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The saturation of stimulated Brillouin scattering (SBS) by the decay to turbulence of the ion acoustic
wave (IAW) that participates in the three-wave SBS interaction is demonstrated using a quasi-noiseless
one-dimensional numerical solution to the Vlasov-Maxwell system of equations. This simulation technique
permits careful examination of the decay process and its role in the complex evolution of SBS. The IAW
decay process is shown to be an effective SBS saturation mechanism. In our example, the instantaneous
plasma reflectivity saturates at ∼30% and drops to ∼0% as a direct consequence of IAW decay. A contrasting
example where the reflectivity is controlled by dephasing due to the nonlinear frequency of the IAW is also
discussed.

I. INTRODUCTION

Stimulated Brillouin scattering (SBS) persists as
a problematic source of backward-scattered light in
indirect-drive inertial confinement fusion (ICF) experi-
ments. In ICF experiments, plasma near the wall of
hohlraum targets and in the ablated outer layer of the
fuel capsule is observed to produce levels of SBS that are
typically energetically weak compared to the total laser
energy delivered to the hohlraum. However, when arriv-
ing in bursts, this backscattered energy is sufficient to
damage the sensitive and expensive optics required at fa-
cilities such as the National Ignition Facility (NIF) and
remains a central consideration in experimental design1.

In the SBS process, laser light scatters from and drives
ion acoustic waves (IAWs). IAWs are weakly disper-
sive, permitting coupling between modes with wave num-
bers that differ greatly and making IAWs susceptible to
decay2. IAW decay has been observed directly in dedi-
cated Thomson scattering experiments3,4 and correlated
with the saturation of SBS3. Numerical studies have
identified IAW decay during SBS saturation5–9, while
other work has examined IAW decay in isolation10–13 and
demonstrated the role of electron kinetic effects in IAW
nonlinearity10,11,13,14. In Ref. 13, the efficient mode-
mode coupling of IAWs was found in simulations of both
free and continuously driven IAWs to result in a decay
process that occurred readily across much of the param-
eter space of relevance to ICF experiments.

Study of IAW decay has been motivated in part by the
potential of this decay process to saturate the SBS insta-
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bility. The decay of the IAW driven during SBS would
naturally act to suppress further scattering of the laser
light, thereby limiting the reflectivity (scattered over in-
cident power) of the plasma. The numerical results of
prior work5,7–9,11,13 suggest that IAW decay can indeed
lead to a highly turbulent nonlinear state. Due to kinetic
effects, the decay process does not conserve energy stored
in the field of the IAWs, resulting in particle heating.

In the current work, we investigate the role of
IAW decay in SBS saturation using the kinetic code
sapristi14,15, which solves here the collisionless 1D1V
(one spatial and one velocity dimension) Vlasov-Maxwell
system of equations using a continuum method. Our
simulations include the kinetic behavior of electron and
ion species, both of which play important roles in the
nonlinearity of IAWs. The simulations presented are de-
signed to distinguish the saturation of SBS via IAW de-
cay from other saturation mechanisms, such as depletion
of the laser light (or “pump”) due to scattering and de-
phasing due to a nonlinear frequency shift of the IAW.
Our simulations demonstrate the effective saturation of
SBS by the decay of the primary IAW to subharmonic
modes (i.e., modes that do not have wave numbers that
are integer multiples of the fundamental). In addition
to decay-generated subharmonics, significant IAW har-
monic generation14 is also observed, a process that has
been found to be important in reduced models of SBS16,17

and may influence IAW decay rates9,12,13.
In our simulations, we seed SBS but not the stimu-

lated Raman scattering (SRS) process (see Appendix for
details). Due to the quasi-noiseless simulation technique
employed, we do not observe SRS. This approach allows
the study of SBS in isolation from the SRS process.

In the following, plasmas will be categorized by the
parameter α = ZTe/Ti. This parameter determines the
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strength of the ion Landau damping of IAWs in the linear
regime (i.e., before significant particle trapping has oc-
curred, which acts to suppress Landau damping). In ICF
experiments, laser light interacts with low-Z hohlraum
gas fill (He) and capsule ablator (CH, Be, C) materials
as well as high-Z hohlraum wall materials (Au, U). Laser
pulse lengths are sufficient for electron-ion temperatures
to nearly equilibrate until peak power is reached. As
a result, plasma conditions vary across 4 . α . 100.
IAW decay was found previously5,13 to behave similarly
in both single and multi-ion species plasmas; here, we
study a single ion species plasma (He) in regimes char-
acterized by values of α that differ greatly.

Our key findings are summarized as follows: When the
decay IAW modes of the fundamental IAW mode that is
resonant with the SBS interaction become comparable
in amplitude to the fundamental mode, the fundamen-
tal mode collapses and a highly turbulent state that is
only weakly reflective ensues. The decay process is qual-
itatively described by a fluid-like decay of the IAW to
two daughter IAW modes2, known as two-ion wave de-
cay, and was observed to be weakened by increasing α in
a 1D system13. At high α (we show the case α = 50)
where ion kinetic effects are negligible, ion wave decay
is suppressed. In this case, the evolution of the reflec-
tivity is dominated by the dephasing of the driven IAW
from the ponderomotive drive of the light waves7,8,18–22.
This dephasing is due to the trapping-induced nonlinear
shift of the IAW frequency away from its linear value,
dominated at high α by electron trapping14.

The paper is organized as follows: The physical moti-
vation behind our choice of plasma parameters is given in
Sec. II. In Sec. III A, simulations are presented showing
SBS saturation via IAW decay and the resulting parti-
cle heating in Sec. III A 2. In Sec. III B, simulations are
presented showing SBS saturation by the nonlinearity of
the IAW frequency. Finally, in Sec. IV, we discuss our
results in the context of relevant prior work.

II. MOTIVATION OF PARAMETERS

Our goal is to demonstrate the role of ion wave de-
cay as a saturation mechanism of SBS independent from
other potential saturation mechanisms. To this end, two
distinct cases are addressed in this work. The parame-
ters for these cases, labeled set S1 and S2, are summa-
rized in Table I. Significant prior simulation studies have
been accomplished in which IAW decay has been studied
explicitly or simply observed to occur; prior work is dis-
cussed in the context of the new results presented here
in Sec. IV.

We consider a plasma composed of species j with den-
sity nj , charge Zje, mass mj , and temperature Tj , where
e is the magnitude of the electron charge (note Ze ≡ −1
and Zi ≡ Z throughout). Subscripts of e and i in-
dicate electron and ion quantities, respectively. The
species Debye length is given by λDj = vtj/ωpj , where

TABLE I. Summary of analytically-determined parameters

Set ZTe/Ti v†φ/vti ν†s/ω
L
s δ̃ω

‡
s Ix=0

0 (W/cm2)

S1 7 3.2 0.060 -0.066 3.5× 1015

S2 50 6.9 8.2× 10−3 0.18 7.0× 1014

For both sets, Z = 2, Te = 2 keV, mi = 4u (42He),
ne0/nc = 0.1, ksλDe = 0.375, L = 100λ0 ≈ 200λs,
λ0 = 351 nm, ω1 = ω0 − ωLs , and Ix=L1 = Ix=0

0 /106.
† Obtained from solving the KDR. Here, vφ = ωLs /ks.
‡ ωNLs = ωLs + δωs, where δωs/ω

L
s = δ̃ωs

√
eφ/Te. See

Refs. 14, 23, and 24.

ωpj =
√
njZ2

j e
2/(mjε0) is the species plasma frequency,

and vtj =
√
Tj/mj the thermal velocity. ε0 is the per-

mittivity of free space. The complex IAW frequency Ω
may be obtained by solving the kinetic dispersion rela-
tion (KDR) numerically. For He with Maxwellian species
distributions, good analytic approximations are known.
The real mode frequency ω = Re(Ω) is,

ω ≈ cik
[

1

(1 + k2λ2
De)

+
3

α

]1/2

, (1)

where ci =
√
ZTe/mi is the cold ion sound speed. The

Landau damping may be decomposed into electron and
ion contributions ν ≡ −Im(Ω) ≡ νe + νi, where,

νe
ω
≈ ν̃

√
Zme

mi
, (2)

νi
ω
≈ ν̃α3/2 exp

(
−α

2

)
, (3)

and ν̃ = [(π/8)/(1+k2λ2
De)

3]1/2. Note that the quantities
k, ω, and ν without subscripts are valid for all linear IAW
modes, while the subscript s denotes the specific IAW
mode that is resonant in the linear 3-wave SBS interac-
tion. An IAW driven during SBS must satisfy matching
conditions in frequency and wave number between itself,
the laser light (subscript 0), and scattered light (sub-
script 1): ω0 = ω1 + ωs and k0 = k1 + ks, where here all
quantities are real scalars and defined as positive but for
k1 < 0 (i.e., the SBS light is scattered backwards).

The laser intensity threshold for SBS is proportional
to νs/ωs (see, e.g., Ref. 25) and is highly sensitive to α
[see Eq. (3)]. Accordingly, the expected linear SBS re-
sponse in cases S1 and S2 may differ substantially for a
given laser intensity. In our simulations, the light waves
are effectively undamped (apart from at the boundaries)
so there is no damping threshold for convective growth.
Case S1 lies below the threshold for absolute instability.
Case S2 is slightly above this threshold, but the absolute
instability growth rate is small compared to the convec-
tive instability growth rate. The convective gain is given
by Gconv = 2Γ2

0L/(cνs), where Γ0 is the SBS growth
rate25. For S1, Gconv = 16 while for S2, Gconv ≈ 30.
Discussed subsequently, the applicability of such linear
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theory is limited due to the early onset of nonlinearity in
our simulations.

In this work, Φ = Φ(x, t) is the actual IAW potential,
while φ = φ(x, t) is the amplitude of the envelope of Φ
and typically varies slowly compared to the IAW period.
It is often convenient to decompose Φ into Fourier com-
ponents,

Φ =
∑
l

(1/2)φl exp[i(klx− ωlt)] + c.c. (4)

While the IAW driven during SBS remains approximately
linear, one has φ ≈ φs. The traveling potential interacts
with resonant particles, i.e. those with velocities close to
vφ = ωs/ks. In addition to Landau damping, resonant
particle (kinetic) effects include a nonlinear (amplitude-
dependent) frequency shift of the IAW that is a conse-
quence of particles becoming trapped in the wave poten-
tial. We differentiate between the linear IAW frequency
ωs(φ→ 0) = ωLs and nonlinear frequency ωNLs , for given
wave number ks, by writing,

ωNL = ωL + δω. (5)

Particle trapping will also reduce and in a 1D system
may eliminate Landau damping. It is therefore impor-
tant to the behavior of SBS near threshold. In the sim-
ulations presented in the following, species distributions
are described by the continuous distribution functions
fj = fj(t, x, v), where t, x, and v are scalars indicating
time, spatial position and velocity, respectively (see Ap-
pendix for details). Trapping results initially in a flatten-
ing of 〈fj〉λs in the resonant region of velocity space. This
flattening is centered about vφ with a characteristic half-
width, vtr,j , that may be estimated analytically to good
accuracy for wave amplitudes that remain in the pertur-
bative limit14,23,24. For electrons under the conditions
discussed in this work, resonance occurs in the center of
the distribution (vφ/vte � 1), and vtr,e/vte = 2

√
eφ/Te;

for ions, resonance occurs in the tail of the distribution
(here, vφ/vti > 3), and vtr,i/vti = 2

√
αeφ/Te. Note that

vtr,j is a half -width, and trapping occurs within the re-
gions bound by vφ ± vtr,j .

For a small-amplitude monochromatic IAW, one has
δω ∝

√
|φ| to good accuracy14,23,24. Similar to the Lan-

dau damping, both electron and ion species contribute
to δω, although these contributions are of opposite sign.
Both the sign and magnitude of δω are therefore strongly
dependent upon α. An analytic calculation of δω is possi-
ble for both “adiabatic”14,24 and “sudden”14,23,24 excita-
tion limits. Here, an adiabatic limit is appropriate for the
electrons. The sudden limit is appropriate for the ions
in S1, while for S2, the ion contribution is negligible14.
Total δωs is given in Table I.

The other nonlinear property of IAWs that is impor-
tant to this study is the decay of the ks mode. A simple
resonant IAW decay model of a mother to two daughter
waves is derived in Ref. 2, which gives,

γa = γb =
ci
2

√
kakb

∣∣∣∣eφsTe
∣∣∣∣ , (6)

where γl is the exponential growth rate of the kl mode,
and the subscripts a and b label the decay (daughter)
modes that fulfill ks = ka + kb (and ωs = ωa + ωb). This
equation is obtained by a simple 3-wave resonant (i.e.,
without dispersion) IAW decay model and includes no
kinetic effects or harmonics of the mother mode12 and
does not capture the dependence of γl upon α found in
Ref. 13. However, this model qualitatively describes the
IAW decay process and provides a useful benchmark for
decay rates measured in simulations.

In fluid treatments of IAWs, the quantity ksλDe deter-
mines the relative amplitudes of the harmonics of the fun-
damental IAW12,14, although such treatments underesti-
mate significantly the strength of harmonic generation
present in fully kinetic simulations13,14. In S1 and S2,
ksλDe = 0.375. The decay mechanism of IAWs was found
previously13 to be weakly if at all sensitive to ksλDe.

The minimum set of effective parameters in a colli-
sionless single-ion species plasma is simply α = ZTe/Ti,
kλDe, and Zme/mi for the plasma, and vte/c and ne/nc
for the light waves, where nc is the critical density. The
cases S1 and S2 are distinguished primarily by the value
of α used in each: α = 7 and α = 50 (in practice, we vary
Ti). In S1, the linear Landau damping is significant (of
order 5% of the IAW frequency), the IAW decay rate is
close to a maximum13, and the nonlinear frequency shift
is negative and of relatively small magnitude14. In case
S2, the linear Landau damping is negligible (less than 1%
of the IAW frequency), the IAW decay rate is strongly
suppressed13, while the nonlinear frequency shift is pos-
itive and of relatively large magnitude14. In the simu-
lations, the initial electron temperature and density are
Te = 2 keV and ne0/nc = 0.1, respectively, typical of
plasma with significant levels of SBS at the NIF. We do
not impose gradients, external fields, or a plasma flow.

In order to study the role of IAW nonlinearity (rather
than pump depletion) in SBS saturation, the differing
values of α in S1 and S2 necessitate differing laser in-
tensities, chosen so as to produce similar IAW ampli-
tudes and reflectivities in the two cases. The laser in-
tensity is set to 3.5 × 1015 and 7 × 1014 W/cm2 in
sets S1 and S2, respectively, with vacuum wave length
λ0 = 351 nm. The plasma length L is chosen to be
L = 100λ0 ≈ 200λs ≈ 3350λDe, where λs = 2π/ks.
This length is short enough that the pump does not de-
plete strongly when undergoing SBS, but large enough
that excited IAWs can undergo significant decay before
advecting to the boundaries of the system.

III. SIMULATION RESULTS

The simulation setup is summarized in Fig. 1, while
a fuller discussion of the simulation technique is given
in the Appendix. In both cases, the progression in sim-
ulations is as follows: A weak monochromatic electro-
magnetic seed of intensity Ix=L

1 , frequency ω1, and wave
number k1 exists throughout the plasma, introduced at
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the x = L boundary and propagating in the direction of
decreasing x. A laser is introduced at ωpit ∼ 100 and
x = 0, propagating in the direction of increasing x with
intensity Ix=0

0 , frequency ω0, and wave number k0.
The light waves drive an IAW via SBS at (ω, k) ≈

(ωs, ks), modifying fj in the resonant region of velocity
and reducing the Landau damping. The seed is ampli-
fied via backwards scattering of the laser light across L
and consequently I1 is typically largest near the x = 0
boundary. Using the parameters listed in Table I, the
simulation duration is approximately 4000/ωpi ∼ 2.4 ×
105/ωpe ∼ 140 ps. The IAW amplitude is largest slightly
further from the boundary due to the Krook damping
layer (see Appendix) and wave advection. The maximum
IAW amplitude grows in tandem with the reflectivity of
the plasma, R ≡ Ix=0

1 /Ix=0
0 , until saturation due to non-

linear processes.
In figures and in the text, normalizations of physical

quantities are given explicitly. The exception is the elec-
tric field E (either longitudinal or transverse), which is

normalized as Ẽ = eλDeE/Te, where E0 = E0(x, t) and
E1 = E1(x, t) are the transverse electric fields of the
pump and scattered light, respectively. Ex = Ex(x, t) is
the longitudinal electrostatic field of the plasma waves;
Ex(k) = Ex(k, t) denotes the longitudinal spatial Fourier
transformation component of Ex with wave number k.

A. Set S1: ZTe/Ti = 7, larger νs, and smaller |δωs|

1. Reflectivity and subharmonic growth

This case clearly exhibits the saturation of SBS via
IAW decay, with no significant complicating factors. The
full plasma parameters for the case discussed in this Sec-
tion are given in Table I, listed under set S1. In Fig. 2,
three snapshots in time of the longitudinal electrostatic
field (Ex, the IAW) and envelopes of the transverse elec-
tromagnetic field intensities (I0 and I1) are shown.

In Fig. 2(a), the fields are presented just before the
onset of saturation. Between the time snapshots in
Figs. 2(a) and 2(b), the ks IAW mode rapidly decays
to its subharmonics, leading to an increasingly turbu-
lent plasma. The moment at which the IAW amplitude
(and plasma reflectivity) is lowest is shown in Fig. 2(c).
It is apparent in Figs. 2(a-c) that SBS amplification oc-

x = 0 x = L = 100λ0 ≈ 3350λ
De

I0
x=0

, (ω0, k0) I1
x=L

, (ω1, k1)

Ion acoustic waves
  in plasma

FIG. 1. Basic simulation geometry showing the pump laser
(subscript 0) and EM seed wave (subscript 1). Dashed lines
indicate the furthest extent of the plasma boundary damping
layers (at scale). The EM antennae are within these boundary
layers; see Appendix for details.

curs only when Ex is essentially monochromatic. The
pump [shown also in Figs. 2(a-c)] is only weakly depleted
throughout. Turbulent regions of plasma are minimally
if at all reflective.

The plasma reflectivity, R, and evolution of Ex in k-
space are shown in Fig. 3(a). R peaks at ∼0.35 then falls
to ∼1 × 10−4. The saturation and subsequent crash of
R coincide with the onset of IAW turbulence5,8,9. After
crashing, R begins to grow again; we attribute this re-
currence simply to the advection of IAWs and resonant
particles out of the simulation box, resetting the sys-
tem to near its initial quiescent state. The phenomenon
of recurrence in SBS has been observed under similar
simulation conditions using a PIC code8, as well as in
the study of SRS saturation using Vlasov26 and PIC27

codes. The time taken for IAWs and resonant parti-
cles to reach the boundary of the system is at most
τ ∼ L/ci ∼ 3500/ωpi, in rough agreement with the recur-
rence period τrec ∼ 2300 observed in Fig. 3. The particle
distributions may however retain remnants of their per-
turbations, even in the absence of any further driving
of IAWs; the bulk with vtj ∼ 0 is also somewhat modi-
fied during SBS, and these modifications may propagate
slower than ci.

In Fig. 3(b), the frequency ωNLs of the IAW ks mode
that is linearly resonant with the pump and seed and the
frequency ωmax of the largest amplitude IAW mode are
shown as deviations from the linear resonant mode fre-
quency, ωLs . To obtain the instantaneous frequency of
a mode in simulations, the time derivative of the mode
phase θl is taken: ωNLl = ∂θl/∂t, where θl is the an-
gle of the complex phasor of Ex(kl). Early in time, one
sees ωmax = ωNLs ≈ ωLs (i.e., kmax = ks), as expected
for a regime where the plasma waves remain only weakly
nonlinear. Later in time, ωmax and ωNLs begin to di-
verge. Shown also is the value of δω given by theory,
specified in Table I and using 〈|φ|〉L for the potential.
Good agreement between theory and simulations is not
expected, since φ varies significantly in space and fur-
thermore the theory assumes a small and monotonically
increasing wave amplitude. However, up to the first peak
in R, the measured nonlinear frequency shift is negative
and qualitatively consistent with theory. At the first peak
in R, δω is of the order of only 1.5%. As a consequence,
we do not observe the characteristic beat pattern of a
driven nonlinear oscillator present in the case S2 (dis-
cussed later). A more detailed analysis of the impact of
the dephasing of the IAW from the ponderomotive force
of the light waves is given in Sec. III B. The mode fre-
quency is ill-defined when the plasma is highly turbulent,
and this period in time is omitted from Fig. 3(b).

In order to measure the linear decay mode growth rate,
it is necessary to select spatial and temporal windows
that are i) small enough in x and t such that the spatio-
temporal variations of φs are small, and ii) large enough
such that the resolution in k-space is adequate and short-
timescale subharmonic mode amplitude oscillations do
not distort the measurement. Ex in the wave frame for
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FIG. 2. (Color online)
Snapshots in time of the
longitudinal electrostatic
field (IAW, left linear
scale) and transverse
electromagnetic fields
(laser and scattered light,
right logarithmic scale)
using parameter set S1.
The transverse fields
are shown as envelope
intensities normalized to
the input laser intensity,
I0. Turbulent regions in
Ex correspond to greatly
diminished local growth
of I1 via SBS. Grey boxes
indicate sampled regions
used in Figs. 7 and 8.

k/
k s

×10
3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

|E
~

x(k)|

ta

tb

tc

τrec
(a)

×10
3

|E
~

x(k)|

ta

tb

tc

τrec
(a)

R, lin. scale

R, log. scale

R
ef

le
ct

iv
it

y
, 
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆
ω

/ω
sL
 (

%
)

ωpi t

Theory 

ωs
NL

 

ωmax -6
-4
-2
 0
 2

0 0.5 1 1.5 2 2.5 3 3.5 4

(b)

FIG. 3. (Color online) (a) Using set S1, the reflectivity of the
plasma versus time (right vertical axes, linear and logarith-
mic scale) and the changing composition of Fourier k modes
in the longitudinal field of the IAW (left vertical axis and
top color bar). The saturation and fall in reflectivity coin-
cide with the onset of IAW turbulence, while the recurrence
period τrec ∼ L/ci is determined by the time taken for IAWs
to cross the plasma. The circled points ta,b,c correspond to
the times shown in Fig. 2(a-c). (b) The deviation from the
linear frequency of the resonant mode during SBS, ωLs , of i)
ωNLs according to theory given in Table I, ii) ωNLs from simu-
lation, and iii) the largest amplitude IAW mode, ωmax , from
simulation.

one such choice of window is shown in Fig. 4. At the onset
of turbulence near ωpit ≈ 1.3× 103, period-doubling due
to growth of the half-harmonic of the ks mode is apparent
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FIG. 4. (Color online) The longitudinal electric field Ex
in the wave frame moving at vφ ≈ 1.19ci, sampled across
x̄|t=t0/λDe = [500, 1000] where x̄ = x−vφ(t−t0), ωpit0 = 900,
and vφ is a measured quantity. Period doubling due to the
growth of the k = ks/2 mode (half harmonic) is apparent at
ωpit ≈ 1.3 × 103, just before the onset of turbulence. Note
that there are no backward-propagating modes apparent in
the laboratory (stationary) frame.

before the IAW collapses totally. Early in time, the IAW
spectrum shown in Fig. 3(a) is dominated by the SBS-
driven ks mode and its harmonics at kl = nks, where
n = 1, 2, . . . . The subharmonic growth rate, γl, of the
mode kl 6= nks may be extracted by fitting a linear slope
to the logarithm of |φl| (or |Ex(kl)|) in the wave frame.
Figure 5(a) shows this fitting process for the ks mode and
its half-harmonic.

Figure 5(b) shows γl versus kl. The regression coeffi-
cients of the fits are of order 0.8, indicating that indeed
φl ∝ exp(γlt) for kl 6= nks across the given time window.
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FIG. 5. (Color online) (a) Mode amplitudes versus time for
the SBS-driven ks mode and k = ks/2 decay mode, obtained
using set S1. Exponential fits are made across τfit using
the moving window defined in Fig. 4. (b) Growth rates γl
measured using the fitting method shown in the upper fig-
ure. Mode growth is fastest near the half-harmonics of the ks
mode, kl = (n− 1/2)ks. The 3-wave fluid theory is given by
Eq. (6) using 〈e|φs|/Te〉τfit = 0.12.

γl displays the characteristic features of the two-ion de-
cay process, namely a growth rate that as a function of kl
takes the form of an inverted parabola, is maximal at and
symmetric about kl = (n− 1/2)ks, and is periodic in ks.
The blue dashed line is given by Eq. (6). Growth rates
and scalings with both φs and α were obtained for the de-
cay process in Ref. 13. Despite the difficulties inherent to
the measurement of γl performed here (in particular, the
non-uniform time-varying nature of φs and correspond-
ing irregular ponderomotive drive strength from SBS),
the values of γl measured during SBS are in agreement
with Ref. 13, where γl was found to exceed the predic-
tions of 3-wave fluid theory by a factor of ∼3 for α = 7
(here, this factor is ∼2−3). Note that the IAW subhar-
monic growth rate is significant, here taking a maximum
value of the same order as the linear Landau damping
rate (see Table I).

The question of precisely why IAW decay rates often
exceed those of a three wave fluid-like model in which the
decay is assumed to be exactly resonant (as in Ref. 2) has
not been addressed satisfactorily by previous work and
remains open. In Ref. 12 it was found in the framework
of a fluid (Boltzmann) electron response that decay in-
volving the second harmonic of an IAW mode could be
dominant over the decay of the first, characterized by a
subharmonic growth rate that scales with |φ2| ∝ |φ1|2
rather than |φ1| (here, the subscript denotes the har-
monic order; 1 is the 1st harmonic), but clear support for
this mechanism was not found in Refs. 9 or 13. In Refs. 13
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FIG. 6. (Color online) For S1, plot of the change in en-
ergy density U attributed to the longitudinal electrostatic
field (∆UES , red line), the transverse electromagnetic field
(∆UEM , blue line), the electron kinetic energy (∆Ke, green
line), and ion kinetic energy (∆Ki, black line). The jump in
UEM at ωpit ∼ 100 is due to the turning on of the laser. The
green and black dashed lines are the electron and ion slosh-
ing energies ∆Use and ∆Usi, respectively, defined in the text
after Eq. (7). Inset, a zoom is shown.

and 14, it was found that nonlinear electron kinetic effects
play an important (perhaps dominant) role in determin-
ing the amplitude scaling of |φn>1| with |φ1|, suggest-
ing strongly that subharmonic decay rates should also be
sensitive to kinetic electron physics. The weak rate at
which |φn|/|φ1| decreases with n, where all φn harmon-
ics may act as pumps for subharmonic modes with wave
numbers kl 6=n, combined with clear evidence of nonlinear
electron and ion kinetic effects, presents an unsolved and
substantial challenge for theoretical studies.

2. Particle heating

In Fig. 6, the changes in electrostatic (UES), elec-
tromagnetic (UEM ), electron kinetic (Ke) and ion ki-
netic (Ki) energy are shown for S1. In the units of
Fig. 6, the initial electron and ion kinetic energies are
Ke/(ne0Te) = 0.5 and Ki/(ne0Te) = 0.5/α = 0.0714, re-
spectively, where ne0 is the initial unperturbed electron
number density. We are particularly interested here in
particle heating via resonant IAWs. However, included
in the Ke,i is the sloshing of the distributions in response
to Ex, a process that is reversible in collisionless plasmas
and does not contribute to heating28.

In order to determine the extent (if any) of the particle
heating, it is necessary to separate the heating from the
sloshing energy. We define for the energy of a spectrum
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of IAWs in a Maxwellian distribution11,28,

UT
ne0Te

=
1

2

∑
l

k2
l λ

2
De

∣∣∣∣eφlTe
∣∣∣∣2 ∂

∂ω
(ωεL)

∣∣∣∣
ω=ωl

, (7)

where εL = 1 + χe + χi is the dielectric function and
εL(Ω, k) = 0. It is convenient to use approximate forms
of the susceptibilities χj ,

χe ≈
1

k2λ2
De

, (8)

χi ≈ −
ω2
pi

ω2

(
1 + 3k2λ2

De

ω2
pi

ω2

1

α

)
. (9)

Using these expressions to expand the right hand side of
Eq. (7) analytically,

∂

∂ω
(ωεL) ≈ 1 +

1

k2λ2
D

+
ω2
pi

ω2

(
1 + 9k2λ2

De

ω2
pi

ω2

1

α

)
.

(10)

After substitution of Eq. (10) into Eq. (7), one finds,

UT = UES + Use + Usi, (11)

where,

UES
ne0Te

=
1

2

∑
l

k2
l λ

2
De

∣∣∣∣eφlTe
∣∣∣∣2 , (12)

Use
ne0Te

=
1

2

∑
l

∣∣∣∣eφlTe
∣∣∣∣2 , (13)

Usi
ne0Te

=
1

2

∑
l

(
βl +

9

α
β2
l

) ∣∣∣∣eφlTe
∣∣∣∣2 , (14)

for which Usj is the sloshing energy of species j and
βl = (klλDeωpi/ωl)

2. The heating of species j should be
given approximately by ∆Kj−Usj , where ∆Kj ≡ Kj(t)−
Kj(t = 0) and Kj = Kj(t) = (1/L)

∫∫
Γ
dx dv (mj/2)v2fj

is calculated directly in the simulations. Use and Usi
are calculated using the analytic expressions given by
Eqs. (1), (13), and (14), with φl taken from simulations.

For a monochromatic IAW, analytically one finds
Use ∼ Usi ∼ UES/(k

2λ2
De). However, as the IAW spec-

trum becomes turbulent, such a relation does not hold,
although in general one has Usj � UES . If instead of the
approximate expressions for χj above one uses the value
of εL given by solving the KDR to obtain εL numerically,
one finds for a monochromatic IAW with kλDe = 0.375
and α = 7 a change in the value of Use of 0.2% and a
change in the value of Usi of 6%; i.e., the approximate
expressions are adequate for our purposes. As resonant
particle interactions become more significant, the distri-
butions diverge increasingly from Maxwellian, decreasing
the validity of Eqs. (13) and (14); this is discussed shortly.

In Fig. 6 the electron and ion sloshing energies Use
and Usi are plotted as green and black dashed lines, re-
spectively. In this case, ∆Usi diverges from ∆Ki almost

from the outset, while ∆Use ∼ ∆Ke until the onset of
turbulence. After the onset of turbulence, it is clear that
the change in kinetic energy in the system is dominated
not by sloshing, but by what we refer to here as heating.
This assertion may additionally be checked for the ions
by verifying that the change in kinetic energy occurs pri-
marily in the resonant region rather than in the bulk of
the distribution, i.e. ∆Kres ≈ ∆Ki, where,

Kres ≈
1

L

∫
x

dx
1

2
mi

∫
v>v−

dv v2fi, (15)

and v− ≡ vφ − vtr,i. The relation ∆Kres ≈ ∆Ki is satis-
fied to within approximately 5% throughout the simula-
tion. Such a check is not possible for the electrons, since
the resonant region encompasses the bulk.
Ki increases from its initial value by ∼50% and Ke,i

continue to grow long after the reflectivity saturates. It
is important to note that the increase in Ke,i that oc-
curs after the peak in UES at ωpit ∼ 1.2 × 103 in Fig. 6
can not be attributed to a simple conversion of UES to
Ke,i via the decay of effectively undriven IAWs, since
|∆Ke,i| � |∆UES |; IAWs are continuously driven de-
spite the weak reflectivity during the turbulent phase,
and their electrostatic energy is converted to kinetic en-
ergy. This finding is consistent with Refs. 11 and 13.

The Krook boundary layers damp the distributions
back to being Maxwellian, generally reducing kinetic en-
ergy at the edges of the plasma. Kinetic energy is lost
from the system primarily via this process. Electron
trapping in IAWs serves to flatten the peak of the dis-
tribution in velocity space. Electrons then propagate to
either boundary (note that generally |vφ ± vtr,e| � vφ,
and therefore resonant electrons have a larger spread in
velocity than resonant ions and will reach the boundaries
sooner) and are damped back to being Maxwellian. This
damping of the perturbed distribution results in a value
of Ke below that of a quiescent plasma (recall that Ke,i

are spatially-averaged quantities), apparent in the nega-
tive value of ∆Ke shown in Fig. 6. The time taken for
the reflectivity to recur, τrec (introduced in Sec. III A 1),
is in agreement with the time taken in Fig. 6 for ∆Ke,i to
grow, saturate, and return to zero (and likewise for fe,i
to return to a state close to the initial quiescent one);
this is discussed further in Sec. IV.

Examples of the ion and electron distributions typical
of those during SBS are shown at snapshots in time (and
for small samples in x) in Figs. 7 and 8, respectively; the
velocity region has been restricted to that resonant with
IAWs, and the distribution is shown as a deviation from
the initial Maxwellian one. Figs. 7(a) and 8(a) show the
particle distributions in a turbulence-free spatial region.
The λs-periodic nature of the SBS-driven IAW is evi-
dent in both species distributions, while the deviation of
the distributions from Maxwellian are contained approxi-
mately within the regions bound by vφ± vtr,j . Figs. 7(b)
and 8(b) show the distributions in a highly turbulent
spatial region of the IAW evolution, at which point the
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FIG. 7. (Color online) Deviation of the ion distribution, fi,

from Maxwellian, fM , where ∆f̃i = [vti/(Zini0)](fi − fM ),
shown in the velocity region resonant with IAWs using set S1.
(a) Spatial region where significant SBS is occurring [sampled
region corresponds to grey box of Fig. 2(a)]. (b) Spatial re-
gion where turbulence is inhibiting SBS [sampled region cor-
responds to grey box of Fig. 2(c)]. vtr,i is calculated using
e|φs|/Te = 0.065, measured locally.

-3

-2

-1

 0

 1

 2

 3

760 780 800 820 840

υ
/υ

te

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04
∆ f

~
eυφ

(a)

υφ+υtr,e

υφ-υtr,e

λSBS

-3

-2

-1

 0

 1

 2

 3

1520 1540 1560 1580 1600

υ
/υ

te

x/λDe

(b)

FIG. 8. (Color online) As Fig. 7, but here for the deviation

of the electron distribution, ∆f̃e = (vte/ne0)(fe − fM ). vtr,e
is calculated using e|φs|/Te = 0.065, measured locally.

distributions show little evidence of a coherent plasma
wave.

In Fig. 9(a), 〈fi〉L is shown. Time-varying estimates of
the ion trapping widths vav

tr,i and vmax
tr,i calculated using

the average and maximum of φ, respectively, are also
shown. 〈fi〉L has a flattened region in velocity that is
bounded to reasonable accuracy by vφ ± vmax

tr,i . Using
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FIG. 9. (Color online) For the case S1, (a) 〈f̃i〉L with the
maximum and averaged ion trapping widths vφ ± vtr,i where

vmaxtr,i = 2vti(αeφ̄/Te)
1/2 and vavtr,i = 2vti(αe〈|φ|〉L/Te)1/2,

respectively, for which φ̄ = max(|φ|). φ is obtained us-
ing the Hilbert transform14. (b) The ratio of the time-
varying system length-averaged slope of the ion distribution
f ′i = d〈fi〉L/dv|vφ to the initial (Maxwellian) slope f ′i0|vφ .

Also shown is the plasma reflectivity, R.

vφ±vav
tr,i underestimates the extent of the flattened region

of the distribution.
In linear theory, ion Landau damping is propor-

tional to dfi/dv|vφ , and while the IAW is very small,

standard linear theory (where the distribution is as-
sumed Maxwellian) is valid. While the IAW is quasi-
monochromatic and growing, trapped particles undergo
phase mixing, suppressing Landau damping in a spatio-
temporally varying fashion, and linear theory is not ap-
plicable (perhaps beginning as early as ωpit ∼ 200 in S1).
However, when particle orbits become untrapped after
the onset of turbulence, one expects Landau damping
to again roughly follow linear theory, albeit with a non-
Maxwellian distribution function. In Fig. 9(b), the ratio
of d〈fi〉L/dv|vφ to the slope of the initial (Maxwellian)

ion distribution is shown. It is interesting that there is
no clear correlation between this ratio and R, suggest-
ing that one can not attribute the suppression of SBS
simply to an increase in ion Landau damping due to the
formation of a hot tail in fi; this is discussed in Sec. IV.

B. Set S2: ZTe/Ti = 50, smaller νs, and larger |δωs|

1. Reflectivity and frequency detuning

The full plasma parameters for the case discussed in
this Section are given in Table I, listed under set S2. The
plasma reflectivity, R, and evolution of Ex in k-space are
shown in Fig. 10(a). This case is dominated by a feature
not significant in the S1 case: the saturation of SBS by
the dephasing of the local IAW from the ponderomotive
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force of the beating SBS light waves7,18–22. This dephas-
ing is due primarily to the trapping-induced nonlinear
frequency shift δω, shown in 10(b), and is addressed in
more detail later in this section. In S2, vφ/vti is suffi-
ciently large such that ion kinetic effects are very weak,
resulting in a positive value of δω dictated only by elec-
tron trapping. The magnitude of δω from theory in the
perturbative limit is larger for given φs by a factor of 3
or more than that of case S1 (see Table I), and is also of
opposite sign.

In Ref. 13, it was found that the IAW subharmonic
growth rate decreased sharply for α & 15 in a 1D
system for |eφs/Te| . 0.15. In Fig. 11, an exam-
ple of measured γl is shown, taken during the first pe-
riod of strong subharmonic growth with time window
ωpiτfit = [1.4, 1.75]× 103 in a region of large IAW ampli-
tude (|eφs/Te| ∼ 0.12). In the case examined here, while
IAW decay mode growth rates are generally weak, local
regions where |eφs/Te| & 0.1 show values of γl similar
to the case S1. In S2, strong spatio-temporal variations
in the IAW amplitude result in a system-averaged decay
mode growth rate that is weak compared to the case S1,
and decay saturates before the system becomes strongly
turbulent until a second subharmonic growth phase at
ωpit ≈ 3 × 103. In local regions of high IAW ampli-
tude in S2, γl appears to exceed expected values based
on Ref. 13; this may be because the pump IAW mode
is generally not exactly monochromatic and nonlinear
mode frequencies evolve substantially, perhaps facilitat-
ing a more resonant driving of subharmonic modes than
in Ref. 13.

The growth rates in Fig. 11 appear to lack clear sym-
metry about kl = ks(n − 1/2) over the intervals kl =
[(n − 1)ks, nks] present in Fig. 5, displaying a bias to
lower k that is apparent in the mode amplitudes shown
in Fig. 10. With similar plasma parameters, this feature
was not observed for freely-propagating IAWs in a pe-
riodic system in Ref. 13. However, a similar effect was
observed for instability occurring during SRS in Ref. 26
(i.e., asymmetric sideband growth rates about a carrier
wave). We attribute this to difficulties in measuring the
strictly linear growth phase of subharmonics in the pres-
ence of rapidly varying conditions.

We discuss now the role of the nonlinear frequency
shift in saturating SBS in more detail. When the pon-
deromotive force of the light waves is in phase with
the IAW, energy may be locally transferred efficiently
from the pump to the scattered light and IAW. As
the IAW amplitude grows, the phase of the IAW is
shifted by δω = δω(|φ|), and this may lead to a reduc-
tion in IAW amplitude, strongest when the phase mis-
match between oscillator (IAW) and driver (ponderomo-
tive force) is equal to π. Taking the (mj/2)v2 moment
of the Vlasov equation and neglecting the heat flow term
Q = (1/2)

∑
jmj

∫
dv v3∂fj/∂x, one obtains the local

k/
k s

×10
3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

|E
~

x(k)|

(a)

×10
3

|E
~

x(k)|

(a)

R, lin. scale

R, log. scale

R
ef

le
ct

iv
it

y
, 
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆
ω

/ω
sL
 (

%
)

ωpi t

Theory 

ωs
NL

 
ωmax  0

 10

 20

 30

0 0.5 1 1.5 2 2.5 3 3.5 4

(b)

FIG. 10. (Color online) (a) Using set S2, the reflectivity of the
plasma versus time (right vertical axes, linear and logarithmic
scale) and the changing composition of Fourier k modes in
the longitudinal field of the IAW (left vertical axis and top
color bar). SBS saturation is now due predominantly to the
nonlinearity of the IAW frequency. (b) The deviation from
the linear frequency of the resonant mode during SBS, ωLs ,
of i) ωNLs according to theory given in Table I, ii) ωNLs from
simulation, and iii) the largest amplitude IAW mode, ωmax ,
from simulation.
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power transfer,

P = −
∑
j

Jju⊥,jB, (16)

where Jj is the charge current, v is the velocity in the
longitudinal direction [recall fj = fj(t, x, v)], u⊥,j is the
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FIG. 13. (Color online) As Fig. 12, but for the case S2. Com-
parison of P and R indicates saturation of R is caused pre-
dominantly in this case by dephasing of the IAW and pon-
deromotive drive of the light waves, and produces rapid oscil-
lations in R late in time.

transverse flow velocity (in the direction of the polariza-
tion of the electric field of the laser), and B is the mag-
netic field of the electromagnetic waves. When P > 0, en-
ergy is transferred to the IAW as either kinetic or electro-
static energy. After averaging over fast-phase temporal
oscillations, it is easy to show that P ∝ Φ∂(E0E1)/∂x,

where E0 and E1 are the electric field amplitudes of the
laser and scattered light, respectively. A similar diagnos-
tic tool was applied successfully to SRS29,30.
P is plotted for the entire simulated system for cases

S1 and S2 in Figs. 12 and 13, respectively. Averaging of
P over λs has been performed in order to suppress the
sub-λs changes of sign of P due to harmonic generation.
In Fig. 12, P is positive during the rise of the first peak in
the reflectivity R. At the first saturation of R occurring
at ωpit ∼ 1000, P is scrambled due to the growth of
subharmonic modes, and there is no longer an effective
driving of the IAW. The IAW amplitude then collapses,
and R continues to fall even when P ∼ 0. However, in
Fig. 13, the oscillations in R are closely correlated with
changes of sign in P , apparent even during the rapid
oscillations occurring for ωpit & 3000. We conclude that
the behavior of R is dominated in case S2 by the spatio-
temporal variations of δω.

2. The absence of significant particle heating

Electrostatic, electromagnetic, kinetic, and sloshing
energies are shown for the case S2 in Fig. 14, plotted
previously for the case S1 in Fig. 6 (the plotted quanti-
ties are defined in Sec. III A 2). Despite UES exceeding
the value attained in the case S1 by a factor of 2, in
the case S2 there is no evidence of significant particle
heating: throughout the simulation, the kinetic energy
of each species is dictated by the sloshing motion, i.e.
∆Kj ≈ ∆Usj . Even when the plasma becomes more
strongly turbulent (ωpit & 3 × 103), significant heating
occurs of neither electrons nor ions. There are at least
two reasons why the heating is so weak in this case: i) The
ponderomotive drive from the beating of the light waves
is weaker in S2 than in S1 due to the reduced laser in-
tensity. While this weaker force produces a value of UES
in S2 that exceeds that of S1 due to the difference in νs,
it may be that this difference in linear damping has lit-
tle impact on the nonlinear phase of the simulations. As
a consequence, the IAWs would be simply more weakly
driven, leading to less heating. ii) There are fewer ions in
the resonant region in S2 than in S1, as shown in Fig. 15
[compare to Fig. 9(a)]. However, this second possibility
has no direct effect on electron heating, which is signifi-
cant in S1 but not S2.

IV. PRIOR WORK AND DISCUSSION

Previously, simulation-based efforts to understand the
nonlinear saturation mechanisms of SBS have been per-
formed using 1D and 2D PIC simulations. In the work of
Cohen et al.8,9, a fluid electron model (Boltzmann) was
adopted and coupled to a kinetic ion PIC description in
a code called bzohar. Such an approach allows greatly
reduced computational effort, but by design does not de-
scribe electron kinetic effects. Because of the differences
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in simulation methodology, timescales, and parameters
(in particular, the 1D results of Cohen et al. were in a
regime of significant pump depletion), quantitative com-
parisons with the work presented here are difficult. How-
ever, some qualitative similarities are clear, such as the
presence of significant IAW decay and a correlation of the
onset of significant decay with a saturation in SBS. Ri-
conda et al.6 used a similar numerical approach to Cohen
et al. to study SBS and also observed IAW decay.

It is no surprise that we find electron kinetic effects are
important via the trapping-induced nonlinear frequency
shift in a collisionless plasma at high α. However, the re-
sults of Refs. 10, 11, 13, 14, and the work presented here
suggest strongly that electron kinetic effects are impor-
tant in determining the strength of the IAW mode-mode
coupling and therefore harmonic generation and subhar-
monic decay even at low α. In Refs. 7 and 8, a distinc-
tion was drawn between a frequency shift arising due to
trapping in a quasi-monochromatic wave and a frequency
shift arising due to a quasi-linear modification of the local
ion distribution (which may have previously been caused
by trapping) during SBS. In Refs. 7 and 8, IAW decay
to longer wave lengths occurred and was determined to
have an impact upon reflectivity that while substantial
was generally weaker than the effect of detuning due to

the nonlinearity (and resulting spatial inhomogeneity) of
the IAW frequency. The absence of electron kinetic ef-
fects in Refs. 7 and 8 that at lower ZTe/Ti may reduce
the net frequency shift (in addition to enhancing IAW
decay) perhaps played a roll in determining the relative
strengths of IAW decay and nonlinear dephasing.

In the results presented here for S1 and in previous
work13, it is apparent that when the decay of a quasi-
monochromatic IAW results in a state of high IAW tur-
bulence, the field energy crashes. In S2, the field energy
seemingly does not crash under similar conditions. We
attribute this to ion trapping: In S1, ion Landau damp-
ing is quickly suppressed by trapping as the SBS-resonant
fundamental IAW grows early on in the simulation. How-
ever, when subharmonic modes reach approximate parity
in amplitude with the SBS-resonant fundamental mode,
the trapped ion trajectories transition from trapped and
periodic to untrapped and chaotic, resulting in a signif-
icant loss of wave energy. Furthermore, the de-trapped
ions then form a tail with an ion population of higher
amplitude than in the initial state that may increase
the Landau damping, although as shown at the end of
Sec. III A 2, we have not seen evidence of the efficacy of
this process. Based on careful PIC simulations, Refs. 7
and 8 conclude that increased ion Landau damping due
to the formation of a hot tail is likely not the dominant
factor in suppressing recurrence of SBS after saturation.

By performing 1D simulations, we have explicitly ne-
glected IAW decay into modes with a non-zero trans-
verse wave number component. From fluid theory of IAW
decay9,12, it is expected that such decay channels will be
faster than modes parallel to the carrier waves, perhaps
enhancing IAW decay as a saturation mechanism of SBS
compared to 1D systems. However, kinetic effects such as
the anisotropic flattening of the species distributions and
resulting anisotropic damping may modify such a picture
significantly. 2D and 1D PIC simulations were compared
by Cohen et al.5,8,9. The IAW amplitude following sat-
uration in the SBS reflectivity was found to be lower in
2D than in 1D, with IAW decay indeed occurring fastest
for non-parallel modes.

As a general remark, we observe that the SBS reflectiv-
ity in sapristi appears significantly lower than the reflec-
tivity in PIC simulations published elsewhere. We spec-
ulate that this is due to the kinetic electron treatment
employed here (which introduces stronger nonlinearity
than a fluid electron model) and the noise-induced field
fluctuations in PIC simulations that mean less growth
is needed in order to reach IAW amplitudes that cause
significant SBS. It is apparent from this work and others
that there are multiple coexisting and effective mecha-
nisms of saturation of SBS. Which mechanism is domi-
nant will depend upon the laser intensity, but also upon
the plasma parameters; further work, using a 2D Vlasov-
Maxwell code, would clarify this point.
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V. CONCLUSIONS

Using fully-kinetic simulations, we have shown that
IAW decay occurs in systems where IAWs are excited by
a highly time-varying ponderomotive drive arising from
SBS. From these simulations, we have been able to ex-
tract for the first time a growth rate of the decay modes
that is in agreement with that of freely-propagating
IAWs, allowing the unambiguous identification of the de-
cay process. This decay can act as an effective saturation
mechanism for SBS in 1D systems, resulting in a crash
in IAW amplitude that provokes a loss of plasma reflec-
tivity. The decay occurs more readily in 1D for lower
ZTe/Ti. At ZTe/Ti = 50, dephasing of the driven IAW
from the ponderomotive force of the laser and SBS light
wave is the dominant saturation mechanism.
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APPENDIX: SIMULATION SETUP

We describe in this Appendix the setup of the numer-
ical simulations presented in this work, summarized in
Fig. 1. The interaction of laser light with the plasma is
simulated using the kinetic code sapristi, which solves
here the collisionless 1D1V Vlasov-Maxwell system of
equations. The velocity grid is parallel to the direc-
tion of the spatial grid, while a fluid velocity describes
motion perpendicular to this axis. Distribution func-
tions for each plasma species (in this case, electrons and
one ion species with a physically correct mass ratio) are
evolved using a semi-Lagrangian scheme with a time step
∆t = 0.1ω−1

pe , sufficiently small to resolve electron kinetic
(wave-particle) effects, with 7 sub-cycled steps for the
electromagnetic portion of the calculation. An in-depth
discussion of the code is given in Refs. 15 and 14.

In order to resolve vtr,j , velocity meshes of 1024 and
2048 points for the electrons and ions, respectively, are
chosen, spaced evenly across the ranges [−8vtj , 8vtj ] with
open boundary conditions. This is sufficient to resolve
the complex kinetic phenomena occurring in our simula-
tions across the relevant range of φ. A spatial resolution
of 64 grid points per λs corresponding to ∆x ≈ 0.26λDe

was chosen, adequate to describe accurately the nonlinear
IAW dynamics over the simulated time duration. The to-
tal number of spatial grid points across L was 1.28×104.

The basic simulation geometry is shown in Fig. 1. The
plasma fluctuations at the edge of the simulated system
are damped using a Krook operator in the Vlasov equa-
tion, ramped up smoothly from an effective damping rate
of 0 to a maximum of ωpe across 200 grid points at either
edge of the plasma. This Krook operator is chosen to
be conservative of particle number but not energy; the
species distribution functions are damped back to their
initial Maxwellian states, and the boundary layers may
be viewed as a thermal bath.

Laser light (assumed linearly polarized) of intensity
Ix=0
0 and frequency ω0 = 2π/λ0 traveling in the direc-

tion of increasing x is emitted via an antenna composed
of a pair of current sheets near the x = 0 boundary. The
phasing of the currents ensures that the antenna emits in
one direction only. Because the Vlasov-Maxwell solution
method employed in sapristi is noiseless to machine pre-
cision, the SBS interaction must be seeded in order to oc-
cur. This is done via a counter-propagating electromag-
netic (EM) seed with intensity Ix=L

1 = Ix=0
0 /106, with a

second antenna located near the x = L boundary. The
seed frequency ω1 is chosen by solving simultaneously the
wave number and frequency matching conditions, the dis-
persion relations for the EM waves ω2

0,1 = ω2
pe + c2k2

0,1,
and the kinetic dispersion relation for IAWs, where c is
the vacuum speed of light; ω1 differs modestly between
S1 and S2 due to the differing values of α.

During simulations, the seed is launched and allowed
to propagate throughout the system before the laser is
switched on. Both seed and laser are ramped up in in-
tensity over a time 2×103/ωpe (slow enough to maintain
quasi-monochromaticity). The boundaries of the system
for the EM fields are handled via perfectly matched lay-
ers occupying 10 spatial grid points at each boundary.
The implementation is based on Refs. 31 and 32. Fourier
analysis in space and time of the electric field revealed
no significant reflection at the boundaries.
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