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Abstract. We present and discuss density functional theory calculations of magnetic

properties of the family of ferromagnetic compounds, (Fe1−xCox)2B, focusing

specifically on the magnetocrystalline anisotropy energy (MAE). Using periodic

supercells of various sizes (up to 96 atoms), it is shown that the general qualitative

features of the composition dependence of the MAE is in agreement with experimental

findings, while our predicted magnitudes are larger than those of experiment. We find

that the use of small supercells (6 and 12-atom) favors larger MAE values relative to

a statistical sample of configurations constructed with 96-atom supercells. The effect

of lattice relaxations is shown to be small. Calculations of the Curie temperature for

this alloy are also presented.

PACS numbers: 75.30.Gw, 71.70.Ej, 75.10.-b, 75.50.-y, 75.50.Ww, 03.65.-w

1. Introduction

There is currently an interest in searching for permanent magnet materials for electric

motor applications that are alternatives to those in wide use which possess expensive

Rare Earth (RE) elements such as Nb and Sm [1]. As various materials are explored for

their potential applicability in this regard, important figures-of-merit include the energy

product (related to the area enclosed by the magnetic hysteresis loop) and the Curie

Temperature, TC [2]. Only a material with a sizable energy product can perform useful

work on its surroundings, and the temperature at which this work is performed must be

comfortably below the temperature at which its total magnetic moment disappears.

While TC is largely a function of the size of the near-neighbor exchange energies,

the energy product (closely related to the coercivity) is a multi-scale property which

reflects the tendency of magnetic domains to resist reorientation when placed in an

external field which is misaligned with them. This complex physics of domain wall

structure, motion, and pinning is all dependent in part on a microscopic property:
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the magnetocrystalline anisotropy energy (MAE), the energy required to reorient the

electron spins in a ferromagnet from easy- to hard-axis directions [2, 3]. Though the

energy product involves much more than the MAE, it is hard to imagine a material with

a sizable energy product that does not also have a significant uniaxial MAE. Indeed,

permanent magnets in wide industrial use, such as Sm2Co17 and Nd2Fe14B, possess fairly

large MAEs [4] resulting from the interplay between the large spin-orbit interaction

provided by the RE element together with the enhanced crystal field splitting in these

tetragonal structures.

Rare Earth compounds are not the only ones to exhibit large MAE. For instance,

CoPt, FePt [4], and the recently-studied Li2FeN5 [5] are just a few examples of materials

with anisotropies which rival those of the permanent magnets in wide use. In general,

the problem of searching for new reduced-RE permanent magnet alternatives should

benefit from ab initio electronic structure calculations, from which TC and MAE can be

predicted. And in this case, Rare Earth compounds themselves present a formidable

challenge, owing to the fact that they often possess narrow-band f-electron levels in the

neighborhood of their Fermi energies, which are notoriously difficult to treat predictively.

Various additions to density functional theory (DFT) such as DFT+U have been applied

to the prediction of MAE in RE magnets [6, 7], but it is still unclear if such mean-field

extensions are indeed suitably predictive for the purpose of designing new materials [8].

For CoPt and other such non-Rare Earth materials, however, the situation is thought

to be slightly better with respect to ab initio calculations.

Recently, a team searching for Rare Earth-free permanent magnets suggested the

compound (Fe1−xCox)2B for x ∼ 0.3 as a potential candidate [9]. They showed

experimentally that both the coercivity and the MAE peak for the specific value x ∼ 0.3,

in agreement with earlier measurements from several decades before by Iga [10] and

Takacs et al. [11]. This was quickly reconfirmed by another group of experimentalists

[12], while Iga’s higher-T results have been recently confirmed in Ref. [13]. In this latter

work, a team involving coauthors of Ref.[9] studied the possibility of increasing the

MAE further by alloying with other elements. Though the value of the MAE for the

(Fe0.7Co0.3)2B alloy is below that of some other candidate permanent magnets, several

features of the (Fe1−xCox)2B system are quite interesting from the perspectives of both

applications and theory: 1. The TC are reasonably high, and are known experimentally

as a function of Co-concentration, x [11]. 2. The MAE is known not only as a function

of x, but also as a function of temperature, T , throughout the full range of x [10, 11, 13].

3. The crystal structure is thought to be essentially unchanged, modulo small changes in

lattice parameters, throughout the full range of (x, T ) [10]. 4. The electronic structure

is devoid of partially occupied f-electron states. Point 4 bodes well for the application

of first-principles electronic structure calculations of the DFT variety, while point 3

suggests that additional complications arising from structural complexity may not play

a large role. Point 2 ensures that there is a wealth of data to which to compare,

challenging the theoretical community to postdict both the detailed concentration- and

temperature-dependence of the MAE, thereby providing a very useful testing ground



DFT calculations of magnetocrystalline anisotropy energies for (Fe1−xCox)2B 3

for current and developing strategies to predict this important quantity.

To this end, two very recent theoretical contributions have addressed the

(Fe1−xCox)2B system using DFT-based methods. The first [12], involving two co-

authors of this manuscript and an experimental team mentioned above, proposed a

detailed explanation of the composition-dependence of the MAE based on selection rules

and band-filling arguments. First-principles calculations were performed in which the

exchange-correlation B-field was rescaled to produce agreement with the low-T magnetic

moments throughout the full range of x (this required a single rescaling), and then the

MAE as a function of x, calculated within the Coherent Potential Approximation (CPA)

[14, 15, 16, 17, 18] to treat compositional disorder (Fe � Co), was shown to be in good

agreement with low-T experimental data. The second [13], also involving the other team

of experimentalists mentioned above, used the Virtual Crystal Approximation (VCA)

to treat compositional variations together with a full-potential electronic structure

approach to predict MAE(x); they also noted the relationship between the sizes of the

predicted moments and the overall magnitude of the MAE, and focused particularly on

recommending strategies for further increasing the MAE on the Fe-rich side by doping.

The CPA and the VCA, while quite probably appropriate for predicting a range of

properties for intermediate compositions in systems in which substitutional disorder

is complete, do not allow for the investigation of the effects of detailed positional

correlations on properties. This includes the spread in values that can occur if the

disorder is in fact not complete, as well as the potential effects of local structural

relaxations. Since the MAE in many materials is known to be very sensitive to

crystal geometry, it is therefore also of interest to address such issues directly for the

(Fe1−xCox)2B system, as a complement to the aforementioned recent theoretical studies.

In this work, we perform ab initio electronic structure calculations of MAE, local

spin moments, and TC , as a function of Co-concentration for (Fe1−xCox)2B. For MAE

and moments, we model the substitutional disorder for intermediate values of x with a

set of discrete ordered supercells of different sizes, in which symmetrically inequivalent

atomic orderings are considered. This allows us to examine the potential effects of local

atomic positional relaxations, as well as the distribution of MAE and spin moment

values for different substitutional arrangements of Fe and Co ions. The primary aims

of this paper are three-fold: 1. To demonstrate that the general qualitative trends of

the composition-dependent MAE for this system are described well by standard DFT,

and that these qualitative features are relatively robust even when local substitutional

disorder and resulting structural modifications are taken into account. 2. To confirm

that the detailed magnitudes of the MAE are not described well by either LDA or

GGA-DFT without additional corrections, such as those recently applied [12, 13].

3. To show that the magnitudes of the MAE are further impacted by the detailed

treatment of positional disorder, particularly on the Co-rich side. While we compare

to experimental results throughout our work, we intentionally refrain from using the

experimental magnetic moment and MAE values to guide the choices we make when

performing our calculations. In this way, we intend to give the reader a picture of the
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current state-of-the-art in the prediction of MAE using well-converged DFT calculations

for a system exhibiting substitutional disorder.

The paper is organized as follows: In section 2, we provide computational details of

the methods used as well as the details of our assumptions regarding the composition-

dependent crystal structures. Curie temperatures are discussed in section 3. In

Section 4, we show our results for the magnetocrystalline anisotropy energy as computed

by DFT for different exchange-correlation functionals, including the role of lattice

geometry, and compare to experiments [10, 11]. Our calculations of local spin moments

are presented in Section 5, and their possible relation to the mis-prediction of the MAE

is discussed. We summarize our findings and discuss potential future directions in

Section 6.

2. Details of the calculations

Fe2B and Co2B have the same crystal structures, space group 140, I4/mcm, also known

as the CuAl2 prototype or C16. The boron atoms occupy the 4a (0,0,1/4) positions, and

the iron or cobalt atoms the 8h (ξ,1/2+ξ,0) sites. Experimental values for ξ are 0.1661

for Fe2B and 0.1663 for Co2B [10]. The crystal structure is shown in Figure 1. For

intermediate concentrations, we assume the crystal structure to be the same. This is

compatible with the limited x-ray diffraction studies performed on this suite of materials

for intermediate x [10], and the efficacy of this assumption will be further strengthened

when our results for TC are compared to those of experiment.

Figure 1. (Fe/Co)2B cell (Al2Cu prototype (C16)), spacegroup 140, I4/mcm. B

occupies the 4a (0,0,1/4) Wyckoff positions, Fe and Co the 8h (ξ,1/2+ξ,0) with

ξ=0.1661(Fe2B) and ξ=0.1663 (Co2B).

Since MAE values in particular are expected to be somewhat sensitive to atomic

positions, the bulk of our DFT calculations of these quantities are performed with lattice

parameters which are inferred from x-ray diffraction measurements on Fe2B and Co2B

at various temperatures, together with a limited number of diffraction measurements
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performed on (Fe1−xCox)2B for x = 0.6 [10]. Since we are ultimately interested in

examining the MAE throughout the full range of x (and the appropriate values of T

to make proper comparisons with experiment), we fit a model for the three C16 crystal

structure parameters: tetragonal cell lengths a and c, and internal parameter ξ to fix

the unit cell geometry for any given (x, T ). Our fits to the experimental data for a and

c are shown in Fig. 2, and the fits are of the form:
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Figure 2. Lattice parameters for Fe2B and Co2B as a function of T . The experimental

values [10] appear as dots, and our fits to these data are represented by the curves.

aFe(T ) = 5.10841 + (5.52348× 10−8)T 2

cFe(T ) = 4.25016 + (3.54608× 10−8)T 2

aCo(T ) = 5.01195 + (6.84340× 10−8)T 2

cCo(T ) = 4.21460 + (5.19616× 10−8)T 2

a(x, T ) = (1− x)[aFe(T )] + x[aCo(T )]

c(x, T ) = (1− x)[aFe(T )] + x[aCo(T )]

ξ(x) = (1− x)[0.1661] + x[0.1663], (1)

where the subscripts ”Fe” and ”Co” indicate lattice constants for Fe2B and Co2B, T

is in Kelvin, and a and c are in Å. The fits for aFe, cFe, aCo, and cCo are constructed

solely from the T -dependent data of Ref. [10] pertaining to Fe2B and Co2B; the lat-

tice constants for the intermediate Co-concentrations are assumed to depend on them

in the manner given above, which is a reasonable first assumption in the absence of a

large collection of additional data. The one additional set of data for the single value

x = 0.6 [10] shows our fit for a(x = 0.6, T = 293K) to be too low by 0.14% and our fit for
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c(x = 0.6, T = 293K) to be too high by 0.2%. We will see below that the consequence

of these discrepancies on the value of the predicted MAE is negligible. We assume that

the internal parameter, ξ, of the intermediate-concentration cases linearly interpolates

between its measured values for Fe2B (ξ = 0.1661) and Co2B (ξ = 0.1663). No appre-

ciable variation of this parameter with temperature was mentioned in conjunction with

the x-ray measurements [10]. Our results below show only a very small dependence of

the MAE on the choice of ξ within its reasonable range of variation.

For our calculations of MAE values, we use the VASP plane wave DFT code [19,

20, 21, 22] with projector augmented wave (PAW) pseudotentials [23, 24]. The non-

collinear spin-density functional (Pauli equation) formalism is used [25]. Unless oth-

erwise specified, we employ the generalized gradient approximation (GGA) within the

PBE scheme [26]. We also make comparisons where appropriate to results obtained

using the local density approximation (LDA). Plane wave cutoffs and energy conver-

gence criteria for the determination of the self-consistent charge density are chosen very

conservatively, given the PAWs for these elements, to ensure that the MAE is computed

to the maximum precision consistent with the method. As discussed at length by many

authors (see for instance Ref. [3] and references therein), the MAE is highly sensitive

to both the number of k-points used in Brillouin zone (BZ) integrations, and the en-

ergy broadening (or k-space interpolation scheme) employed. We use 213, 173, and 53

Γ -centered k-point meshes for the 6, 12, and 96 atom-cell MAE calculations, respec-

tively. These calculations are sped up by making use of crystal symmetry operations to

reduce the k-points to an irreducible wedge, which in the presence of spin-orbit is a rel-

atively recent addition to VASP [27]. Both tetrahedral interpolation [28] and Gaussian

broadening schemes are used for the representations of the sums of occupied Kohn-

Sham eigenvalues in the computations of the total energies; very limited dependences

of the MAE with respect to these choices are observed, given the k-point mesh sizes

we employ. We use two different schemes to compute the MAE: (i) The self-consistent

method, in which total energies for different spin polarization directions, E|| and E⊥,

are computed independently by calculating separate charge densities in the presence of

the spin-orbit term, ρ|| and ρ⊥. (ii) The non self-consistent method, in which the charge

density (determined in calculations neglecting spin-orbit) for each spin polarization are

presumed to be equal, and E|| and E⊥ are each determined by adding spin-orbit as a

perturbation in which Kohn-Sham eigenvalues are converged in its presence, but ρ is not

updated. As expected from the relative smallness of the spin-orbit term (which results

in small MAEs, generally), these two methods produce essentially identical results for

the systems we study here.

For our calculations of TC for various Co-concentrations, we use the Korringa-

Kohn-Rostoker (KKR) [29, 30] DFT code, Hutsepot, within the coherent potential

approximation (CPA) [14, 15, 16, 17, 18, 31, 32]. This allows us to obtain Heisenberg

exchange energies [33] Jij from which we calculate TC from a standard Monte-Carlo
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algorithm. All such KKR calculations, to obtain the effective Jij parameters, are

performed within the collinear spin density functional formalism (using PBE), in which

no spin-orbit interaction is considered. We find that including the interactions with

the nearest 1000 neighboring sites is sufficient to converge the Monte Carlo calculations

with the Heisenberg Hamiltonians. TC is then determined by identifying the peak in

the T -dependent heat capacity for each concentration.

Our use of two separate DFT codes, VASP (plane-wave, pseudopotential) and

Hutsepot (KKR-ASA) is motivated by the following several points: 1. The multiple-

scattering formalism adopted in the Greens function KKR method makes the calculation

of exchange parameters (Jij) needed for the determination of TC very straightforward.

2. This KKR-ASA code is also equipped with the means to do alloy calculations within

the CPA, which we employ below for both for the calculation of composition-dependent

Jij and magnetic moments. The use of CPA is not possible within VASP; comparisons

of local moment calculations with VASP using super-cells and Hutsepot using CPA are

informative, as discussed in Section 5. 3. VASP with the appropriate PAW potentials

is effectively full-potential, while ASA is not, and we deem it important to use full-

potential calculations wherever possible when predicting the MAE, since this quantity

is known to be quite sensitive to details of the total energy calculations. 4. VASP is

equipped with accurate forces and sophisticated geometrical relaxation schemes that

enable the lattice relaxation studies we report here.

3. Calculations of TC

Figure 3 displays our results (dashed red curve) along with those of experiment [11] (blue

points). The agreement is excellent, though notable deviations can be seen for small

x. Still, this level of agreement indicates that our assumptions regarding the absence of

major x-dependent structural modifications are probably correct, since significant (x, T )-

dependent modifications to the crystal structure of the real system would likely result in

larger changes to TC(x) (it is noteworthy that the elemental Fe and Co systems in their

native lattices have TC [Fe] < TC [Co], in contrast to that shown here and in Ref.[11] for

Fe2B and Co2B). While this result for the Curie temperature is somewhat decoupled from

those that follow, it is at least encouraging that this important property is described well

by PBE for the assumed C16 structure with complete Fe ↔ Co substitutional disorder

as modeled by the CPA.

4. Calculations of magnetocrystalline anisotropy energies

For the purpose of calculating the MAE for different Co-concentrations, x, we model

(Fe1−xCox)2B with a set of discrete ordered structures. This is certainly approximate,

but it does allow us to estimate the magnitudes that local relaxations of the atomic

positions might have on the MAE. We first use a 12 atom (8Fe/Co + 4B) cell, allowing

for concentrations x= 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, and 1.0. Figure 1
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Figure 3. (color online) Curie temperatures, TC , versus Co-concentration for the

(Fe1−xCox)2B system. Experimental data [11] are indicated by blue dots. Red

dashed curve shows the results of our PBE calculation of exchange parameters using

KKR-ASA, together with a determination of TC using a Monte Carlo (MC) approach

as applied to the resulting Heisenberg Hamiltonian, in which 1000 nearest-neighbor

couplings are used.

illustrates the 12-atom C16 structure cell, in which alternating planes of B and Fe/Co

are seen. For each concentration, we compute the MAE for all possible symmetrically

inequivalent arrangements of Fe/Co atoms. In addition, the MAE at zero temperature

(= E⊥ − E|| ) is computed by considering two mutually orthogonal spin-polarization

directions in the (⊥) plane. In this way, we obtain a spread of MAE values for each x.

Figure 4 shows four distinct sets of MAE results using the 12-atom cells. Upper

panels indicate calculations performed with the lattice parameters from the fit of Eq. 1

with T = 0, using LDA (upper left) and PBE (upper right) as the exchange correlation

functional. Individual MAE values for particular ordered configurations of Fe and Co,

and for particular choices of planar spin polarization direction, appear as blue dots. The

red curves connect MAE results for which the particular 12-atom configurations have

the lowest predicted total energies. Within this cell representation of (Fe1−xCox)2B, the

red curve is the T = 0 prediction. The orange curve connects MAE values averaged

with weights determined from Boltzmann factors involving the total energies of the

particular ionic configurations, and evaluated for T= 293K (even though the lattice

geometry parameters, MAE(ν), and Eν are chosen to be those meant for T = 0):

MAE(T ) ≡
∑
ν

[MAE(ν) exp(−Eν/kBT )] /
∑
ν

exp(−Eν/kBT ), (2)

where Eν denotes the total energy of atomic arrangement ν. Shaded regions indicate the

spread in these values (standard deviation). Taken together, these upper panel figures

show several features: LDA and PBE predictions of MAE(x) are generally similar, with

the exception of the endpoints, x = 0 and x = 1, exhibiting changes of sign. Other
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Figure 4. (color online) DFT predictions of MAE for discrete structures using a

12 atom cell. The temperatures listed at the top of each figure correspond to the

experimentally-derived lattice parameters used [10]; all MAE results are constructed

by differencing total energies computed at T = 0. The light shaded area marks the

range of obtained anisotropies (blue dots), where the red curve connects those which

are lowest in total energy. The yellow line corresponds to a room temperature average

of anisotropies, the standard deviation is shown by the dark shaded areas.

than this, MAE(x) ≡ E⊥ − E|| is positive (indicating an easy axis along c) for lower

Co-concentrations, and is negative (planar easy axis) for higher Co-concentrations. This

is in broad agreement with experiment [9, 10], though our predicted magnitudes of the

MAE are considerably larger than the measured values. We replot the experimental

results of Ref. [10] in Fig. 5 using the same scale and axes as those of Fig. 4; in Fig. 5,

red symbols indicate the spread of values for a given x measured from T = 77 to T ∼
800 K, and the blue curve connects MAE values measured at T = 77 K [10]. Note

that our predicted MAE (for PBE and especially LDA) exhibit a particularly large

spread for x = 0.75 for these 12-atom periodic cells, and that the largest values of

MAE for this concentration are more than four times larger in absolute value than

those of experiment. The two bottom panels of Fig. 4 are just like the PBE plot in the

upper right, but with lattice parameters chosen from the fits of Eq. 1 for T = 293K

and T = 773K, respectively. The minute differences between the three PBE panels of

Fig. 4 indicate a very small dependence of the calculated MAE(x) on the measured T -

dependent variations in lattice parameters, for which the underlying lattice is assumed
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Figure 5. (color online) Experimental MAE values taken from Ref. [10] (red points)

at each Co-concentration; data from all temperatures are overlaid. The blue curve

goes through the MAE values measured at T =77 K.

to be ideal and of the C16 type.

It is noteworthy that the upper-right panel of Fig.4 is very similar to the analogous

predictions shown in Fig.6 of Ref. [13], obtained using the VCA. Indeed, the only notable

deviation when comparing their results to, say, our red curve, is the slightly smaller value

of x at which the MAE attains its maximum (our ∼ 0.3 vs. their ∼ 0.4). As we will

see below, however, the magnitudes of the MAE, particularly for Co-rich cases, reduce

in absolute value when the supercell size is increased.

Turning briefly to the nature of the dependence of the total energy on spin

polarization direction, Fig. 6 shows the MAE defined as Eθ −E‖ calculated (in the non

self-consistent mode) with PBE for Fe2B and Co2B as a function of the angle θ, which is

defined as angle of the spin polarization direction to the c-axis. θ = 90◦ represents spin

polarization directions along a planar direction. The lattice parameters from the T = 0

fit for x = 0, 1 are used, as in the upper right panel of Fig. 4. We see from Fig. 6 that

PBE predicts Fe2B to be a uniaxial magnet, for which there is a clear easy axis (i.e., no

multiple minima). Our calculations for structures with intermediate-x display essentially

identical behavior, indicating that DFT predicts uniaxial anisotropy in this system, as

is desired for permanent magnet applications. We also find the anisotropy in plane to be

extremely small for both Fe2B and Co2B, suggesting that the choice of planar direction

in the computation of E⊥ is largely immaterial. For intermediate-x discrete structures,

this is less so; our computation of E⊥ for orthogonal planar directions contributes to

the spreads in MAE values for given intermediate x values as shown in Fig. 4.

4.1. lattice relaxations

One advantage of using discrete ordered structures is that it allows us to study the

possible effects of local atomic arrangements on the MAE. Since it is generally the case
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that GGA is slightly more reliable for geometry optimization than LDA, we use PBE to

relax the various structures with VASP’s geometry optimization capability. For these

we use periodically repeated 6 atom cells (4Fe/Co+2B). First we study the equilibrium

cell volumes one obtains for (Fe1−xCox)2B, keeping internal coordinates fixed. Figure 7

shows (PBE) relaxed cell volumes as a function of Co-concentration for (red crosses).

These predictions lie below those obtained by our fits (lines, generated from Eqs. 1) to
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Figure 7. (color online) Relaxed cell volumes computed with PBE for the 6 atom cells

(red crosses). Curves indicate the cell volumes as determined from the experimentally-

derived fits; the black curve is the (extrapolated) fit result for T=0.
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experiment [10] by up to ∼ 2.5%.

Next we investigate how structural relaxations affect the anisotropies. Figure 8

shows our results for relaxed and unrelaxed cases using both LDA and PBE. As with
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Figure 8. (color online) DFT predictions of MAE for discrete structures using a 6

atom cell performed with both relaxed and unrelaxed atomic geometries. See text for

details.

the 12-atom cells, we display results for all symmetrically inequivalent configurations,

though here we refrain from considering each inequivalent polarization direction in the

computations of E⊥. Four types of results are displayed: Orange triangles (LDA) and

purple crosses (PBE) show the MAE calculated with the experimentally determined

room-T lattice geometry of Fe2B (irrespective of x). Red squares (LDA) and blue

circles (PBE) show the MAE calculated at lattice geometries determined for each cell

individually by relaxing internal atomic positions (as well as cell volume and shape)

using PBE. The LDA vs. PBE comparison shows sign flips for x = 0 and x = 1, as

we saw for the 12-atom cases. The effect of relaxing the atomic positions is largest for

x = 0, 1 as well, and is particularly dramatic for the PBE calculation of the MAE of

Co2B. However, the overall shape of MAE(x) is again similar to that of the 12-atom

cell results (see Fig. 4), and it is even the case that assuming a single structure (that of

Fe2B; orange triangles and purple crosses) produces results which are broadly similar to

those assuming the more detailed concentration-dependent structures implied by Eqs. 1.

We note that the insensitivity of the x = 0.25 and x = 0.75 cases to both changes in

exchange-correlation functional and to atomic relaxation is quite striking. This suggests

that the x = 0.3 case discussed recently in Ref. [9] may be more robustly described here,

though we stress once again that the magnitude of the MAE is overpredicted (compare

to Fig. 5) relative to experiment in the standard DFT treatments we employ.

We also explore the dependence of the anisotropy of the pure systems, Fe2B and

Co2B, on the C16 internal parameter, ξ, which is also not perfectly reproduced in PBE
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relaxations. In these calculations, we choose the lattice parameters a and c from Eq. 1 for

T = 0. Figure 9 shows the dependence of both the MAE and the total energy on ξ. Our

results (top panel) indicate that the optimal value of ξ within PBE is ∼ 0.1670 rather

than the 0.1661-0.1663 seen in experiment [10]. However, the bottom panel shows that
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Figure 9. (color online) PBE predictions for the dependence of the MAE on the

internal parameter, ξ, based on the experimentally-derived T= 0 a and c lattice

parameters for Fe2B and Co2B (lower panel). The upper picture shows the total

energy versus ξ. The experimental value of x = 0.1661 (for Fe2B) is marked by a

vertical line.

the computed effect of this particular discrepancy on the MAE is modest on the scale

of the variations seen in Fig. 4. Thus, the fact that this internal parameter is slightly

off from what it should be is not likely to be the cause of the MAE theory-experiment

discrepancy we see here.
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4.2. 96-atom supercells

We have noted a sizable spread in our predicted MAE values using all possible

configurations for a given concentration within a 12-atom cell. We have also seen that

the bulk of these MAE values are substantially larger in absolute value than those

found in experiment. This prompts us to consider even larger supercells, in order to

investigate if the use of small cells biases the results in a particular direction. To this

end, we choose 96 atom cells, in which VASP calculations are performed as before, but

with a 53 k-point mesh. We first note that even with this moderately sparse sampling

of the Brillouin zone we are able to reproduce the MAE of periodic repetitions (12PR)

of the configurations studied for the 12-atom cell with a 213 k-point mesh, see Fig. 10

(compare red and orange points). Since the large number of configurations makes it
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Figure 10. (color online) comparison of MAE (PBE) data obtained with a 12-

atom cell (red dots) and a 96-atom (orange and blue, data points are slightly shifted

horizontally) cell. The label ’symmetric’ refers to configurations which can be realized

in a 12-atom cell, where ’random’ indicates a random distribution of Fe and Co atoms

within the cell, corresponding to a certain concentration. The dashed black line marks

the experimental 77K data of Iga et. al. [10]. The two solid lines are the 77K

by Boltzmann factors weighted averages (see Eq. 2), including all ’symmetric’ and

’random’ configurations as well as ’random’ configurations only.

unfeasable for us to calculate the MAE of every possible periodic cell of this size, we limit

ourselves to at most twenty representative random configurations per concentration.

The resulting limited distribution of MAEs (Fig. 10) from this set (96PR, blue points)

curiously display less spread than those of the 12PR configurations. Furthermore, the

absolute magnitudes of the MAE of this set are in general smaller than those from the

12PR set, and particularly so for the Co-rich cases in the neighborhood of x ∼ 0.8.

We note that the x = 0.875 12PR case contains a chain of Fe atoms and has a positive

enthalpy of formation as predicted by PBE, highlighting the problematic nature of using

the smaller super cells for modeling the effect of disorder on the MAE. At this point

it is again instructive to study the temperature dependent Boltzmann-weighted MAEs
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defined in Eq. 2. Figure 10 contains a comparison between experimental and predicted

(with and without the 12PR structures) MAE at 77 K. Since the 12PR structures are

over-represented in this limited average, it is perhaps more reasonable to consider the

thermodynamic average excluding this set as more accurate. With this approximation –

as well as those of the underlying exchange correlation functional – in mind, we see the

averages of the random configurations using larger supercells better match experiment

than those of the highly periodic 12 atom supercells. This suggests that a treatment of

true disorder could produce better agreement still; the use of the CPA in the calculation

of MAE values for this system has been investigated in a recent work [12].

4.3. temperature effects

Since the T -dependence of MAE(x) has been measured for (Fe1−xCox)2B [10], it is of

interest to know how much of this detailed T -dependence, if any, can be obtained in

the calculations by simply performing T = 0 electronic structure calculations of the

MAE at the T -dependent experimental lattice parameters, as for example suggested in

reference [34]. We have already seen from Fig. 4 that the variation of the computed

MAE(x) with different lattice parameters is minimal.

Figure 11 (left panel) shows our MAE calculated (12 atom cells) with PBE for

Fe2B and Co2B using the experimentally-derived T -dependent lattice parameters of

Eq. 1, and plotted against T . For comparison (right panel) are the T -dependent MAE
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Figure 11. (color online) left: Calculated (T = 0) MAE (PBE), computed at the

experimental lattice parameters [10] for different temperatures for Fe2B and Co2B.

right: experiment, data from Ref. [10]

from experiment [10]. It is clear that even the qualitative trends in the predictions

are incorrect; the anisotropy for Fe2B decreases (i.e., becomes more negative) rather

than increasing, and the anisotropy of Co2B decreases monotonically, in contrast to the

non-monotonic behavior seen in experiment. This suggests that an inclusion of spin-

disorder, rather than simple thermal expansion, is necessary to describe much of the

T -dependence of the MAE in this system, even well below the Curie temperature. This

important subject awaits further study.
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5. Calculations of magnetic moments

Our LDA and PBE results for the MAE are larger in magnitude than those of

experiment, even when considering the larger super cells possessing an ostensibly better

description of disorder (compare the blue curves/symbols of Figs. 5 and 10). Given that

the experiment-theory discrepancy for MAE is particularly large on the Co rich side,

it is natural to study the composition-dependence of more basic magnetic properties,

namely the magnetic moments, and to compare them to the available experimental

results, as also explored in recent works [12, 13]. Figure 12 shows KKR-CPA total

moments for the range of concentrations (black solid curve) compared with those from

the measurements of Takacs et al. [11] (blue dots). While the predictions within PBE

agree with the experimental results for the Fe-rich compounds, they lie well above

those of experiment on the Co-rich side, and progressively more so for larger x. The

general reduction of total moment with increasing x is easily understood from band-

filling arguments. However, our calculations also suggest that the Fe moment (not

weighted by concentration), per Fe ion, is nearly constant for different x while the Co

moment, per Co ion, decreases by nearly 0.2µB as x increases from 0 to 1. That is

illustrated by the solid red (Fe) and green (Co) curves in Fig. 12. A change in the Co
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Figure 12. (color online) Calculated (continuous curves) using KKR-CPA and

estimated magnetic moments from experiment [11] (blue dots). Solid lines show the

local moments on each lattice site based on a CPA calculation. Dashed lines shows

the moments weighted by their concentrations.

moment with increasing Co-concentration was also suggested in conjunction with the

experimental findings [11], though again it seems that our reduction with x is not as

large as that of experiment. The concentration-weighted individual contributions to the

total moment appear as dashed curves. The B moments are predicted to be extremely

small and anti-ferromagnetically aligned with the Fe/Co (brown curve). While these

results confirm those of Refs.[12, 13], it is important to note that the same trends can be
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observed from VASP calculations using discrete structures as discussed above, shown in

Figure 13. Solid lines are those of CPA-KKR calculations (same as in Figure 12), dots
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Figure 13. (color online) Calculated local magnetic moments (dots) using all possible

discrete supercells in a 12 atom cell, for LDA and PBE. Solid lines show KKR-CPA
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correspond to magnetic moments of all 12-atom configurations computed with VASP.

The magnitudes and distributions of moments from the 96-atom cells are very similar.

The PBE KKR-CPA moments are in good agreement with the VASP calculations using

the discrete structures, even though there is a significant spread indicating that changes

in local environment give rise to changes in moments. The main point is that the

moments calculated with PBE are significantly larger than those of experiment for the

same values of x for which our predicted MAE are similarly too large. This is consistent

with the observations made in Refs.[12, 13] and in [34] for a different material, which

further argued the need to ensure that local moments are predicted accurately before

an accurate MAE can be computed.

It is interesting to note that the LDA total moment for Co2B (blue dot on the

RHS of Fig. 13) is not much larger than that inferred from experiment (blue dot on

the RHS of Fig. 12), and yet our LDA prediction of the MAE of Co2B is still quite a

bit larger in absolute value than that of experiment (though with a sign-flip relative

to the PBE prediction; see Figs. 4 and 5). It is however true that the LDA values

of MAE for x = 0.75 and 0.875 are notably smaller, on average, than those of PBE

(compare upper left and upper right panels of Fig. 4), which coincides with the fact

that both Fe and Co moments are substantially smaller in LDA. As we noted above,

however, the x = 0.25 MAE does not show a substantial variation, LDA vs. PBE,

and it is even the case that the average value of the spread in the upper-right panel

(PBE) of Fig. 13 is lower than that in the upper-left panel (LDA). This seems to

contradict the aforementioned correlation between moment size and MAE magnitude,

since the LDA moments are quite a bit lower than the PBE moments throughout the
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full range of x shown in Fig. 13, including x = 0.25. It suffices to say that the correct

prediction of moments is certainly not a sufficient condition for the accurate prediction

of MAE. Further detailed analysis of both 12-atom and 96-atom results reveals no

correlation between the spatial distributions and overall sizes of moments for given

ionic configurations and the computed MAE for the same configurations.

As we mentioned in the Introduction, DFT + U methods have been used to predict

magnetic properties of RE compounds, where f-electron localization is clearly relevant.

Since standard DFT of the PBE-GGA variety seems to give incorrect moments for

Co in the (Fe1−xCox)2B system, it is worth asking if the application of a correlation

correction of this type for the Co d-electron manifold might lead to results in better

agreement with experiment. Though we stated at the outset that our aim in this work

is to refrain from using experimental moment data to guide our choices, we note that

such an inclusion does not automatically lead to improved agreement here: Applying

a U − J (using the so-called rotationally invariant formalism of Dudarev et al. [35]) to

the Co-d states increases the (PBE-GGA) Co spin moments for Co2B, pushing them

farther from the experimental results. In particular, U − J = 1 eV gives a µCo roughly

20% higher than the U − J = 0 value shown as the left-most solid green line in Fig. 12,

while the experimental value for µCo is ∼ 20% lower.

In recent works concerning the MAE of both this system [12, 13] and others [34],

the correlation between the under(over)-prediction of local spin moments, and a

corresponding under(over) prediction of the MAE was emphasized. In Ref. [12] for

(Fe1−xCox)2B, a rescaling of the exchange-correlation B-field on the Co ions was applied

to reduce the Co-moment to a value in line with experiment, and the resulting MAE (as

computed with an LMTO-ASA approach using the CPA with the PBE functional) was

then also shown to fall in line with the experimental values [10]. Given that this rescaling

prescription 1. is questionable, in that it does not arise from a consistent theoretical

description, and 2. is merely postdictive as it relies on input from experiment, we submit

that the further studies along these lines are needed.

6. Conclusions

We have investigated the magnetic properties of the (Fe1−xCox)2B system using Density

Functional Theory. We conclude that Curie temperatures can be determined reasonably

well over the whole concentration range by performing Monte-Carlo simulations with

Heisenberg exchange parameters determined from DFT. The basic qualitative shape of

the dependence of the MAE on the Co concentration is similar to that of experiment,

even though our predicted magnitudes are too large, depending on the treatment of

disorder. We note that better agreement is obtained for larger supercells. However

we show that both LDA and PBE support the proposal [9] that an alloy with x ∼ 0.3

should be a good candidate for a uniaxial permanent magnet. We also find the calculated

MAE to be relatively insensitive to finer details of the atomic geometry, including local

positional relaxations and the precise value of the internal parameter ξ. Calculations of
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the MAE using T -dependent lattice parameters (a(T, x) and c(T, x)) along with zero-T

ferromagnetic ground states failed to predict even the qualitative trends in the measured

T -dependent MAE, suggesting that other effects, such as thermal spin fluctuations even

well below TC , phonon-magnon coupling, or effects of magnetorestriction may need to

be considered. It was demonstrated that the MAE of the ordered structures, Fe2B and

Co2B, depends strongly on the choice of the exchange correlation functional, exhibiting

sign-flips, while the intermediate-x cases are less affected by this choice.

The incorrect predictions of the total moments in both LDA and PBE variants

of DFT for this system are troubling, and may indeed be another important cause for

incorrectly predicted MAE values at low-T , as suggested in recent works [12, 13]. It will

therefore be important in the future to explore different strategies for improving DFT

in a consistent manner so that such ab initio calculations of MAE are truly predictive.

This, together with the inclusion of thermally-induced disorder to model the highly-

detailed T -dependent features of the MAE of (Fe1−xCox)2B, are likely to be fruitful

areas for future work.
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[12] Belashchenko K D, Ke L, Däne M, Benedict L X, Lamichhane T N, Taufour V, Jesche A, Bud’ko

S L, Canfield P C and Antropov V P 2015 Applied Physics Letters 106 062408 (Preprint

1501.03483)
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