter (from Ref. 20)

However, in LES implementation, the maximum wavenumber is determined by the grid size. For 

wavenumber up the cutoff, kC, all functions, the original, resolvable, and subgrid, are known. 

Nothing is known for k > kC. The sharp cutoff filter (the “Type B category”) has distinctive 

spectral support (Ref. 14).

B. Near-grid and distant interactions

As noted already, from an application perspective, the time-dependent, three-dimensional 

computations of the energy-containing scales may be all that is needed. Using a sharp cutoff filter, 

the subgrid of a given problem can be subdivided into two distinctive areas. The resolvable scale 

wavenumber is denoted k which satisfies a triad k=p+q. The subgrid region for the near-grid 

interactions, where one of the wavenumber is greater and the other is less than the cutoff 

wavenumber, kC, is denoted as I.  The subgrid region where both wavenumbers are greater than kC 

(the distant interaction region), is denoted as II. Detailed studies of subgrid models in the energy 

transfer and momentum equations reveal the relationship between the eddy damping, backscatter 

and the Reynolds and cross stresses [20].

The near-grid and distant interactions plays distinctive roles in the energy transfer process [21]. The 

eddy viscosity >>(k), resulting from the distant interactions, behaves in the same manner as the 

molecular viscosity. Therefore, an eddy viscosity model is acceptable. The eddy viscosity ><(k), 
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resulting from the near-grid interactions, is responsible for the cusp-like behaviour of the spectral 

eddy viscosity first identified by Kraichnan [22] (Fig. 5).

To confirm the importance of the near-grid interaction dynamics, the model equation should be

accurately resolved [23]. In an illustrative example, a fictitious cutoff wavenumber is introduced in 

a DNS and the near-grid interactions between the resolvable and subgrid scales are kept. Again, the 

results demonstrated that the near-grid interactions are critical for faithful computation of the large-

scale evolutions.

Fig. 5.  Spectral eddy viscosity and the individual contributions from both the near-grid and distant 

interactions (from ref. 21)

C. Resolvable scale model equation 

The first order of business is to derive a resolvable scale equation using the method of recursive 

renormalization (r-RG) group theory. This methodology was first proposed by Rose [24] for a 

model problem of passive scalar advection and was extended to Navier-Stokes equation [25-26]. 

Starting from the Kolmogorov dissipation wavenumber, the inertial range is divided into multiple 

shells, with their length as thin as possible. The first resolvable scale equation can be written 

symbolically as (P denotes the projection operator)

u</t + 0 k2   u< = P [u< u< + 2 u< u>  + u> u> ] .     -- (3)

After removing the first subgrid shell, two types of subgrid interactions will make their distinctive 

contributions, and hence, they must be considered individually. First, the distant interactions (the 
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last term on the right hand of Eq. 3) will result in an enhanced eddy viscosity, 1. Second, the near-

grid interaction (the second term on the right hand of Eq. 3) should be either computed directly, or 

approximated by an expression in the resolvable scale field. This process is repeated to remove the 

remaining subgrid scales shells. 

The resulting recursion relation for these subgrid-subgrid scale interactions lead to a fixed point--

the eddy viscosity. For a large-eddy simulation (LES) model, the near-grid interactions should be

considered explicitly

u< /t + eff k2   u< = P [u< u< + 2 u< u>  ].            --- (4) 

The wavenumber domain for the left hand side of (4) and the first term on the right hand side is [0, 

k*], while that for the second term is [0, 2k*]. Here, k* is used to denote the boundary between the 

energy containing and inertial ranges, which will be defined more precisely in the next section. The 

eddy viscosity,  eff , should have contributions from both the subgrid-subgrid and subgrid-

resolvable scale interactions. 

3. COARSE GRAINED SIMULATIONS

A. Determination of the boundary between the energy containing and inertial ranges

The traditional definition of the inertial range is the existence of a scale which is free from the 

large-scale forcing and small-scale viscous dissipation. A more precise definition can be introduced, 

where the upper and lower boundaries of the inertial range depend on the outer-scale () and 

Reynolds number [27-30]:

Lower bound:               L   50 Re -3/4 ,         --- (5)

Upper bound:               L L-T    5 Re -1/2 .         --- (6)

It is well known that Re > 104  (Hinze, [31]), (or 100 when the Taylor microscale is used) is needed 

for an inertial range.
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The upper bound of the inertial range in this LES model for resolvable scale equation is our

minimum grid size, which can be chosen as the grid-size in physical space or cutoff wavenumber in 

spectral space.

B. Data redundant in the inertial range

How can we compute the large-scale of these higher Reynolds numbers turbulent flows found in 

astrophysical or geophysical flows? The answer lies in the universality of the inertial range, which 

we should exploit and utilize. 

Fig. 6. The energy transfer function of different grid sides for idealized Kolmogorov inertial range 

wavenumber. Rescaled to illustrate the “pipe without leak” analogy (from References 33-34)

In fact, the universality in the inertial range can be demonstrated by computing the triadic energy 

transfer functions (for definition, see, for example, Domaradzki and Rogallo [32]). In Zhou [33-35], 

these triadic interactions are selected such that they satisfy the self-similarity scaling laws of 

Kraichnan [36].  The reconstructed energy transfer function, T(k), based on calculations for several 

grid sizes, has been shown to differ only in its range (or extent) in the spectral domain.   With a 

given energy input, this ideal Kolmogorov inertial range is essentially a pipe without leak. The 

different length of the pipe only reflects the different resolutions (or in other words, different 

Reynolds number) of the flows (Fig. 6).  
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Based on this understanding, one can rescale these energy transfer function without affecting the

large-scale. This is the clear evidence of data redundancy in the inertial range.   

C. Local and non-local interactions in high Reynolds number flows

What would be the minimum resolution requirement (minimum model) for a faithful model 

calculation of the large-scale of a flow? The answer is that the near-grid interactions must be in the 

inertial range. The condition for this requirement can be found by demanding that the upper 

wavenumber of the near-grid scale, 2kc, be equal to the lower boundary of the inertial range (inner 

viscous scale). 

In order to separate the local and nonlocal interactions, the so-called ‘disparity’ parameter [33-35]

s(k,p,q) = max(k,p,q)/min(k,p,q)                                         -(7) 

is employed. In spectral space, the wavenumber k satisfies a triad k=p+q. This parameter has been 

used to classify the interactions as local (~2) and nonlocal (s> 2) by Lesieur [37].

In the inertial range, the fractional energy flux for a given wavenumber scales vs the scale disparity 

parameter has been determined to follow a -4/3 power law (References 33-35; see Fig. 7)

Π(k,s)/Π(k)~s-4/3.                                                                 -(8) 

The work by Gotoh and Watanable [38] also provided support to this scaling law. These authors 

used both direct numerical simulations and a statistical closure theory, the Lagrangian 

Renormalized Approximation (LRA) (Kaneda [39]). 

The peak of a normalized flux function can be found along with the value of s at which it occurs, sp. 

Let’s also denotes sh as the scale disparity parameter where the normalized flux reduces to half of 

its peak value [28, 40-41], i.e., Π(k, sh)=(1/2) Π(k, sp). The scaling law can be rewritten as

sh /sp = 2(1/M)                                                                      -(9)



As a result, the range of interactions one must kept is [kL-T, 2 kL-T] as a result of  sh /sp = 2.

Finally, several published numerical works by Domaradzki et al. [42-43] also suggested the specific 

length of the inertial range that one must keep. These authors have numerically investigated 

isotropic and anisotropic channel flows. They found that the modes that are smaller than a fictitious 

cutoff wave number kC will not extend their interactions beyond 2kC. 

Fig. 7. Fractional contribution lI(k,s)/II(k) from simulated datasets. The various curves are for k=2”‘2, 6<n< 

14. The straight lines indicate s-2/3 and se4” behaviors [References 33-34].

4. THE MINIMUM STATE

The mixing transition concept for stationary fluid flows refers to the transition to a turbulent state 

in which the flow drives rapid mixing at the molecular scale.  This turbulent state leads to rapid 

dissipation of momentum and of concentration fluctuations (mixing). The extent of the effective 

inertial range could be narrowed to [27,28]

    

                                        ,                   --(10)   TLK
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Here the lower-limit of the inertial range is the inner viscous scale , where the 

Kolmogorov microscale can be rewritten as . The upper-limit of the inertial range is 

the Liepmann-Taylor scale , where is the well known Taylor correlation 

microscale [5].

To ensure the integrity of the physics of the large-scale dynamics of the flows of practical interest, 

the corresponding large-scale modes computed or measured in a simulation or a laboratory setting 

should not be contaminated because of their interaction with the dissipation range, which is not 

universal (Martinez et al., [44]). This requirement can be satisfied by maintaining a sufficiently 

broad inertial range. The required length of the inertial range needed can be deduced, for example, 

from our understanding of the interacting scales discussed in the previous section. 

The minimum state is defined as the turbulent flow which has the lowest Reynolds number that 

captures the energy containing scales of the astrophysics problems in a laboratory or simulation 

setting (Zhou,  [28,40-41]).  The minimum state is therefore the lowest Reynolds number turbulent 

flow where all the modes in the energy containing scales will only interact with modes in the same 

spectral range or those within the inertial range. Obviously, this requirement is introduced to take 

full advantage of the universality of the inertial range. 

The minimum state, according to the foregoing analysis, is the turbulent flow that takes the value of 

k*Z  2 k*L-T equal to the inner-viscous wavenumber, kν   (the end of the inertial range, see Fig. 8).

Using the definition of  kL-T  and kν, one finds that the critical  Reynolds number of the minimum 

state is  

                                         Re* =1.6  105 .                               --(11)

The outer-scale Reynolds number is approximately related to the Taylor microscale Reynolds 

number by R = (20/3)1/2 Re1/2 in isotropic flow. As a result, the corresponding critical Taylor-

microscale Reynolds number of the minimum state is R * 1.4  Re1/2 (R * ≈ 560).

   50 K

 K  Re /3 4

TTL  5  T 
Re /1 2



Fig. 8. (Color online) Sketch of a kinetic energy spectrum indicating the energy-containing, inertial, and 

dissipation ranges and their wavenumber boundaries. The idea behind the minimum state is that the inertial 

range should be long enough so that direct interactions between modes in the energy-containing and 

dissipation ranges are energetically weak, indicated by the dashed (green) arrow. Some “strong” interactions 

are indicated via the solid (green) arrows (Reference [40]).

Fig. 9. An illustration of how an arbitrarily high Reynolds number flows can be scaled down to a 

manageable one (shown in green), but still captures the physics of the large-scale. Based on a figure in 

Dimotakis [27] with added marks in colour (Ref. [28]).
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Fig. 9 provides another way to illustrate this argument using the physical length scales variation 

with the Reynolds number. The Reynolds numbers where an inertial range first occurs and the 

“minimum state” [28] are marked blue and green, respectively. The shaded area represents the 

redundant data of the inertial range. As a result, any high Reynolds number flow can be easily 

scaled down to a very high, but computationally achievable Reynolds number flow. 

B. Temporal criterion 

Many experiments have been conducted in classical fluid dynamics facilities, shock tubes, and 

laser facilities (such as the Omega laser and National Ignition Facility) to understand the complex 

flows induced by various instabilities.  For example, the published examples were specialized to 

the Rayleigh-Taylor [45-46], Richtmyer-Meshkov [47-48] and Kelvin–Helmholtz flows [49]. Due 

to diagnostic limitations typical measurements consist solely of the growth of the mixing zone 

width.  While these widths (of the bubble and spike fronts, individually or combined) are usually 

measured, it is difficult to know whether or not a particular experiment has reached mixing 

transition.  

We have extended the stationary mixing transition to time-dependent flows and applied it to a

wide range of experiments [29,30].  The Liepmann-Taylor scale essentially describes the internal 

laminar vorticity growth layer generated by viscous shear along the boundaries of a large-scale 

feature of size . The temporal development of such a laminar viscous layer is well known to go 

as (νt) 1/2 (Stokes [50], Lamb [51]).  

                                                       = C ( t)1/2                 --(12)

Hence, the upper bound of the developing inertial range is the smaller of the Liepmann-Taylor 

scale, and .  Here the coefficient of the diffusion layer, C, was suggested as 

both for isotropic, homogeneous turbulence [52] and for steady parallel flows, and as 5 for 

laminar boundary layer flows (Dimotakis [27]). 

The inertial range is presumed to be established when the evolution of the large-scale, 

, is decoupled from the inner viscous scale, .  For time-dependent flows, the 

mixing transition is achieved when a range of scales exists such that the temporally evolving 



 D

TL  D C  15

C 

},min{ TLD   
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upper bound [ ] is significantly larger than the temporally evolving lower bound, 

. Thus, the mixing transition occurs if and when the inequality 

--(13)

is satisfied (References 28, 40,41).

In designing and interpreting experiments for time-dependent flows, the time-dependent mixing 

transition provided the desirable ability to estimate the time required to achieve the mixing 

transition state. 

5. APPLICATIONS

A. High energy density physics experiments

Achieving the minimum state should be a desirable goal for high energy density physics (HEDP)

experimentalist when designing and developing their investigations. The Reynolds number of the 

minimum state may be achievable already for some of the most advanced experimental platforms  

[53-64].

The theoretical analysis for a HEDP experiment to achieve the Reynolds number at the minimum 

state or beyond can be summarized. The viscosity is evaluated, the outer scale or the characteristic 

velocity is computed, and the Reynolds number is determined. For a time-dependent flows, several 

length scales should be evaluated in order to inspect whether the both Eqs. (11) and (13) are 

satisfied [28-30].

B. Implicit large-eddy simulations effective Reynolds number

The utility of implicit large-eddy simulations (ILES) for practical scientific and engineering 

simulations is clear. The more broadly defined ILES [65] generally uses high-resolution non-

},min{ TLD 

 

  )(50)(}),(min{ tttt kDTL   
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oscillatory FV (NFV) algorithms to solve the unfiltered Euler or Navier-Stokes equations. Recently, 

an unique issue has been advanced for ILES:  how one can estimate the values of the relevant 

effective viscosity ( eff ) produced by the numerical method [66].  It is critical to make progress on 

this matter, and further formalizing the perceived abilities of ILES in computing high Re flow, 

would indeed offer significant values.

Since ILES is applied to a broad range of engineering and scientific applications, a scheme should 

be developed in the physical space.  In this fashion,  eff can be written as

eff   / , --(13)

where Ω is the enstrophy ,  and the vorticity , can be readily evaluated based 

on the simulated velocity data.  As noted in Ref. (66), the key to accurately estimating  eff is to 

find a way to do so away from the smallest scales of the simulated flow, where the numerically 

controlled dissipation takes place. Once the dissipation rate is obtained, can be written down 

based on a dimensional argument.  

The turbulent flows of practical interest are usually both high Re and complex. Yet, as a first cut, an 

interesting scheme can be developed from the following procedure:

 For a highly resolved ILES flow, the compensated inertial range occurs at lower spectral 

ranges. The bottleneck occurs as a plateau at higher wave numbers [67-71].

 The flux is still the only link between the energetic and dissipative scales of motion.  

 The effective dissipations of the computations can be obtained directly from the inflow profiles 

of the inertial range energy transfer.

Hence, a methodology should be utilized to estimate the “input” of the energy into the energy 

transfer from the large-scales.  The key is to carry out this estimation around the energy containing 

scales so that the small scale information, where the dissipation is controlled by the numerical 

methods, are not needed. Fortunately, a large body of experimentally and numerically generated 

data suggested that a non-dimensional parameter such as D approaches a constant when Re becomes 

sufficiently large (e.g., Figs. 2 and 3). We note that the outer-scale (L) based Re is approximately 

related to the Taylor microscale , by ≈ (20/3)1/2   in isotropic flow, and  by ≈ 1.4

  for turbulence in the far field of a jet. The literature shows internal consistency between the 

establishment of an inertial range and the asymptotic behavior of D −> D∞  = constant.  The 

 2 / 2

u

eff

Re Re ReL Re

ReL



laboratory data compiled by Sreenivasan [10,11] exhibited constancy for Reλ, > 100.

The collection of the computational data by Kaneda [12] and Sreenivasan [10,11] indicated that 

somewhat higher Reλ is needed, perhaps around 200, for which the inertial range is about one 

decade; observed data scatter for lower Re (e.g., in Figs. 2 and 3) has been attributed to differences 

among forcing schemes, forced long-wavelength ranges, and box sizes. At high Re limit, the energy 

flux can be estimated directly

                                                                                                           (15)

Recent high resolution ILES [72-75], show a limited inertial range of the kinetic energy spectrum as 

well as distinct flow features associated with high Re flows. The viscosity-independent dissipation 

rate may have been thus captured for these high resolution ILES flows, and a dimensional 

estimation such as eff   / – through Eqs. (14) and (15) – may provide a reasonable eff in this 

context. 

Figure 10. Asymptotic measures of the mixing width.



Fig. 11. Estimated effective eddy viscosity eff .   

Fig. 12. Estimated outer-scale .

The laboratory reshock experiments [55] were performed using the University of Rochester’s 

OMEGA laser. The laboratory target consists of a cylindrical beryllium (Be) tube ≈ 1.4mm in 

length and ≈ 0.5mm in diameter with a ≈ 100μm wall thickness. The target is successively hit from 

both sides by two laser–driven shocks. The first, ≈ 5kJ, at t = 0ns impacts the plastic ablator on the 

left, driving a Mach ≈ 5 shock through the 20μm aluminum (Al) tracer disk adjoining the ablator. 

The tracer disk is thus propelled to the right down the center of the cylinder, which is filled with a 

low–density (60mg/cc) CH foam. The second shock, ≈ 4kJ at 5ns, impacts a plastic ablator at the 

right end of the tube. The shocks collide at approximately 8ns to the right of the mixing layer and 

reshock the mixing layer at approximately 10ns, causing it to compress until approximately 1 3ns. 

At approximately 17ns, the second shock exits the mixing layer.  

Asymptotic estimates for an outer-scale can be also generated. Following the discussion, we 

assume that high isotropic turbulence regimes for which have been achieved,1

                                                       
1  Following Kaneda et al. [12] (Fig. 3), we expect , with D∞ ≈ 0.5.

Reeff

Reeff

Re D  L /U 3  1
2
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and define a time-dependent L to be the outer scale prescribed by a mixing width MZ (Fig. 10). This 

mixing measure is designed to yield for , where yc defines the 

center of the mixing layer. We thus formulate an asymptotic model for the dissipation, 

; in this context we can now evaluate outer-scale (asymptotic) measures of 

  (Fig. 11), and (Fig. 12).
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MZ  h  (y)  1 tanh(2(y  yc ) / h)]

  DU 3 / (2L)

eff   / [2 sijsij ] Reeff UL /eff
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