
LLNL-CONF-667225

Preliminary Evaluation of a Parallel Trace
Replay Tool for HPC Network Simulations

B. Acun, N. Jain, A. Bhatele, M. Mubarak, C. D.
Carothers, L. V. Kale

February 12, 2015

PADABS 2015
Vienna, Austria
August 24, 2015 through August 28, 2015



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Preliminary Evaluation of a Parallel Trace
Replay Tool for HPC Network Simulations

Bilge Acun1, Nikhil Jain1, Abhinav Bhatele2, Misbah Mubarak3,
Christopher D. Carothers4, and Laxmikant V. Kale1

1 Department of Computer Science, University of Illinois at Urbana-Champaign
2 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

3 Mathematics and Computer Science Division, Argonne National Laboratory
4 Department of Computer Science, Rensselaer Polytechnic Institute

1{acun2, nikhil, kale}@illinois.edu,2bhatele@llnl.gov,
3 mmubarak@anl.gov,4chrisc@cs.rpi.edu

Abstract. This paper presents a preliminary evaluation of TraceR, a
trace replay tool built upon the ROSS-based CODES simulation frame-
work. TraceR can be used for predicting network performance and un-
derstanding network behavior by simulating messaging on interconnec-
tion networks. It addresses two major shortcomings in current network
simulators. First, it enables fast and scalable simulations of large-scale
supercomputer networks. Second, it can simulate production HPC appli-
cations using BigSim’s emulation framework. In addition to introducing
TraceR, this paper studies the impact of input parameters on simula-
tion performance. We also compare TraceR with other network simu-
lators such as SST and BigSim, and demonstrate TraceR’s scalability
using various case studies.

1 Introduction

The design and deployment of large supercomputers with hundreds of thousands
of cores is a daunting task. Both at the design stage and after the machine is
installed, several decisions about the node architecture and the interconnection
network need to be made. Application developers and end users are often inter-
ested in studying the effects of these decisions on their codes’ performance for
existing and future machines. Hence, tools that can predict these effects are im-
portant. This paper focuses on tools for predicting the impact of interconnection
networks on the communication performance of parallel codes.

Prediction of communication performance on a hypothetical or actual ma-
chine requires simulating the network architecture and its components. Discrete-
event simulation (DES) based frameworks are often used to simulate intercon-
nection networks. The usability and performance of these frameworks depend on
many factors: sequential versus parallel (PDES) simulation, the level of detail at
which the communication is simulated (e.g., flit-level or packet-level), whether
the PDES uses conservative or optimistic parallelism methods, etc.

Existing state-of-the-art DES-based network simulators suffer from two ma-
jor problems. First, sequential simulators have large memory footprints and long
execution times when simulating large execution traces. Second, some simulators



2 Acun et al.

can only simulate synthetic communication patterns that do not accurately rep-
resent production high-performance computing applications. These shortcomings
can be eliminated by using a scalable PDES engine, which improves performance
and reduces the memory footprint per node, and by replaying execution traces
generated from production HPC codes. To achieve this, we have developed a
trace replay tool called TraceR for simulating messaging on HPC networks.

TraceR is designed as an application on top of the CODES simulation
framework [6]. It uses traces generated by BigSim’s emulation framework [17] to
simulate an application’s communication behavior by leveraging the network API
exposed by CODES. Under the hood, CODES uses the Rensselaer Optimistic
Simulation System (ROSS) as the PDES engine to drive the simulation [4].

The major contributions of this work are as follows:

– We present a trace-driven simulator that executes under an optimistic par-
allel discrete-event paradigm using reversible computing for real HPC codes.

– We show that TraceR outperforms state-of-the-art simulators like BigSim
and SST in serial mode.

– We present a simulation parameter study to identify parameter values that
maximize performance for simulating real HPC traffic workloads.

– We demonstrate the scalability of TraceR and show that it can simulate
HPC workloads on half a million nodes in under 10 minutes using 512 cores.

2 Background and Related Work

TraceR is built upon several existing tools which are introduced briefly below.

BigSim’s emulation framework: The first requirement of simulating a paral-
lel execution is the ability to record the control flow and communication pattern
of an application. The BigSim emulation framework [17] exploits the concept of
virtualization in Charm++ [12] to execute a large number of processes on a
smaller number of physical cores and generate traces. This enables trace gener-
ation for networks of sizes that have not been built yet. Using AMPI [9], this
feature enables trace generation for production MPI applications as well.

ROSS PDES engine: ROSS [4] is a general purpose, massively parallel, discrete-
event simulator. ROSS allows users to define logical processes (LPs) distributed
among processors and to schedule time-stamped events either locally or remotely.
ROSS provides two execution modes: conservative and optimistic. The conser-
vative mode executes an event for an LP only when it is guaranteed to be the
next lowest time-stamped event for it. On the other hand, the optimistic mode
aggressively executes events that have the lowest time-stamps among the current
set of events. If an event with time-stamp lower than the last executed event is
encountered for an LP, reverse handlers are executed for the events executed
out of order to undo their effects.

CODES: The CODES framework is built on top of ROSS to facilitate studies
of HPC storage and network systems [6]. The network component of CODES,
Model-net, provides an API to simulate the flow of messages on HPC networks
using either detailed congestion models or theoretical models such as LogP.



A Parallel Trace Replay Tool for HPC Network Simulations 3

Model-net allows users to instantiate a prototype network based on one of these
models. Such instantiations are controlled by parameters such as network type,
dimensions, link bandwidth, link latency, packet size, buffer size, etc. CODES has
been used to study the behavior of HPC networks for a few traffic patterns [6].
These traffic patterns have been implemented as one-off applications that use
Model-net as a network driver. Recently, an application to replay DUMPI [1]
traces has also been added to CODES.

2.1 Related Work

BigSim is one of the earliest simulators that supports packet-level network simu-
lation [17]. It is based on the POSE PDES engine [16] which has high overheads
and impacts the scaling performance of the simulator. Structural Simulation
Toolkit (SST) [10] provides both online (skeleton application based) and offline
(DUMPI [1] trace based) modes for simulation. However, it uses a conserva-
tive PDES engine, does not support packet-level simulation in parallel builds,
and has limited scalability with flow-based models. Booksim [11] is a sequential
cycle-accurate simulator that supports several topologies, but is extremely slow.

There are several network simulators that are either sequential and/or do not
provide detailed packet-level (or flit-level) network simulation and/or trace-based
simulation. These include the Extreme-scale Simulator (xSim) [3], DIMEMAS [7],
LogGOPSim [8], MPI-Netsim [15], OMNet++ [13], and SimGrid [5].

3 Design and Implementation of TraceR

TraceR is designed as an application on top of the CODES simulation frame-
work. Figure 1 (left) provides an overview of TraceR’s integration with BigSim
and CODES. The two primary inputs to TraceR are the traces generated by
BigSim and the configuration parameters describing the interconnection network
to be simulated. The meta-data in the traces is used to initialize the simulated
processes. The network configuration parameters are passed to CODES to ini-
tialize the prototype network design.

We define the following terminology to describe the working of TraceR:

PE : Each simulated process (called PE) is a logical process (LP) visible to ROSS.
It stores virtual time, logical state, and the status of tasks to be executed by it.

Task : The trace for a PE is a collection of tasks, each of which represents a
sequential execution block (SEB). A task may have multiple backward depen-
dencies to other tasks or to message arrivals. At startup, all tasks are marked
undone. If a task has an undone backward dependency, it can not be executed.

Event : A unit entity that represents an action with a time-stamp in the PDES.
We implement three types of events in TraceR:

− Kickoff event starts the simulation of a PE.

− Message Recv event is triggered when a message is received for a PE. The
network message transmission and reception is performed by CODES.

− Completion event is generated when a task execution is completed.

Reverse Handler : Another unit entity which is responsible for reversing the effect
of an event. It is needed only for the optimistic simulation mode.



4 Acun et al.

TraceR

CODES on 
ROSS

Performance Prediction

Network Configuration

Application Traces from BigSim
Execute Task

First task

Send message 
to other PEs

Schedule 
completion event

Receive message 
from other PEs

Completion Event

Message Recv 
Event

Remote 
Message

Fig. 1: Integration of TraceR with BigSim emulation and CODES (left). Forward path
control flow of trace-driven simulation (right).

Let us consider an MPI application that performs an iterative 5-point stencil
computation on a structured 2D grid to understand the simulation process. In
each iteration, every MPI process sends boundary elements to its four neighbors
and waits for ghost elements from those neighbors. When the data arrives, the
MPI process performs the 5-point stencil followed by a global reduction to de-
termine if another iteration is required. From TraceR’s perspective, every MPI
process is a PE. Tasks are work performed by these MPI processes locally: ini-
tial setup, sending boundary elements, the 5-point stencil computation, etc. The
Kickoff event triggers the initial setup task. Whenever an MPI process receives
ghost elements, a Message Recv event is generated. The dependence of the sten-
cil computation on the receives of ghost elements is an example of a backward
dependency. Similarly, posting of a receive by an MPI process is a prerequisite
for TraceR to execute the Message Recv event.

Figure 1 (right) presents the forward path control flow of a typical simulation
in TraceR. Application traces are initially read and stored in memory. When
the system setup is complete, the Kickoff event for every PE is executed, wherein
the PEs execute their first task. In the 2D stencil example, this leads to execution
of the initial setup task. What happens next depends on the content of the task
being executed, and the virtual time, ts, at which the task is executed.

Every task T has an execution time te, which represents the virtual time T
takes for executing the SEB it represents. When a task is executed, TraceR
marks the PE busy and schedules a Completion event for T at ts + te (Algo-
rithm 1(a)). During the execution of a task, messages for other PEs may be
generated. These actions are representative of what happens in real execution.
When the MPI process is executing a SEB, e.g. to send boundary elements, the
process is busy and no other SEB can be executed till the sending of boundary is
complete. The generated messages are handed over to CODES for delivery. Note
that the execution of a task in our framework only amounts to fast-forwarding
of the PE’s virtual time and delegation of messages to CODES; the actual com-
putation performed by the SEB is not repeated.

When a Completion event is executed, the task T is marked done and the PE
is marked available (Algorithm 1(c)). Next, some of the tasks whose backward
dependencies included T may now be ready to execute. Thus, those tasks are



A Parallel Trace Replay Tool for HPC Network Simulations 5

Algorithm 1 Event handler implementation for PEs: code lines that begin with
an asterisk (*) are required only in the optimistic mode.

pe busy: A boolean; set to true if the PE is executing a task at the current virtual time.
ready tasks: List(FIFO) of tasks that are ready to be executed on a PE if pe busy is false.
trigger task: Map that stores the task executed at the completion of a given task.

(a) Execute Task(task id)
1: Get the current virtual time of the PE, ts.
2: Mark the PE busy, pe busy = true.
3: Send out messages of the task with their offsets

from ts.
4: Get the execution time of the task, te.
5: Schedule a Completion event for the PE at

time ts + te for this task.

(b) Receive Msg Event(msg)
1: Find the task T that depends on the message.
2: If T does not have any undone backward de-

pendencies, add T to ready tasks.
3: if pe busy == false then
4: Get the next task, T ′, from ready tasks.
5: *Store T ′ and pe busy for possible use in

the reverse handler; trigger task[T ] = T ′,
busy state[T ] = pe busy.

6: Call Execute Task(T ′).
7: end if

(c) Completion Event(msg)
1: Get the completed task, T , from the msg.
2: Mark T as done.
3: Set pe busy = false.
4: for every task, f , that depends on T do
5: if f does not have any undone back-

ward dependency then
6: Add f to ready tasks.
7: end if
8: end for
9: Get the next task, T ′ from ready tasks.

10: *Store T ′ for possible use in the reverse
handler, trigger task[T ] = T ′.

11: Call Execute Task(T ′).

added to a list of pending tasks, ready tasks. Finally, the task at the top of
ready tasks list is selected and Execute task function is called (Figure 1 (right)).

As the simulation progresses, a PE may receive messages from other PEs.
When a message is received, if the task dependent on the incoming message
has no other undone backward dependency, it is added to the ready tasks list
(Algorithm 1(b)). If the PE is marked available when a message is received,
the next task from the ready tasks list is executed. After the initial tasks are
executed, more tasks become eligible for execution. Eventually, all tasks are
marked done, and simulation is terminated.

3.1 Running TraceR in Optimistic Mode

When executing in the optimistic mode, TraceR speculatively executes avail-
able events on a PE. When all the messages finally arrive, ROSS may discover
that some events were executed out of order and rolls back the PE to rectify
the error. In order to exploit the speculative event scheduling, TraceR does
two things. First, during the forward execution of an event, extra information
required to undo the effect of a speculatively executed event is stored. In Algo-
rithm 1, these actions are marked with an asterisk. For both Message Recv and
Completion events, the data stored includes the task whose execution is triggered
by these events. For the Message Recv event, whether the PE was executing an
SEB when the message was received is also stored. If this information is not
stored by TraceR, it will get lost and hence the rollback will not be possible.

Second, as shown in Algorithm 2, reverse handlers for each of the events are
implemented. These handlers are responsible for reversing the effect of forward
execution using the information stored for them. For example, in the stencil
code, reverse handler for a Message Recv event reverts the MPI process back



6 Acun et al.

to a state where it was still waiting for the ghost elements. In general, for a
Message Recv event, the reverse handler marks the message as not received,
while the reverse handler of a Completion event marks the task as undone. In
addition, the tasks that were added to the ready tasks list are removed from the
list. Both the reverse handlers also add the task triggered by the event to the
ready tasks list.

Algorithm 2 Reverse handler implementations: they use extra information
stored by event handlers to undo their effect.

(a) Message Recv Rev Handler(msg)
1: Find the task T that depends on the message.
2: Recover the busy state of the PE, pe busy =

busy state[T ].
3: if pe busy == false then
4: Add trigger task[T ] to the front of the

ready tasks.
5: end if
6: Remove T from the ready tasks.

(b) Completion Rev Handler(msg)
1: Get the completed task, T , from the msg.
2: Mark T as undone.
3: Remove the tasks that depends on T from

the bottom of ready tasks.
4: Add trigger task[T ] to the front of

ready tasks.

4 Parameter Choices for TraceR

The complexity involved in simulating real codes over a PDES engine manifests
itself in a number of design and parameter choices. The first choice is the type of
PDES engine: conservative versus optimistic. While the optimistic mode provides
an opportunity for exploiting parallelism by speculative scheduling of events, the
benefits of speculative scheduling may be offset by the repeated rollbacks for
scenarios with tight coupling of LPs. Conservative mode does not pose such a
risk, but spends a large amount of time on global synchronization.

Another option that is available through the BigSim emulation is defining
regions of interest in the emulation traces. TraceR can exploit this functionality
to skip unimportant events such as program startup. For some applications,
this can speed the simulation significantly. Next, we briefly describe some other
important configuration parameters:

Event granularity: This parameter decides the number of tasks to execute
when an event is scheduled. We can either execute only the immediate task
dependent on this event or all the tasks in the ready tasks list. The former leads
to one completion event per task, while in the latter method, a single completion
event is scheduled for all the tasks executed as a set. The second option reduces
the number of completion events to the minimum required.

Execution of one task per event may lead to a larger number of events and
hence results in overheads related to scheduling and maintaining the event state.
However, it simplifies the storage of information for reverse computation since
only one task needs to be stored per event. In contrast, when we execute multiple
tasks per event, a variable length array of all executed tasks needs to be stored.
This leads to inefficiency in terms of memory usage and memory access. However,
the number of total events is fewer thus reducing the PDES engine overheads.
These modes are referred to as TraceR-single and TraceR-multi in Figure 5.



A Parallel Trace Replay Tool for HPC Network Simulations 7

Parameters for optimistic mode: There are three important parameters that
are available in the optimistic mode only: batch size, global virtual time (GVT)
interval and number of LPs per kernel process (KP).

– Batch size defines the maximum number of events executed between consec-
utive checks on the rollback queue to see if rollbacks are required.

– GVT interval is the number of batches of events executed between con-
secutive rounds of GVT computation and garbage collection. GVT is the
minimum virtual time across all LPs and its computation leads to global
synchronization.

– Number of LPs per KP : ROSS groups LPs into kernel processes (KPs), which
is the granularity at which rollbacks are performed.

5 Experimental Setup and Configuration Parameters

Proxy applications: We use two proxy applications for evaluating and validat-
ing TraceR. 3D Stencil is an MPI code that performs Jacobi relaxation on a
3D process grid. In each iteration of 3D Stencil, every MPI process exchanges its
boundary elements with six neighbors, two in each direction. Then, the temper-
ature of every grid point is updated using a 7-point stencil. In our experiments,
we allocate 128×128×128 grid points on each MPI process, and hence have 128
KB messages. LeanMD is a Charm++ proxy application for the short-range
force calculations in NAMD [2]. We use a molecular system of 1.2 million atoms
as input to LeanMD. We simulate three iterations in each benchmark.

Simulated networks: We simulate a 3D torus of size 512 to 524, 288 nodes
to measure and compare simulator performance because 3D torus is the only
topology available in all simulators used in the paper. For validation, we simulate
a 5D torus because isolated allocations on IBM Blue Gene/Q (which has a
5D torus) allow us to collect valid performance data. Dimensions of the 3D
tori are chosen to be as cubic as possible and those of the 5D tori mimic the
real allocations on IBM Blue Gene/Q. For the 3D torus, we have experimented
with two types of congestion models: a packet-level congestion model based on
IBM’s Blue Gene/P system (TorusNet) [14] and a topology-oblivious packet-level
α− β model (SimpleNet). The simulation runs were performed on Blue Waters,
a Cray XE6 at NCSA, while the emulation (trace generation) and validation
were performed on Vulcan, an IBM Blue Gene/Q system at LLNL.

Evaluation metrics: We use three metrics to compare and analyze the perfor-
mance of different simulators:

– Execution time: time spent in performing the simulation (excluding startup).
– Event rate: number of committed events executed per second
– Event efficiency: represents the “rollback efficiency” and is defined as:

Event efficiency (%) =

(
1 − #rolled back events

#committed events

)
× 100

Based on the equation above, when the number of events rolled back is greater
than the number of committed events (events that are not rolled back, which



8 Acun et al.

equals the number of events executed in a sequential simulation), the efficiency
is negative. A parallel simulator may be scalable even if its event efficiency is
negative. This is because while using more cores may not improve event efficiency,
it may reduce the execution time due to additional parallelism.

5.1 Conservative versus Optimistic Simulation

We begin with comparing the conservative and optimistic modes in TraceR.
In these experiments, we simulate the execution of 3D Stencil on 4K nodes
of a 3D Torus using 1 to 16 cores of Blue Waters. As shown in Figure 2, the
execution time for the conservative mode increases with the number of cores, but
decreases for the optimistic mode (for both TorusNet and SimpleNet). Detailed
profiles of these executions show that the conservative mode performs global
synchronization 43 million times which accounts for 31% of the execution time.
Overall, 60% of the total execution time is spent in communication.

���

����

�����

������

�� �� �� �� ���

��
��
��
��
��
�
��
��
��
�

��������������������������

����������������������������������������

�����������������
���������������

�
����������������
��������������

Fig. 2: Optimistic vs. conservative DES

In contrast, the optimistic mode
synchronizes only 1, 239 times for
GVT calculation with communication
accounting for 10% of the execution
time. This is in part due to the overlap
of communication with useful compu-
tation and in part due to the lazy na-
ture of global synchronization in the
optimistic mode. Based on these re-
sults, we conclude that the optimistic
mode is suitable for performing large
simulations using TraceR and we use it for the results in the rest of the paper.

5.2 Effect of Batch Size and GVT Interval

Figure 3 shows the impact of batch size and GVT interval on performance when
simulating 3D Stencil on a 3D torus with 8K nodes and 512K nodes using 8
and 256 cores, respectively. Note that the choice of the number of simulated
nodes and that of simulating cores affects the results minimally except at the
limits of strong scaling. These results are for the TorusNet model; similar results
were obtained for SimpleNet model also. The first observation from Figure 3
(left) is the diminishing increase in the event rate as the batch size is increased.
The improvement in the event rate is because of two reasons: positive impact
of spatial and temporal locality in consecutive event executions and overlap
of communication with computation. However, as the batch size becomes very
large, the communication engine is progressed infrequently which reduces the
overlap of communication with computation. At the same time, the number of
rollbacks increases due to the delay in communication and execution of pending
events to be rolled back. These effects become more prominent on larger core
counts as shown by the event efficiency plots in Figure 3 (right).

Next, we observe that the event rate typically improves when a large GVT
interval is used. This is because as the GVT interval is increased, the time spent
in performing global synchronization is reduced. Infrequent synchronization also



A Parallel Trace Replay Tool for HPC Network Simulations 9

��

��

��

��

��

�� �� ��� ��� �����
��
��
�
��
��
��
���
��
��
��
��
��
��
�

�����������������������������

�����������������������������������������������

��������
��������

�������
������

������

���

���

���

���

�� �� ��� ��� ���

��
��
��
��
��
��
��
��
��
�

�����������������������������

�����������������������������������������������

������
������
�������
��������
��������

��

���

���

���

���

�� �� ��� ��� �����
��
��
�
��
��
��
���
��
��
��
��
��
��
�

�����������������������������

�������������������������������������������������

��������
��������

�������
������

������

����

����

����

���

��

�� �� ��� ��� ���

��
��
��
��
��
��
��
��
��
�

�����������������������������

�������������������������������������������������

������
������
�������
��������
��������

Fig. 3: Effect of batch size and GVT interval on performance: 8K simulated nodes are
simulated using 8 cores (top 2 plots), and 512K using 256 cores (bottom 2 plots).

reduces idle time since LPs with variation in load do not need to wait for one
another. These results are in contrast to past findings that were performed on
PDES with uniform loads on the LPs [4]. When a sufficiently large GVT interval
is used with a large batch size, memory limits force certain LPs to idle wait till
the next garbage collection. As a result, the rollback efficiency and event rates
drop as shown in the Figure 3. Based on these findings, we use a batch size of
16 and GVT interval of 1024 for all simulations in the rest of the paper.

5.3 Impact of Number of LPs per KP

#LPs/KP Efficiency (%) Time(s)

1 51 82
2 38 92

16 2 119
128 -87 189

Fig. 4: Impact of #LPs per KP.

ROSS groups LPs together to form ker-
nel processes (KPs) to optimize garbage
collection. This causes all LPs in a KP to
rollback if any one of the LPs has to roll-
back. In [4], it was shown that although
smaller values of LPs per KP reduce the
number of rolled back events, they do not
have a significant impact on the execution
time. Our findings, shown by a represen-
tative set in Figure 4 (obtained by simulating 3D Stencil on 8K nodes of 3D
Torus with TorusNet model on 8 cores), differ – smaller values of LPs per KP
reduce the execution time also. As we reduce the number of LPs per KP from
128 to 1, the execution time decreases by 57%.

The primary reason for the difference in impact of LPs per KP is the vary-
ing event efficiency. For synthetic benchmarks used in [4], the event efficiency is
greater than 95% in all cases. As a result, any further increase caused by de-
creasing LPs per KP is marginal. In contrast, for real application simulations,



10 Acun et al.

the event efficiency is much lower. Thus, a reduction in the number of rollbacks
can significantly impact the overall execution time.

6 Performance Comparison, Scaling and Validation

We now compare the performance of TraceR with other simulators and analyze
its scaling performance and prediction accuracy using the packet-level model
(TorusNet). Here, TraceR is executed in optimistic mode with batch size = 16,
and GVT interval = 2048. The simulated network topology is 3D torus, which
is the only topology available in TraceR, BigSim, and SST.

6.1 Comparison with Sequential Executions

We first compare the sequential performance of BigSim, SST (online mode),
TraceR-single, and TraceR-multi for simulating 3D Stencil’s execution on
various node counts. Figure 5 shows that TraceR is an order of magnitude
faster than BigSim. This is primarily because of the inefficiencies in BigSim’s
torus model and its PDES engine. Compared to SST, the execution time of

���

����

�����

������

����� ����� ������ ������ ������

�
��
��
��
�

������������������������������������

������������������������������������

������
����������

������������
�������������

Fig. 5: Sequential simulation time

TraceR-single is lower by 50%,
which we believe is due to ROSS’s
high performing DES engine. The per-
formance of TraceR-single is better
than TraceR-multi for these exper-
iments. However, we found TraceR-
multi to out-perform TraceR-single
in other experiments for reasons that
need to be explored further. In the
rest of this section, we report the
performance of TraceR-single as
TraceR’s performance.

Startup Overhead in Parallel Mode: The overhead of reading traces in
TraceR for the 3D Stencil code is as low as few tens of seconds in most cases,
especially on large core counts. This is because trace files can be read in parallel
as the core counts increase. In general, we observe that the trace reading time
is less than 5% of the total execution time.

6.2 Parallel Scaling and Validation of TraceR

Next, we present scaling results for TraceR using packet-level TorusNet and
SimpleNet models. The comparison with other simulators was not possible due
to the following reasons: 1) The parallel execution of BigSim, on 2-16 cores,
is an order of magnitude slower than its sequential version. This is due to high
overheads introduced by its PDES engine. 2) The parallel version of SST does not
work with packet-level models, and hence is not available for a fair comparison.

Figure 6 presents the execution time for simulating 3D Stencil on various node
counts of 3D torus. It is clear that TraceR scales well for all simulated system
sizes. For the simulations with half a million (512K) nodes, the execution time
is only 95s and 542s using SimpleNet and TorusNet, respectively. For smaller
systems, the execution time is reduced to less than 100s, even for TorusNet.



A Parallel Trace Replay Tool for HPC Network Simulations 11

��

���

����

�����

�� �� �� �� ��� ��� ��� ���� ���� ����

�
��
��
��
�

��������������������������

�������������������������������������

����
����

���
��

���

����

�����

������

�� �� �� �� ��� ��� ��� ���� ���� ����

�
��
��
��
�

��������������������������

���������������������������������������

����
����

���
��

Fig. 6: Scalability of TraceR when simulating networks of various sizes.

��

���

����

�����

������

�� �� �� �� ��� ��� ��� ����

�
��
��
��
�

��������������������������

��������������������������������������������

��������
���������

����

��

���

���� ����� ����� ����� �����
�
��
��
��
��
��
��
��
��

�������������������������

��������������������������������������������

����������������
�����������������

�������

��
��

��
��

��

Fig. 7: Scaling and accuracy of simulating LeanMD with TraceR.

Figure 7 (left) shows the scaling behavior of TraceR when simulating LeanMD
on 32K nodes of a 5D torus. Again, the simulation takes only 2s and 65s on 128
cores using SimpleNet and TorusNet, respectively. However, the speed up for
simulation of LeanMD is lower in comparison to the speed up for simulating 3D
Stencil. This is due to LeanMD’s relatively more complicated interaction pattern
and dependency graph, which causes more rollbacks on large core counts.

Validation: We simulated LeanMD on a 5D torus in order to use it for vali-
dating TraceR. IBM’s Blue Gene/Q system, which has a 5D torus, provides
an isolated execution environment which is ideal for comparison with the per-
formance prediction in TraceR. For the validation, LeanMD was executed on
Vulcan, a Blue Gene/Q with a 5D torus network. In these experiments, we enable
deterministic routing, record the execution time and the topology of the system
allocated for these jobs. Next, TraceR is configured to simulate LeanMD using
a 5D TorusNet model and the topology information we obtained during the real
runs. Figure 7 (right) compares the prediction by TraceR with the observed
performance. We observe that for all node counts (512 to 8, 192 nodes) the error
in the prediction is less than 9%. For most cases, the predicted time is within 2%
of the observed execution time. This suggests that TraceR is able to predict
the execution time of fairly complex applications with high accuracy.

7 Conclusion

We have presented a trace-driven simulator, TraceR, for studying communi-
cation performance of HPC applications on current and future interconnection
networks. TraceR shows how one can leverage optimistic parallel discrete-event
simulation with reversible computing to provide scalable performance. We have



12 Acun et al.

also shown that TraceR outperforms state-of-the-art simulators such as BigSim
and SST in serial mode and significantly lowers the simulation time on large core
counts. Additionally, we observed that depending on the simulated workload, the
optimal set of input parameter values for a PDES-based simulator varies and
needs to be identified.

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
This work was funded by the LDRD Program at LLNL under project tracking
code 13-ERD-055 (LLNL-CONF-667225).

References

1. DUMPI: The mpi trace library. http://sst.sandia.gov/about_dumpi.html
2. Bhatele, A., et al.: Overcoming scaling challenges in biomolecular simulations

across multiple platforms. In: Proceedings of IEEE International Parallel and Dis-
tributed Processing Symposium 2008 (April 2008)

3. Bohm, S., Engelmann, C.: xSim: The extreme-scale simulator. HPCS (2011)
4. Carothers, C.D., Bauer, D., Pearce, S.: ROSS: A high-performance, low-memory,

modular Time Warp system. J. Parallel Distr. Com. 62(11), 1648–1669 (2002)
5. Casanova, H., et al.: Versatile, scalable, and accurate simulation of distributed

applications and platforms. J. Parallel Distr. Com. (Jun 2014)
6. Cope, J., et al.: Codes: Enabling co-design of multilayer exascale storage architec-

tures. In: Proc. of the Workshop on Emerging Supercomp. Technologies (2011)
7. Girona, S., Labarta, J.: Sensitivity of performance prediction of message passing

programs. The Journal of Supercomputing (2000)
8. Hoefler, T., Schneider, T., Lumsdaine, A.: LogGOPSim - Simulating Large-Scale

Applications in the LogGOPS Model. In: Proceedings of the 19th ACM Interna-
tional Symposium on HPDC. pp. 597–604. ACM (Jun 2010)

9. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive MPI. In: Proceedings of the 16th In-
ternational Workshop on Languages and Compilers for Parallel Computing (LCPC
2003), LNCS 2958. pp. 306–322. College Station, Texas (October 2003)

10. Janssen, C.L., et al.: A simulator for large-scale parallel computer architectures.
IJDST 1(2), 57–73 (2010)

11. Jiang, N., et al.: A detailed and flexible cycle-accurate network-on-chip simulator.
In: IEEE Intl. Symp. on Performance Analysis of Systems and Software (2013)

12. Kale, L.V., Bhatele, A. (eds.): Parallel Science and Engineering Applications: The
Charm++ Approach. Taylor & Francis Group, CRC Press (Nov 2013)

13. Minkenberg, C., Rodriguez, G.: Trace-driven co-simulation of high-performance
computing systems using OMNeT++. In: Proceedings of the 2nd International
Conference on Simulation Tools and Techniques. p. 65 (2009)

14. Misbah Mubarak, Christopher D. Carothers, R.B.R., Carns, P.: A case study in
using massively parallel simulation for extreme-scale torus network codesign. In:
Proceedings of the 2nd ACM SIGSIM PADS. pp. 27–38. ACM (2014)

15. Penoff, B., Wagner, A., Tuxen, M., Rungeler, I.: Mpi-netsim: A network simulation
module for mpi. In: Parallel and Distributed Systems (ICPADS). IEEE (2009)

16. Wilmarth, T., Kalé, L.V.: POSE: Getting over grainsize in parallel discrete event
simulation. In: Int. Conf. on Parallel Processing. pp. 12–19 (August 2004)

17. Zheng, G., et. al: Simulation-based performance prediction for large parallel ma-
chines. In: Intl. J. Parallel Programming. vol. 33, pp. 183–207 (2005)


