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Objectives 

•  Scaled experiments are used to study interaction 
of shock waves with solid media and 
propagation through solid materials 

•  Scaled experiments supplement full scale 
experiments (which are expensive) 

•  Scaling must be understood 

•  Shock generation: 
–  High power laser generated shocks 
–  Explosive shocks (PETN) 



How we understand shock propagation 
-Geodyne Simulation- 

Simulation provided by Otis Walton, 
Lawrence Livermore National Laboratory, US 



Definition of Terms/Requirements of Sensor 
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Target performance 
Rise time: < 10 nsec 
Max pressure: 1 GPa (10 kbar) 
Dynamic range: >104 

Sensor requirements 
•  Small/fast 
•  Immune to EMI 
•  Withstand shock 
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Scaling 

1.   Air	  hydrodynamics	  
2.   Pressures/mass	  veloci7es	  
3.   Shock	  veloci7es	  
4.   Impulse	  

1.   Grain	  sizing	  
2.   Compressibility/Strain	  rate	  

What scales? 

What doesn’t scale and do they matter? 

Scaling laws are commonly 
used in hydrodynamic 
problems to enable scaled 
tests to be performed: 
- Ocean hydrodynamics 
- Aerodynamics 



Existing Characterization Techniques 

•  Piezo-electric sensors 
–  Fairly large –time response? 
–  Sensitive to EMI (much higher in laser gen shocks) 

•  Dremin loops 
–  Sensitive to EMI 
–  Require external magnetic field 

•  Impractical for laser generated shocks 

•  Ruby gauge 
–  Reliability 
–  Temperature sensitive 
–  Difficult to interpret signal 

Electrical: 

Fiber optic: 
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New fiber optic diagnostics 

•  Fiber optic shock wave sensors developed 
for air blast measurements and medical 
ultrasound in liquids 

•  Fiber optic pressure sensor 
–  Fabry-Perot fiber tip sensor (solid cavity) 

•  Fiber optic displacement/velocity sensor 
–  Interferometric fiber tip sensor (mirrored end) 



Pressure (P) probe 

Tunable 
laser 

FP 
Interrogation system •  Fabry-Perot cavity on fiber tip 

•  Shock compresses Fabry-Perot 
•  Response proportional to pressure 
•  Calibrated in water: 250 nm/GPa 
•  Measurement range: 

•  0.1 MPa – 0.1 GPa 
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Displacement/Velocity (V) Probe 

AOM 

Laser 
Mirror 

Interrogation system 
•  Tip displacement measured with 

interferometer 
•  Mass displacement moves mirror 
•  Displacement measured along fiber axis 
•  Velocity obtained by differentiation 
•  Self-calibrated: depends only on wavelength 
•  Measurement range: 

•  0.01 m/s to >> 1500 m/s 
•  80 kPa to >> 10 GPa 

AOM - Acousto-
optic modulator 

Δφ = (4πn / λ) ⋅ ΔL
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P-V Probe 

Velocity sensor head (mirror) 

•  P probe and V probe in one sensor head 
•  Simultaneous measurement of pressure 

and velocity 
•  Measures shock energy transport (P+V) 
•  Provides cross calibration between 

probes 

Single probe 

Dual probe 
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Example 1: Laser Driven Shock Waves 

Targets NIKE (2KJ, 4ns, 500um diameter) 

Test block 

Pressure 
probe 

Laser in 



Imaging the shock 
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Example 2: Explosive Driven Shock Wave 
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Fiber optic V probe and SRI Dremin 
loop agree 

V probe 
Dremin loop 
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Calibration of pressure probe against 
velocity probe 

•  Plane wave approximation applied to shock velocity to obtain shock 
pressure 

Ρ s = ρcsUs
Shock pressure Shock mass velocity 



Example application:  
Shock transmission in solid media (explosion resistance) 

Can also plot mass velocity  

Wall 

Distance from solid/air interface (m) 

Increasing 
shock pressure 
at interface 

(GEODYNE 
simulation data) 



Velocity sensor (V2) 

•  Measures difference in displacement 
between two fiber ends 

•  Measures mass velocity directly (not 
displacement) 

Velocity sensor head 2 
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Other probes configurations 

•  3-axis mass velocity/pressure measurement 

X 

Y 

Z 

•  Provides 3 components of mass velocity and pressure 
•  direction of energy flow 

 



Characterization of strong shocks? 

•  Pressure sensor (Fabry-Perot) 
–  Max shock pressure ~0.1 Gpa 
–  Need stiffer cavity material 
–  Sensitive to shock induced temperature 

•  Velocity sensor (Interferometric) 
–  Max velocities >> 1.5 km/s 
–  Velocity measurement independent of shock induced 

temperature change 
–  (σ.cs) deviates substantially from linear acoustic value for shock 

pressure above GPa 
•  Unreliable conversion to pressure (data may be available in tables) 

•  Measurement of shock velocity viable for higher 
shock pressures 



Conclusions 

•  Scaled experiments enable study of explosive 
energy propagation and coupling at much lower cost 
than full scale experiments 

•  Fiber optic pressure and mass velocity probes 
demonstrated to characterize shock waves in solids 
–  Measured shocks in range 100 kPa - > 10 GPa 
–  Determine energy flow from P and V 

•  Example applications: 
–  Basic studies on materials under extreme conditions 
–  Synthesis of new materials for blast protection 
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