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The background field method is implemented following
Refs. [34, 35] where the uniform background field is in-
cluded by multiplying the unitary gauge links by two phase
terms, chosen so that the field is oriented in the ẑ direction.
Quantization of the uniform background field on a torus
restricts the available field strengths to values

E/a2 =
2πen

|qlow|NtNs

, (6)

where a is the lattice spacing, e is the electromagnetic cou-
pling, Ns and Nt are the number of spatial and temporal
lattice sites respectively, and qlow is the lowest common
denominator of the charges (for SU(3), qlow = 1/3; for
SU(4), qlow = 1/2).

For convenience we define a rescaled, dimensionless
background field by Ẽ = (ea2)−1E . We will analyze
our lattice results using Eqs. (4)-(5) with all quantities re-
placed with their rescaled, dimensionless counterparts, all
of which will be denoted with a tilde:

mB = m̃B/a, (7)

CF = 4παa3C̃F , (8)
µB = 4παµ̃B. (9)

Lattice details and fitting – The lattice calculations are
done using the Chroma software package [36]. We use the
plaquette gauge action with unimproved Wilson fermions.
The gauge configurations are quenched N3

s ×Nt = 323×
64 lattices (20000 heat-bath updates, 200 configurations
separated evenly). For SU(4) we choose β = 11.028
and for SU(3) β = 6.0175 following [37]. Fermionic
propagators are calculated for two different masses at each
ND value (κ = 0.1554, 0.15625 for ND = 4 and κ =
0.1537, 0.1547 for ND = 3), chosen such that the ratio
of the pseudoscalar to vector meson masses mPS/mV =
0.77 and 0.70 are matched [14, 37].

Background field measurements are performed at six
field values [n = 0, ..., 5, see Eq. (6)] for both ND = 4
and ND = 3, with correlation functions measured us-
ing 40 evenly separated sources in (x, y) along the t =
z = 0 plane. Each zero and non-zero field value has 8000
measurements. All two-point correlation functions are fit
over the range t ∈ [4, 28] using fully correlated, multi-
exponential fits including three excited states.

For ND = 4, the two-point baryonic correlation func-
tion in background field Ẽ takes the form

CB(t, Ẽ) ∼ Z(Ẽ) exp
[
−tẼB(Ẽ)

]
(10)

at large t. Results for ẼB(Ẽ) are then fit to Eq. (4). We in-
clude higher-order contributions from the background field
following [35],

C̃F (Ẽ) = C̃F + C̃ ′F |Ẽ |2. (11)
The analysis forND = 3 is complicated by the contribu-

tion of the magnetic moment µ̃B to the baryon self-energy.
Following [35], we make use of the boost projections

P± =
1

2
(1± iγ3γ4) , (12)
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FIG. 1. The ground state energy (in lattice units) vs. applied elec-
tric field E for SU(4) baryons (top) and SU(3) baryons (middle),
and ratio of projected SU(3) correlators vs. E (bottom). Their re-
lations to the magnetic moment and polarizabilities are presented
in Eqs. (4), (5) and (14). Results shown are for the ensembles
with mPS/mV = 0.70.

and the boosted correlators

C±B (t) = 〈B̄(x, t)P±B(0, 0)〉E
= Z±(Ẽ) exp

[
−tẼB(Ẽ)

]
. (13)

The boost-projected amplitudes Z± contain equal and op-
posite contributions from the magnetic moment, which we
isolate by combining them in the ratio

Zr ≡
Z+(Ẽ)− Z−(Ẽ)

Z+(Ẽ) + Z−(Ẽ)
=
Ẽµ̃B(Ẽ)

2m̃2
B

. (14)

A simultaneous fit of ẼB to Eq. (5) and the amplitude ra-
tio in Eq. (14) allows us to determine both C̃F and µ̃B .
To extract the polarizability C̃F we use a fully correlated
quadratic fit following Eqs. (4)-(5). Once again we incor-
porate quadratic terms to both C̃F [as in Eq. (11)] and µ̃B ,

µ̃B(Ẽ) = µ̃B + µ̃′B|Ẽ |2. (15)

The polarizability results for both SU(4) and SU(3) are
presented in Table I, and results for the energies and the
ratio Zr vs. background field for the mPS/mV = 0.70
ensembles are plotted in Fig. 1.
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ND mPS/mV m̃B αC̃F α2C̃′
F µ̃B µ̃′

B χ2/dof

4 0.77 0.98204(93) 0.1420(56) -0.089(29) — — 0.7/3

0.70 0.88805(113) 0.1514(106) -0.142(68) — — 4.8/3

3 0.77 0.69812(51) 0.2829(127) -0.177(45) -6.87(26) 714(103) 3.0/7

0.70 0.61904(59) 0.2829(81) -0.165(24) -5.55(18) 396(78) 13.4/7

TABLE I. Results for the polarizabilities and magnetic moments
of the baryonic composites of a strongly-coupled SU(ND) theory,
in lattice units.

Constructing the dimensionless product αC̃F m̃3
B (as

needed for the DM cross section), we find that the SU(4)
polarizabilities are larger than SU(3) by about 50%. Thus,
we find the SU(3) and SU(4) polarizabilities to be compa-
rable when normalized to the baryon mass. Of course, the
baryon mass itself scales proportional to ND; if we were
to set the scale using a quantity such as the string tension
which does not scale with ND, then the SU(3) polarizabil-
ity would be larger.

The effect of the quenched approximation, in which dy-
namical fermion loops are omitted from the lattice calcu-
lation, is not straightforward to estimate. However, the ef-
fects of such loops are expected to be suppressed with large
ND and heavy fermion mass; we note that even for QCD
with its much lighter fermions, the effects of quenching are
generally at most of order 10% [38].

Our calculations are performed at a single lattice spac-
ing and volume, both of which can lead to additional
systematic effects. We expect all of these corrections to
be small relative to the order of magnitude uncertainty
taken for the nuclear matrix element MA

F . As a cross-
check, we note that the neutron polarizability from the
PDG [39] gives CFm3

n ' 0.36 at the QCD physical ra-
tio mPS/mV = 0.18, while our SU(3) lattice simulations
give CFm3

B ' 0.84 at mPS/mV = 0.70. These results
are broadly consistent with the expected scaling of the po-
larizability and baryon mass with mPS .

Direct detection cross sections – To relate the dimen-
sionless lattice results to the dimensionful DM mass, mB ,
that we vary continuously in order to scan the parameter
space of the theory, it is most convenient to give units to
the lattice spacing a = m̃B/mB . Along with Eq. (8), this
leads to the physical value of the polarizability

CF = 4πα

(
m̃B

mB

)3

C̃F . (16)

Putting everything together, the spin-independent cross
section written as the conventional per nucleon rate for a
nucleus with (Z, A) from Eq. (2) becomes

σnucleon(Z,A) =
Z4

A2

144πα2µ2
nB(MA

F )2

m6
BR

2
[αm̃3

BC̃F ]2 ,

(17)
where we use our lattice results in Table I to evalate the
factor in square brackets. We emphasize that, unlike Higgs
exchange, the cross section per nucleus scales as Z4 and

notA2, and so the cross section per nucleon must be calcu-
lated for each nucleus separately in order to compare with
experiment. The strongest bound on the spin-independent
direct detection scattering rate is from LUX [1]. In Fig. 2,
we show the scattering cross section per nucleon for xenon,
and compare with the LUX bounds. We plot only the
ND = 4 case here, as the ND = 3 baryons are already
excluded up to ∼ 20 TeV in mass by the LUX bounds
through their magnetic moments [12].

Discussion – Our lattice results have allowed us to
calculate the spin-independent scattering cross section of
SU(4) stealth DM through polarizability, which we com-
pare against the LUX constraints in Fig. 2. We find DM
masses less than about 200 GeV are excluded, while the
DM mass range 200-700 GeV could be probed by fu-
ture experiments before reaching the neutrino background
[40]. Currently, the strongest lower bound on the DM
mass arises indirectly from the constraints on the lighter
electrically-charged mesons that can be produced and de-
cay promptly in collider experiments. Using our results
[23], we estimate that DM masses below about 280 GeV
are excluded given the LEP II bounds on the pseudoscalar
mesons.

It is remarkable that a composite DM particle with a
weak-scale mass, composed of dark fermions charged un-
der the weak and electromagnetic interaction, can never-
theless be safe from both direct detection constraints and
the LEP II constraint once mB

>∼ 300 GeV. This sug-
gests there is a serious opportunity for future direct detec-
tion experiments to probe the model. Given that the scat-
tering cross section per nucleon scales as Z4/(A2R2) in
Eq. (17), the experiments with the heaviest nuclei are often
more sensitive, i.e., xenon is 3.4 times more sensitive than
argon if both experiments reach the same limit on the (con-
ventional) spin-independent scattering per nucleon through
Higgs exchange.

With our lattice calculation of the dark matter polariz-
ability in this model, the dominant remaining uncertainty
stems from the treatment of the non-perturbative nuclear
matrix element in Eq. (2), which is similar to the matrix el-
ements required for double beta decay. A significant source
of uncertainty is, for example, the presence of excited states
in Xe-129 and Ge-73 that have energies of 30 and 15 keV,
which will be probed by the loop in the cross section calcu-
lation (typical momenta exchanges are roughly at the MeV
scale). These resonances could appreciably change the re-
sulting cross section, though the steep dependence on the
dark matter mass suggests only a modest equivalent shift
of the DM mass.

The brightest opportunity for stealth dark matter discov-
ery may fall within the domain of the Large Hadron Col-
lider (and future colliders). Meson phenomenology is very
promising, since charged mesons can be produced through
electroweak processes and decay completely into SM par-
ticles. In contrast, production of the dark matter baryon is
rare, since it is considerably heavier than the mesons and
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FIG. 2. The DM spin-independent scattering cross section per nu-
cleon evaluated for xenon is shown as the purple band obtained
from the SU(4) polarizability, where the width of the band cor-
responds to 1/3 < MA

F < 3 from low to high. The blue curve
and the light blue region above it is excluded by the LUX con-
straints [1]. The vertical, darker shaded region is excluded by
the LEP II bound on charged mesons [23]. The orange region
represents the limit at which direct detection experiments will
be unable to discriminate DM events from coherent neutrino re-
coil [40]. We emphasize that this plot is applicable for xenon, and
would require calculating Eq. (17) to apply to other nuclei.

would have form factor suppression. This implies the stan-
dard missing energy signals that arise from DM production
and escape from the detector are rare.

Finally, there are many avenues for further investiga-
tion of stealth dark matter, detailed in [23]. One vital is-
sue is to better estimate the abundance. In the DM mass
regime where stealth DM is detectable at direct detection
experiments, the abundance of stealth dark matter can arise
naturally from an asymmetric production mechanism [23]
that was considered long ago [7–9] and more recently re-
viewed in [41]. If there is indeed an asymmetric abundance
of bosonic dark matter, there are additional astrophysical
consequences [42–44] that warrant further investigation to
constrain or probe stealth DM.
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