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Abstract—With the large increase in terrorist activities
throughout the world, the timely and accurate detection of
special nuclear material (SNM) has become an extremely high
priority for many countries concerned with national security.
The detection of radionuclide contraband based on their γ-ray
emissions has been attacked vigorously with some interesting
and feasible results; however, the fission process of SNM has
not received as much attention due to its inherent complexity
and required predictive nature. In this paper, on-line, sequential
Bayesian detection and estimation (parameter) techniques to
rapidly and reliably detect unknown fissioning sources with high
statistical confidence are developed.

I. INTRODUCTION

The detection of special nuclear material (SNM) is be-

coming more and more of a concern as terrorist activities

throughout the world have increased dramatically. Sequential

detection techniques have been proven to provide a highly

reliable detection process with high confidence minimizing

false alarms capable of making decisions in a timely manner

[1], [2]. We develop a sequential Bayesian methodology to

cast the basic decision problem into this framework. Here we

exploit the fissioning nature of the threat to obtain unique

signatures that can be utilized for SNM detection.

Previous work in the SNM detection area applying Bayesian

techniques have been applied to the radiation detection prob-

lem [3]-[6] where a sequential algorithm coupled to a parame-

ter estimation scheme enables the detection of threat materials

based on the gamma-rays emitted by the targeted radionuclide

[7]-[19]. Here we concentrate on neutron emissions measured

directly by a neutron multiplicity counter that counts the

arrivals.

The implementation of a sequential Bayesian detector for

this problem requires a-priori information about the unknown

source(s) that is being targeted for detection much the same

as a sequential radiation detection scheme [7]-[14]. Therefore,

a sophisticated estimation scheme must be embedded in the

detector to provide updated parameter estimates of the source

in order to be successful.

The development of a Bayesian particle filter (PF) or

equivalently sequential Markov Chain Monte Carlo (MCMC)

processor for a fissioning process is quite a challenging

problem due to its underlying stochastic nature. This effort is

based on the fundamental theory and modeling developed by

Prasad and Snyderman [20], [21] and summarized in Walston

[22]. The fission process has a rich history of development

and its comprehension has evolved through a wide variety

of research [23], [24]. Even though the underlying theory is

complex, it can still be captured by stochastic modeling. Here

a Bayesian approach to the problem is developed based on the

underlying time-interval probability distribution [20].

In Sec. II, we define the Bayesian problem by discussing

the underlying fission physics leading to the inter-arrival

time or equivalently the time-interval distribution [20]. Once

established, the sequential Bayesian detection framework is

developed incorporating the source information into the de-

cision function for both known and unknown parameters in

Sec. III. Next the generalized case is developed for unknown

source parameters that must be estimated (on-line) from the

incoming neutron arrivals. Once the structure is established

for this case, Bayesian parameter estimation schemes are

developed in Sec. IV leading to the sequential particle filter.

The general structure, motivated by the fission problem, is then

implemented in Sec. V and applied to simulated arrival data.

II. PHYSICS-BASED MODELS FOR DETECTION

In this section we discuss the development of a physics-

based fission model capturing the joint distribution of the

overall fission processes and their underlying statistics. As

mentioned above, this development is based on the fundamen-

tal theory and modeling developed in Refr. [20]. We start with

the basic neutron physics and progress to the full propagation

leading to the desired probability distribution.

A. Fission-Based Processing Model

A neutron arriving at a detector at energy level α and

arrival time tm can be characterized as a single impulse

εmδ(t− tm). A train of neutrons is defined as a set of arrivals

that do not overlap in time. Inter-arrival times are defined as

τm := tm − tm−1 for m = 0, 1, · · · , M and the complete set

of inter-arrivals by TM := {τ0, τ1, · · · , τM}. These arrivals

are measured by a neutron multiplicity counter [25] that is

basically a sophisticated neutron detector that evaluates the

inter-arrival time probability distribution of neutrons emitted

spontaneously by fissionable materials. Recall that the radioac-

tive decay of each unstable nucleus produces multiple neutrons

that can interact with other nuclei exciting them to energy

levels enabling them to split into smaller unequal fission

fragments which are also unstable and decay even further

(emitting neutrons) toward stable nuclei. The detection of these

neutrons, which can pass through heavy shielding, provides a

methodology to detect special nuclear material. The key issue

with threat materials is that the number of neutrons released

are produced by a single decay defining its multiplication.



These “correlated” neutrons offer a unique SNM signature that

indicates both its multiplication and the mass of spontaneous

fission isotopes. Thus, the neutron multiplicity counter or

neutron detector is a stochastic measurement system creating

an estimated time-interval probability distribution that is used

in the neutron detection process to alarm on SNM. Thus, the

essential ingredient of these measurements is its underlying

time-interval probability distribution.

A simplistic model of the multiplication process consists

of a fission chain generated by a spontaneous fission under

the assumption that the source is characterized by an inho-

mogeneous Poisson process with a varying fission rate [26],

[27]. During a single fission chain ν-neutrons are emitted with

probability Pν . These emissions are slowed in a moderator

and diffuse exponentially in time as thermal neutrons. Then

the probability that n of the ν neutrons are absorbed in the

detector and converted to electrical pulses is

Pr[ν ; TM ] = Pν(
ν
n

)εn(1 − ε)ν−n (1)

where ε is the probability of neutron detection (detection

efficiency). Mathematically, we can represent the Nν -neutron

burst sequence emitted by

η(τm; ΘS) =

Nν∑

i=1

αiδ(τ −τm(ΘS)); m = 0, · · · , M ; τm < TM

(2)

for α the i-th energy of the neutron at the m-th inter-arrival

in the M -th time interval. Typically, we ignore the neutron

energy and concentrate on the inter-arrival, since the source

information is contained in τm(ΘS).
For spontaneous fissions, the quantity, keff , is the average

number of neutrons from one fission that initiates another

[3]. Any remaining neutrons are absorbed or escape. The

value of keff specifies how a chain will proceed. For instance,

the keff = 1 (critical mass) leads to a fission level that

is constant and is typical to power plant operation, while

keff > 1 (super-critical mass) for an event implies that there

may be keff-events to follow which is typical in weapons

applications. For the latter, the number of fission reactions

increase exponentially. We will use Eq. 2 in developing the

subsequent fission detection schemes to follow.

B. Inter-arrival Distribution

Theoretically, the conditional distribution of inter-arrival

times τ conditioned on a set of source parameters Θ (following

[20], [21]) is given by

Pr[τ |Θ] = R1r0n0
︸ ︷︷ ︸

Time between chain initiations

+

FS

R1

∞∑

n=2

en(ε)

(
n−1∑

k=1

ke−kλτ

)

λb0(τ )

︸ ︷︷ ︸

Time between neutrons in same chain

(3)

where

R1 is the count rate;

r0 is the probability that NO neutrons are detected within

the time-interval τ ;

n0 is the probability of zero counts in time interval τ ;

τ is the time interval or inter-arrival time;

FS is the fission rate;

en(ε) is the probability of detecting n neutrons from the

same fission chain;

λ is the inverse of the diffusion time scale; and

b0(τ ) is the probability of NO counts in time interval τ .

Embedded in Eq. 3 is a set of various relations that capture

the time-interval probability:

Fs =
NA

A

ln 2 t1/2

t1/2 tSF
1/2

mS

R1 = ε q M νS FS

for

mS mass of the source;

ε is the detection efficiency;

p is the probability that a neutron induces a fission;

q is the escape probability (q = 1 − p);

M is the system multiplication;

νS is the average neutron count from a spontaneous

fission;

νI is the average neutron count from an induced fission;

NA is Avogadro’s number;

A is the atomic weight; and

t1/2 is the half-life.

with multiplication given by

M =
1

1 − pνI
=

1

1 − keff

for keff the effective multiplication and detection efficiency

approximated by

ε =
a

bM2
e + cMe

; 0 ≤ ε ≤ 0.04; a, b, c fit parameters

where Me = q×M. The probability of detecting n-neutrons

of the ν emitted with probability Pν is given by

en(ε) =

∞∑

ν=n

Pν(
ν
n

)εn(1 − ε)ν−n

The following probabilities complete the distribution

r0 =
FS

R1

∞∑

n=1

en(ε)
( n−1∑

k=0

e−kλτ
)

and

b0(τ ) =

exp
[

− FS

∫ τ

0
1

1−e−λt

(

1 −
∑∞

ν=0 Pν(1 − ε(1 − e−λt))ν
)

dt
]



n0(τ ) = r0(τ ) × b0(τ )

Since the objective is to “decide” whether or not a fissioning

source is present, we require a-priori knowledge of the source

parameters: mass, multiplication, detection efficiency and dif-

fusion time scale parameters. Notationally, we define the

source parameters as mS, keff, ε and λ respectively and note

their intimate relations in the overall probability distribution

function.

III. SEQUENTIAL DETECTION FOR FISSION

PROCESSES

In order to develop a sequential processor [28], [29], we

must test the binary hypothesis that the measured inter-arrival

times have evolved from a fissioning SNM threat. The basic

decision problem is simply stated as:

GIVEN a set of uncertain neutron multiplicity detector

inter-arrival measurements {τm}; m = 0, 1, · · ·, M from an

unknown source, DECIDE whether or not the source is a

threat (SNM). If so, “extract” its characteristic parameters, Θ
to “classify” its type.

We are to test the hypothesis that the set of measured

neutron inter-arrivals TM have evolved from a threat or non-

threat source. Therefore, we specify the hypothesis test by

H0 : TM = TB

(

m; Θb

)

+ TV

(

m
)

[NON-THREAT]

H1 : TM = TS

(

m; Θs

)

+ TB

(

m; Θb

)

+ TV

(

m
)

[THREAT]

(4)

where TS is the unknown source inter-arrivals with parameters

Θs, TB is the background inter-arrivals (cosmic rays, etc.) with

parameters Θb, TV is the zero-mean, Gaussian measurement

(instrumentation) inter-arrival noise, TM := {τ0, τ1, · · · , τM}
and m := 0, 1, · · ·, M .

The fundamental approach of classical detection theory to

solving this binary decision problem is to apply the Neyman-

Pearson criterion of maximizing the detection probability for

a specified false alarm rate [28] with the parameters Θ known.

The result leads to a likelihood ratio decision function defined

by [28], [29]

L(TM ; Θ) :=
Pr[TM |Θ;H1]

Pr[TM |Θ;H0]

H1

>
<
H0

T (5)

with threshold T . This expression implies a “batch” decision,

that is, we gather the M inter-arrivals TM , calculate the

likelihood (Eq. 5) over the entire batch of data and compare

it to the threshold T to make the decision.

A. Sequential Processor

An alternative to the batch approach is the sequential

method which can be developed by expanding the likelihood

ratio for each inter-arrival to obtain the recursion or equiv-

alently sequential likelihood ratio for the m-th inter-arrival

follows as

L(Tm; Θ) = L(Tm−1; Θ)×
Pr[τm|Tm−1, Θ;H1]

Pr[τm|Tm−1, Θ;H0]
; m = 0, · · · , M

(6)

with Pr[τ0|T−1, Θ;H`] = Pr[τ0|Θ;H`], the prior under each

hypothesis.

The Wald sequential probability-ratio test is [1], [2]

L(Tm; Θ) > T1(m) Accept H1

T0(m) ≤ L(Tm; Θ) ≤ T1(m) Continue

L(Tm; Θ) < T0(m) Accept H0

(7)

where the thresholds are specified in terms of the false alarm

(PFA) and miss (PM ) probabilities as

T0(m) =
PM (m)

1 − PFA(m)
T1(m) =

1 − PM (m)

PFA(m)
(8)

These thresholds are determined from a receiver operating

characteristic (ROC) curve (detection versus false alarm prob-

abilities) obtained by simulation or a controlled experiment to

calculate the decision function. That is, an operating point is

selected from the ROC corresponding to specific detection (or

equivalently miss) and false-alarm probabilities specifying the

required thresholds which are calculated according to Eq. 8

for each parameter update.

A reasonable approach to this problem of making a reliable

decision with high confidence in a timely manner is to develop

a sequential detection processor. At each neutron arrival (at

τm), we sequentially update the decision function and compare

it to the thresholds to perform the detection—“neutron-by-

neutron”. Here as each neutron is monitored producing the

inter-arrival sequence, the processor takes each inter-arrival

measurement and attempts to “decide” whether or not it

evolves from a threat or non-threat. For each inter-arrival,

the decision function is “sequentially” updated and compared

to the detection thresholds obtained from the ROC curve

operating point enabling a rapid decision. Once the threshold

is crossed, the decision (threat or non-threat) is made and the

arrival is processed; however, if not enough data is available

to make the decision, then another measurement is obtained.

For our problem, we typically have information about the

background, disturbance and noise parameters, but we rarely

have the source information. Therefore, we still can make a

decision, but require estimates of the unknown parameters,

that is, Θ̂ → Θ. In this case, we must construct a composite

or generalized likelihood-ratio test (GLRT).

Therefore from the batch likelihood decision function, we

can consider the two cases of the GLRT: (i) parameters are

random or (ii) parameters are deterministic but unknown.



Here we assume that Θ is deterministic but unknown.

Therefore, the approach is to estimate the unknown parameter

vector Θ̂ → Θ under each hypothesis and proceed with the

simple testing. A maximum likelihood estimate Θ̂ML, can be

used to create the GLRT such that

L(TM ; Θ) =

max Pr[TM |Θ1;H1]
Θ1

max Pr[TM |Θ0;H0]
Θ0

(9)

This is the approach we employ initially. The batch solution

for the GLRT can also be extended to the sequential case as

before giving the solution by simply replacing Θ̂ML → Θ,

that is,

L(Tm; Θ̂) = L(Tm−1; Θ̂) ×
Pr[τm|Tm−1, Θ̂1;H1]

Pr[τm|Tm−1, Θ̂0;H0]
;

m = 0, 1, · · · , M

(10)

Anticipating Gaussian models (exponential family [36]) for

our unknown parameters, we develop the logarithmic form of

the sequential likelihood decision function. Simply taking the

natural logarithm of Eq. 10, that is, Λ(TM ; Θ) := lnL(TM ; Θ)
we obtain the log-likelihood sequential decision function as

Λ(Tm; Θ̂) = Λ(Tm−1; Θ̂) +

lnPr[τm|Tm−1, Θ̂1;H1]− lnPr[τm|Tm−1, Θ̂0;H0]

(11)

Using these formulations, we develop the detection algo-

rithm for our problem next. We should note that we only

consider the “threat detection problem” in this paper.

B. Sequential Detection for Fission Processes

Here we start with the results of the previous section and

incorporate the physics of the fission process. For fission

detection, we start with the simple neutron model of Eq. 2

at inter-arrival time τm leading to the subsequent (sequential)

hypothesis test:

H0 : τm = TB

(

m; Θb

)

+ TV

(

m
)

[NON-THREAT]

H1 : τm = TS

(

m; Θs

)

+ TB

(

m; Θb

)

+ TV

(

m
)

[THREAT]

(12)

The sequential detection solution (as before) for this prob-

lem with unknown source parameters follows directly from

the GLRT results of Eq. 10. To implement the processor, we

must first determine the required conditional probabilities in

order to specify the decision function, that is,

Pr[τm|Tm−1, Θ̂;H1] = Pr[TS(m; ΘS)|Tm−1, Θ̂S ;H1] +

Pr[TB(m; Θb)|Tm−1, Θb;H1] +

Pr[TV (m)] (13)

and under the null hypothesis

Pr[τm|Tm−1, Θ;H0] = Pr[TB(m; Θb)|Tm−1, Θb;H0]+Pr[TV (m)]
(14)

where the Gaussian inter-arrival noise is distributed as TV ∼
N (0, σ2

vv) and the known background disturbances [15] are

ignored (at this point) while the inter-arrival distribution is

specified (instantaneously at τm) by Eq. 3 with τm → τ to

give:

Pr[TS(m; ΘS)|Tm−1, Θ̂S ;H1] = R1r0n0 +

FS

R1

∞∑

n=2

en(ε)

(
n−1∑

k=1

ke−kλτm

)

λb0(τm)

(15)

Pr[TV (m)] =
1

√

2πσ2
vv

exp
{

−
1

2

T 2
V (m)

σ2
vv

}

(16)

Therefore, the log-likelihood ratio becomes (simply)

Λ(Tm; Θ) = Λ(Tm−1; Θ) +

ln
[

R1r0n0 +
FS

R1

∞∑

n=2

en(ε)

(
n−1∑

k=1

ke−kλτm

)

λb0(τm)

+
1

√

2πσ2
vv

exp
{

−
1

2

T 2
V (m)

σ2
vv

}]

−ln
( 1
√

2πσ2
vv

)

+
1

2

T 2
V (m)

σ2
vv

(17)

We can also extend the problem to the random case. Sup-

pose we assume that each of the independent source parame-

ters are governed by a random walk/random constant model,

that is, the parameters are assumed piecewise constant and

subjected to zero-mean, Gaussian, random uncertainties, wΘ,

with covariance, RwΘwΘ
driving the process [32], then in this

case we have that the parameters, Θ ∼ N (Θ0, P0 + RwΘwΘ
),

where Θ0 is the initial mean with P0 its corresponding

covariance. A more detailed discussion follows subsequently

when we discuss the underlying parameter estimation problem

in Sec. IV (see Eq. 30). Thus, the corresponding multivariate

prior distribution is given by

Pr[Θ(τm)] = (2π)−NΘ/2|P0 + RwΘwΘ
|−1/2 ×

exp
{

− 1/2 (Θ − Θ0)
′
(

P0 + RwΘwΘ

)−1

(Θ − Θ0)
}

(18)



and the log-likelihood ratio is

Λ(Tm; Θ) = Λ(Tm−1 ; Θ) +

ln Pr[τm, Θ(τm)|Tm−1;H1]− lnPr[τm|Tm−1, Θ;H0]

(19)

where the second term can be expanded further by applying

Bayes’ rule to give

Pr[τm, Θ(τm)|Tm−1;H1] = Pr[τm|Tm−1, Θ(τm);H1]

× Pr[Θ(τm)|Tm−1;H1]

(20)

Substituting this expression for the source distribution of Eq.

13 gives

Pr[TS(m; ΘS)|Tm−1, Θ̂S ;H1] −→ Pr[τm|Tm−1, Θ(τm);H1]

× Pr[Θ(τm)|Tm−1;H1]

(21)

With this in mind, the sequential log-likelihood can be calcu-

lated directly by substituting the prescribed distributions into

Eq. 19 to give

Λ(Tm; Θ) = Λ(Tm−1; Θ) + ln
(

R1r0n0 +

FS

R1

∞∑

n=2

en(ε)

(
n−1∑

k=1

ke−kλτm

)

λb0(τm)

+(2π)−NΘ/2|P0 + RwΘwΘ
|−1/2

× exp
{

− 1/2 (Θ − Θ0)
′
(

P0 + RwΘwΘ

)−1

(Θ − Θ0)
}

+
1

√

2πσ2
vv

exp
{

−
1

2

T 2
V (m)

σ2
vv

})

+
1

2
ln
(

2πσ2
vv

)

−
1

2

T 2
V (m)

σ2
vv

(22)

This completes the development of the sequential Bayesian de-

tection approach for fission processes. Next we must consider

the parameter estimation problem in more detail.

IV. BAYESIAN PARAMETER ESTIMATION

In order to implement the GLRT of the previous section, we

must estimate the unknown parameters Θ at each arrival. We

first develop the batch scheme and then its sequential version

similar to the sequential Bayesian detector of the previous

section. Here we develop the Bayesian parameter estimator

that can be applied to the following problem:

GIVEN a set of uncertain multiplicity counter (inter-arrival

time) measurements, TM ; FIND the “best” estimate Θ̂ of the

unknown fission source parameters, Θ.

From a statistical perspective, we would like to estimate

the posterior distribution of source parameters Θ given the

entire inter-arrival data set TM or Pr[Θ|TM ]. Applying Bayes’

theorem we have that

Pr[Θ|TM ] =
Pr[TM |Θ]× Pr[Θ]

Pr[TM ]
(23)

Due to the sequential nature of our problem, that is, the

neutron multiplicity counter measures each neutron arrival

time individually—neutron-by-neutron; we require a sequen-

tial version.

A. Sequential Bayesian Processor

It can be shown [32] that a sequential Bayesian solution can

be developed for the posterior. Starting with the first term of

Eq. 23 and applying Bayes’ rule we have

Pr[TM |Θ] = Pr[τM , TM−1|Θ] = Pr[τM |TM−1, Θ]×Pr[TM−1|Θ]
(24)

and for the denominator term we have

Pr[TM ] = Pr[τM , TM−1] = Pr[τM |TM−1] × Pr[TM−1] (25)

Substituting Eqs. 24 and 25 into Eq. 23 and grouping terms,

we obtain

Pr[Θ|TM ] =
(Pr[τM |TM−1, Θ]

Pr[τM |TM−1]

)

︸ ︷︷ ︸

W(τm)

×
(Pr[TM−1|Θ] × Pr[Θ]

Pr[TM−1]

)

︸ ︷︷ ︸

Pr[Θ|TM−1 ]

(26)

or

Pr[Θ|TM ] = W (τm) × Pr [Θ|TM−1] (27)

which is the sequential form of the posterior distribution.

If we further assume that the inter-arrivals are Markovian

with the current arrival depending only on the previous, that

is, (τm, TM−1) −→ (τm, τm−1), then we have the desired

expression for sequentially propagating the posterior as

Pr[Θ|τm] = W (τm) × Pr [Θ|τm−1] (28)

where

W (τm) =
Pr [τm|τm−1, Θ]

Pr [τm|τm−1]
(29)

Here we assumed that the parameter vector is a ran-

dom constant Θ with no associated dynamics to construct

a sequential Bayesian processor. However, in the real-world

case, it is clear that when measuring neutron inter-arrivals

from an unknown source, then there can easily be variations

or uncertainties associated with each parameter. Perhaps a

more reasonable model for these parametric variations is

the random-walk/constant introduced in the previous section

[32]. That is, we know in continuous-time that the walk is



given by d
dtΘ(τ ) = wΘ(τ ) and by taking first differences

to approximate the derivative we can obtain a sampled-data

representation [32] as

Θ(τm) = Θ(τm−1) + 4τm wΘ(τm−1) (30)

where 4τm := τm − τm−1 for the parametric uncertainty

included in Θ(τm) ∼ N (mΘ(τm), RΘ,Θ(τm) + Rwθwθ
(τm)),

since wΘ ∼ N (0, Rwθwθ
(τm)). The variations of each Θ-

parameter can be controlled by its initial guess Θ(τ0) and

variance, RΘ,Θ(τm) + Rwθwθ
(τm).

Physically we have that Rwθwθ
=

diag[σ2
MM σ2

keffkeff
σ2

εε σ2
λ−1λ−1 ] and the subsequent

search can include a bounded uniform variate for each

initial value, Θ0 = U [a, b] enabling a more pragmatic

approach to modeling the parameter set with their individual

accompanying uncertainties. The statistics of the random

walk/constant model are given by the sequential Gauss-

Markov structure

Θ(τm) = Θ(τm−1) + 4τm wΘ(τm−1) [STATE]

mΘ(τm) = mΘ(τm−1) [MEAN]

RΘΘ(τm) = RΘΘ(τm−1) + Rwθwθ
(τm−1) [VARIANCE]

(31)

With this model in mind, we re-derive the sequential

Bayesian processor as before starting with the batch approach.

We would like to estimate Θ(τm) with the complete parameter

set defined by ΘM := {Θ(τ0), Θ(τ1) · · · , Θ(τM )}. The batch

posterior is given by Bayes’ theorem as before

Pr[ΘM |TM ] =
Pr[TM |ΘM ] × Pr[ΘM ]

Pr[TM ]
(32)

The first term can be decomposed by applying Bayes’ rule

as

Pr[TM |ΘM ] = Pr[τm, TM−1|Θ(τm), ΘM−1]

= Pr[τm|TM−1, Θ(τm), ΘM−1]

× Pr[TM−1|Θ(τm), ΘM−1] (33)

The inter-arrival time τm is independent ΘM−1 and TM−1,

so that the first term in Eq. 33 becomes Pr[τm|Θ(τm)],
while the second term simplifies to Pr[τM−1|ΘM−1], since

the parameter vector Θ(τm) is assumed independent of the

past measurement data. Therefore, we have

Pr[TM |ΘM ] = Pr[τm|Θ(τm)] × Pr[TM−1|ΘM−1] (34)

The second term of Eq. 32 can be decomposed similarly as

Pr[ΘM ] = Pr[Θ(τm), ΘM−1] = Pr[Θ(τm)|ΘM−1]×Pr[ΘM−1]
(35)

and the decomposition of Pr[TM ] in the denominator is given

in Eq. 24 above.

Substituting these relations (Eqs. 24, 34, 35) into Eq. 32,

and assuming a Markovian process as before, we obtain

Pr[ΘM |TM ] =
(

Pr[τm|Θ(τm)] × Pr[TM−1|ΘM−1]
)

×
(

Pr[Θ(τm)|Θ(τm−1)] × Pr[ΘM−1]
)

/ Pr[τm|τm−1] × Pr[TM−1]

(36)

Now grouping the terms the desired posterior distribution

becomes

Pr[ΘM |TM ] =
(Pr[τm|Θ(τm)] × Pr[Θ(τm)|Θ(τm−1)]

Pr[τm|τm−1]

)

×
(Pr[TM−1|ΘM−1] × Pr[ΘM−1]

Pr[TM−1]

)

(37)

or simply (replacing τm −→ TM )

Pr[Θm|Tm] = W (τm) × Pr[Θm−1|Tm−1] (38)

where

W (τm) :=
Pr [τm|Θ(τm)] × Pr[Θ(τm)|Θ(τm−1)]

Pr [τm|τm−1]
(39)

which is the sequential Bayesian solution for the dynamic

parametric model (random walk/constant). A particle filter is

an implementation of this recursion [32], [33].

B. Particle Filter for Fission Processes

Particle filtering is a technique that evolves from the “impor-

tance sampling” approach to statistical sampling of data. The

key idea is to select particles (or parameters in our problem)

from the regions of highest probabilities or equivalently re-

gions of highest importance. Once the resulting importance

weight is determined, the desired posterior distribution is

approximated by a non-parametric probability mass function

(PMF) as

P̂r[ΘM |TM ] =
∑

i

Wi(τm) δ
(

Θ(τm) − Θi(τm)
)

(40)

where Wi is the normalized weighting function given as the

ratio of the posterior at inter-arrival time τm and the designed

importance distribution q as

Wi(τm) :=
Pr[Θ(τm)|Tm]

q[Θ(τm)|Tm]
=

Pr[τm|Θ(τm)]

q[τm|Θ(τm)]

×
Pr[Θ(τm)]

q[Θ(τm)|Θm−1, τm]
(41)

The normalized weight is simply

Wi(τm) :=
Wi(τm)
∑

i Wi(τm)
(42)



The “bootstrap” processor is the most popular technique

[32]. Here the proposal is selected as the transition prior and

the weighting function becomes simply the likelihood

W (τm) = W (τm−1) × Pr[τm|Θ(τm)] (43)

With these relations in mind, the sequential Bayesian pro-

cessor can be developed for our problem. We start with the

basic bootstrap technique to estimate the unknown source pa-

rameters that will eventually become part of the log-likelihood

decision function. Initially, we assume the prior distributions

are uniformly distributed with bounds selected over some

pragmatic intervals U(a, b). The dynamic parameter updates

are given by the random-walk/constant model of Eq. 30 driven

by zero-mean, Gaussian noise with covariance RwΘwΘ
with

initial mean (constant) Θ(τ0) and corresponding parametric

covariance RΘΘ(τm). The likelihood distribution embeds the

“fission physics” of Eq. 3.

The measurement prediction model is based on the current

parameter estimates and its analytic time-interval likelihood

distribution. As a new neutron inter-arrival τm is available at

the output of the multiplicity counter, the predicted parameter

estimate Θ̂(τm|τm−1) is made and provided as input to the

physics likelihood probability distribution LΘ(Θ̂(τm)) :=
Pr(τ |Θ) for the prediction.

After the predicted inter-arrival τ̂m is available, the update

and resampling steps are performed and the next measurement

is awaited. The bootstrap algorithm performs the following

steps shown in Table 1.

Table 1. Bootstrap SIR PF for Fission Processing

PRIOR

Θi(τ0) ∼ Pr(Θ(τ0)) → U(θa, θb); Wi(τ0) =
1

Np

i = 1, · · · , Np [sample]

PREDICTION

Θi(τm) = Θi(τm−1)+wi(τm−1); wi ∼ N (0, Rwiwi
)[transition]

τ̂m = maxτ∈TL[τm] [Measurement Pred.]

Weight (Likelihood) Update:

Wi(τm) = L [τm|Θi(τm)] [weight/likelihood]

Weight normalization:

Wi(τm) =
Wi(τm)

∑Np

i=1 Wi(τm)

RESAMPLING DECISION

N̂eff =
1

∑Np

i=1 W 2
i (τm)

[effective samples]

N̂eff =

{
Resample ≤ Nthresh

Accept > Nthresh

RESAMPLING

Θ̂i(τm) ⇒ Θi(τm)

POSTERIOR DISTRIBUTION

P̂r(Θ(τm)|Tm) ≈

Np∑

i=1

Wi(τm)δ(Θ(τm) − Θ̂i(τm))

V. SNM DETECTION AND ESTIMATION:

SYNTHESIZED DATA

In this section we investigate the performance of the sequen-

tial Bayesian detector/estimator on simulated data (see Sec. II

for details). We assume a set of parameters to statistically

synthesize a set of arrivals used to calculated the inter-arrivals

{τm}; m = 0, 1, · · · , M . We start with the results from the

sequential Bayesian detection algorithm that incorporates the

Bayesian parameter estimator as part of its inherent structure

as illustrated in Fig. 1. Note that the unknown source param-

eter vector to be estimated has the following physical param-

eters (from the inter-arrival PDF): Θ := [mS keff ε λ−1]T —

the mass of the source, effective multiplication (keff), detector

efficiency and diffusion time, respectively.

The bootstrap PF was applied to a synthesized neutron ar-

rival sequence shown in Fig. 1. We note from the figure that the

inter-arrival data is processed by the sequential Bayesian esti-

mator to provide predicted estimates of the source parameters,

Θ̂(τm|τm−1). These estimates are then input to the physics-

based likelihood to predict the corresponding PDF which is a

part of the log-likelihood decision function. These predicted

parameters are also provided directly as individual inputs to the

log-likelihood decision function. Once the decision function is

calculated at τm, it is compared to the thresholds to “decide”

whether or not a threat is present. If so, the alarm is initiated.

If not, another measurement is processed on arrival (take more

data).

There exists a variety of metrics that can be applied to eval-

uate detection performance ranging from confusion matrices

to sophisticated statistical hypothesis tests [39], but perhaps

the most basic and most robust method is the calculation of

the receiver operating characteristic curve. The ROC curve

is simply a graph of detection (PDET ) versus false alarm

(PFA) probabilities parameterized by threshold, T with perfect

performance occurring when PDET = 1 and PFA = 0. The

ROC curve, provides all of the fundamental information from

which most other metrics are derived. Thus, there are many

individual metrics that can be extracted directly from a ROC

curve including sensitivity, specificity, cost/benefit analysis

along with a set of specific features like area under-the-curve

(AUC) and minimum probability of error (MinE) [39].



Fig. 1. Fission detection/estimation processing: Count data, fission parameter
estimation, sequential detection and alarm.

As mentioned in the Sec. III, it is necessary to calculate a

ROC curve to select an operating point (detection and false-

alarm probabilities) to calculate the sequential thresholds. In

order to generate the ROC, we synthesize an ensemble of

30-members each consisting of 100-arrivals selected directly

from a Monte Carlo simulation data set using the following

source (uranium) parameters: mS = 25 kg, keff = 0.9; ε =
0.03; λ−1 = 0.01. We chose to use a signal-to-noise ratio

(SNR) of 6.9 dB defined by the 10 log-ratio of the signal en-

ergy to noise energy (variance). The local ROC for each mem-

ber realization was estimated and then the average ROC was

used for the calculation. Performance metrics such as AUC are

also calculated to assess detection performance (AUC=0.95).

For “perfect” performance, the detection probability is unity

and false-alarm probability zero corresponding to an AUC of

unity. The optimum operating point (PFA, PDET ) is calculated

by minimizing the Bayes’ risk (see [39] for details) yielding

a detection probability of 92% for a false alarm probability of

0.1% at this SNR. Substituting these values into the threshold

calculation of Eq. 8 and taking the natural logarithm give the

thresholds (ln τ0, ln τ1) as (−2.48, 7.23). A typical realization

of sequential Bayesian detection results for a member of the

ensemble is shown in Fig. 2 showing the decision function

exceeding the upper threshold thereby indicating a threat and

subsequent alarm. The ROC curve enables us to evaluate the

performance of the sequential detection algorithm at various

SNRs. This performance is what we would expect to achieve

at the selected thresholds. Test data is used to verify these

predictions. So we see that the detection performance is

quite reasonable at these SNRs indicating a feasible Bayesian

detector design.

Only 100 inter-arrivals were investigated to observe the

feasibility of this approach. We observe the uncertainty of the

inter-arrivals caused by the randomness of the fission process.

Using the predictive sampling approach described in the

previous section, we compare the predicted inter-arrivals to the

measured along with their difference (residual) as illustrated

in Fig. 3. Here we see that the prediction is reasonable. Next

the physical parameters were estimated with the results shown

in Fig. 4. Again the parameter estimates are quite reason-

able for this realization at 6.9 dB. For parameter estimation

performance metrics, we use the average RMS-error (abso-

lute/relative errors) of each estimator to give: mass (RMS-

error = 0.03/0.28% kg); effective multiplication (RMS-error

Fig. 2. Sequential Bayesian (log-likelihood) threat detection for

(PFA, PDET )=(0.0007, 0.916) and thresholds at (ln τ0, ln τ1)=(−2.48,
7.23).

Fig. 3. Raw (solid line) and predicted multiplicity counter inter-arrivals
(dotted line) using prediction sampling scheme along with the resulting

residuals (dashed line) (SNR=6.9dB).

= 0.0025/0.12%); efficiency (RMS-error = 0.00006/0.20%);

and inverse diffusion time (λ) (RMS-error = 0.00004/0.4%
µs−1).

Note that the true parameter value is shown as the line

(dashed) and both the maximum a-posterior (MAP) and con-

ditional mean (CM) estimates are shown (arrows) on the plots.

They appear to track the physical parameters quite well (small

RMS errors) for this realization.

A pragmatic statistical test (in general) for the bootstrap

processor is that the residual sequence should be zero-mean

and uncorrelated. In statistical signal processing, a standard

statistical test to determine whether or not a processor is

operating properly is to test whether the residual sequence

(difference between the measurement and the processor “pre-

dicted” measurement) has a small error variance. Specifi-



Fig. 4. Sequential Bayesian parameter estimates (arrows) and absolute RMS
error for a SNR=6.9dB: (a) Mass (25±0.03 kg). (b) Effective multiplication
(keft = 0.90±0.0025). (c) Efficiency (0.03±0.00006). (d) Inverse diffusion
time (λ = 0.01 ± 0.00004 µs−1).

cally for sequential algorithms, the one-step prediction error

(or residual) has the property that the prediction error or

equivalently the residual sequence should be zero-mean and

uncorrelated (or white). Pragmatically, residuals that satisfy

these properties ensure that the embedded model-based pro-

cessor has “removed” all correlation (of the model) from the

data. The remaining measurement (residual) is uncorrelated

or equivalently provides no further information about the

signal (or model). These properties ensure two conditions:

(1) the underlying model is correct; and (2) no further signal

information remains. In fact, it can be shown that these

conditions are a result of the orthogonality condition of the

data and its prediction [37]. Indeed this is the case, since the

zero-mean test shows the residual mean to be smaller than

the calculated bound (< 0.245) and uncorrelated with only

0.0% of the correlation samples lying outside of the boundaries

(5% or more are considered correlated). The weighted sum-

squared residual (WSSR) is a chi-squared statistic that tests

the hypothesis of whether or not the residual sequence is

statistically uncorrelated or not. It establishes a threshold and

requires the underlying decision function to be below for

whiteness (not correlated). More of the WSSR details are

available in [32], [37] along with the corresponding references.

The WSSR statistic confirms the whiteness with its decision

function lying below the threshold of 51.4. Therefore, from a

local perspective, the processor appears to be performing well.

However, in order to confirm this statement, we must perform

a sequence of at least 100 realizations and calculate ensemble

statistics (not shown). Finally we show a set of for snapshots

(or slices) at various inter-arrival samples (25, 50, 75, 100)

throughout the simulation. Note that each is a slice of the

3D PMFs shown for all of the physical parameters. Also note

how the estimated particles coalesce (as expected) about the

highest probability regions which are annotated by the arrows

in Fig. 5.

Fig. 5. Posterior PMF of various slices (25,50,75,100 interarrivals)
illustrating the multimodal (arrows) nature of the distributions as well as the

coalescing of particles (circles) in highest probability regions.

VI. SUMMARY

We have developed a sequential Bayesian approach to the

fission detection problem based on a theoretical likelihood

PDF capturing the underlying physics of the fission process

[20],[21]. We developed the sequential detection processor

based on a joint probability distribution of inter-arrivals and

unknown source parameters using a combined random walk

and random constant model of the parameter uncertainties

[32]. This model was embedded along with the physics-

based likelihood into both sequential detection and parameter

estimation processors. The processor performed reasonably on

synthesized Monte Carlo data resulting in a successful threat

(SNM) detection achieving a detection/false alarm probability

of PDET = 91.7% at a PFA = 0.07% in comparison

to a similar theoretical approach applied to γ-ray detection

of PDET = 95% at a PFA = 2% [7],[9]. The physics

parameter estimates were also quite reasonable with relative

RMS errors less than 0.5% indicating a feasible solution to

the fission detection problem. Performance metrics for both

detection and parameter estimation processors were developed

and assessed implying that a combination of both sequential

Bayesian γ-ray [7],[9] and neutron detection schemes have

the potential of providing both a timely and accurate threat

detection capability.
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