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ABSTRACT
High-dimensional structure of data can be explored and task-specific
representations can be obtained using manifold learning and low-
dimensional embedding approaches. However, the uncertainties in
data and the sensitivity of the algorithms to parameter settings, re-
duce the reliability of such representations, and make visualization
and interpretation of data very challenging. A natural approach to
combat challenges pertinent to data visualization is to use linearized
embedding approaches. In this paper, we explore approaches to im-
prove the reliability of linearized, subspace embedding frameworks
by learning a plurality of subspaces and computing a geometric mean
on the Grassmannian manifold. Using the proposed algorithm, we
build variants of popular unsupervised and supervised graph embed-
ding algorithms, and show that we can infer high-quality embed-
dings, thereby significantly improving their usability in visualization
and classification.

Index Terms— graph embedding, subspace learning, Grass-
mannian manifold, visualization.

1. INTRODUCTION

Low-dimensional representations of high dimensional data are de-
sired for several reasons. If the data generating process has low de-
grees of freedom, it may be useful to obtain representations that dis-
entangle the various degrees of freedom and reject the noise. This
is the goal of several manifold learning algorithms, many of which
can be posed using a Graph embedding formulation [1]. The repre-
sentations created by these methods retain either the geometric char-
acteristics or the topology (local neighborhood) or both, depending
on the type of the embedding algorithm used. Furthermore, super-
vised embedding approaches create representations, that improve the
discrimination across classes apart from preserving the similarity be-
tween within-class samples.

Some examples of unsupervised graph embedding approaches
include Principal Components Analysis (PCA) [2], Multi-Dimensional
Scaling (MDS) [3], ISOMAP [4], Laplacian Eigenmaps (LE) [5],
Locality Preserving Projections (LPP) [6], and Neighborhood Pre-
serving Embedding (NPE) [7]. Some well-known supervised em-
bedding approaches include Linear Discriminant Analysis (LDA)
[8], Marginal Fisher Analysis (MFA) [1], and Local Discriminant
Embedding (LDE) [9]. Though direct graph embedding approaches
such as ISOMAP, LE, and MDS have been successfully used to learn
underlying non-linear manifolds, linearized embedding algorithms
have been of particular interest to practitioners. Explicitly inferring
the linear subspace (e.g. PCA) greatly simplifies the out-of-sample
extension procedure. In addition, when compared to direct embed-
dings where the interpretation of the embedded space is entirely
opaque, linearized embeddings can lead to more meaningful data
visualization.

The success of graph embedding depends not only on the param-
eters such as the embedding dimension or the neighborhood graph

that needs to be carefully designed, but also the suitability of the
embedding approach to the data under consideration. Furthermore,
most algorithms only have global parameters, whereas the topolog-
ical characteristics of data could vary locally. An example of this is
when the data is perfectly sampled from a smooth manifold of con-
stant intrinsic dimensionality, the embedding obtained may not be
meaningful if its dimensionality does not match the intrinsic dimen-
sion of the manifold. This is common in visualization applications,
where the embedding dimension is constrained to be 2 or 3. An alter-
native approach proposed in [10] attempts to alleviate this challenge
by posing embedding inference as an information retrieval problem,
and constructs a direct 2 − D embedding that optimizes a function
of neighborhood precision and recall. Similar issues exist with su-
pervised embedding approaches as well.

In this paper, we propose approaches that improve the perfor-
mance of linearized, unsupervised and supervised graph embedding
methods, by computing an ensemble of incoherent linear subspaces
for the data. Since the subspaces obtained lie on a Grassmannian
manifold, a consensus subspace can be inferred on the Grassman-
nian. The final embedding will be obtained by projecting the data
onto the consensus subspace. Using the proposed technique, we
build variants of some of the popular unsupervised and supervised
embedding algorithms and evaluate their performance on several
datasets. Experiment results show that the proposed algorithm can
significantly improve the quality of linearized subspace learning
methods, and can also impact their performance in conventional
tasks such as classification, and visualization for data exploration.

2. THEORY AND BACKGROUND

2.1. Graph Embedding

Let us consider a set of samples of T samples denoted by X =
[x1,x2, . . . ,xT ], where xi ∈ RM . For supervised embedding, we
will also assume that there are C classes with labels {1, . . . , C}.
The class c has Tc samples and Ic contains the indices of samples in
that class. The goal of embedding approaches is to find a mapping
function v : x → y, where y ∈ RN and N � M . Direct meth-
ods obtain the embedding y directly using an implicitly defined v,
whereas linearized methods obtain v as the linear subspace whose
orthonormal basis is defined as V ∈ RM×N , and hence y = VTx.

We will define a similarity graph G that comprises the vertex
set X and the similarity between each of the vertices encoded in
the symmetric adjacency matrix W ∈ RT×T . With the exception
of NPE, for all the linearized methods we consider, the Laplacian
matrix is defined as L = D −W, where D is the diagonal degree
matrix of the graph with Dii =

∑
i 6=j Wij . In NPE, L is directly

defined as (I −W)T (I −W). Furthermore, we create a penalty
matrix H, which imposes a constraint on YTHY = I, where I
is the identity matrix. For example, with LPP, H is chosen to be
the degree matrix D, whereas with NPE it is chosen to be I. In



supervised dimensionality reduction, H is chosen to the the penalty
Laplacian, L = D′ −W′, where D′ and W′ are respectively the
degree and adjacency matrices of the penalty graphs. The forms of
L and H for various graph embeddings can be found in [1].

The embedding directions V with linearized methods can be op-
timized as

V = arg min
VTXHXTV=I

Tr(VTXLXTV). (1)

This optimization can be carried out by choosing theN eigen vectors
corresponding to the minimum eigen values of the generalized eigen
decomposition (GED),

XLXTv = λXHXTv, (2)

and the low-dimensional embedding can be computed as Y =
VTX. Note that V obtained with the GED is not guaranteed to
contain only orthonormal columns.

Note that the eigen decomposition method is typically suited for
unsupervised methods since H will truly represent a constraint. In
supervised approaches, ideally we would like to compute embed-
dings that simultaneously maximize Tr(VTXHXTV), while min-
imizing Tr(VTXLXTV). In these cases, a provable globally opti-
mal solution can be obtained for graph embedding by including an
additional constraint VTV = I. The optimal embedding can be
now obtained by maximizing the trace ratio

V = arg max
VTV=I

Tr(VTXHXTV)

Tr(VTXLXTV)
. (3)

Approaches such as iterative trace ratio (ITR) maximization or de-
composed Newton’s method (DNM) can be used for this purpose
and it has been shown that trace ratio maximization performs better
than generalized eigen decomposition in supervised dimensionality
reduction [11, 12].

2.2. Grassmannian Manifolds

A Grassmannian manifold, Gr(N,M) is a set of N−dimensional
subspaces in RM , where each subspace maps to a unique point on
the manifold [13]. Each point in Gr(N,M) can be conveniently rep-
resented using an M × N orthonormal matrix which forms a basis
for that subspace. Given two points in a Grassmannian, represented
by their orthonormal bases, A and B of size M ×N , there are sev-
eral distance measures that can be computed between them. The
distance measured along the geodesic is the Grassmann distance and
can be computed by decomposing ATB using its SVD and obtain-

ing
∑N

i=1

(
θ2i
) 1

2 . Here, θi denotes a principal angle and is obtained
as cos−1 σi, where σi is the corresponding singular value [14].

In general, Grassmann distances are difficult to optimize with,
and hence the chordal distance [14], given as

√
N − ‖ATB‖2F

is widely adopted in lieu of the true geodesic distance [15, 16],
among several others. The chordal distance is also referred to as
the symmetric directional distance. The idea of distance between
the subspaces can also be extended to the case when we have two
subspaces of different dimensions [14]. For example, suppose
A ∈ RM×N1 and B ∈ RM×N2 , the chordal distance is given
by
√

max(N1, N2)− ‖ATB‖2F . If we use chordal distances, in-
coherence between subspaces corresponds to large distances and
vice-versa. For a given distance metric, the mean of two subspaces
is defined as the subspace that has the minimum sum of squared
distance with the given subspaces. The mean of two subspaces
of different dimensions is known for several metrics including the

Grassmann and the chordal distances [14]. However, with more than
two subspaces, it is much easier to use chordal distances to compute
the mean, and also it is flexible to be coupled with other constraints,
and hence we will focus on this distance measure in our algorithm.

3. PROPOSED ALGORITHM

Our proposed approach aims to improve the reliability of linearized
unsupervised and supervised embedding algorithms by learning a
plurality of subspaces with incoherence constraints between them
and finding the mean subspace on the Grassmannian. The final em-
bedding will by projecting the data onto the mean subspace.

We will begin by describing the algorithm for the unsupervised
case. As described in Section 2.1, we will begin with the data matrix
X, the Laplacian L and the constraint matrix H. We aim to con-
struct K low-dimensional projections {Vi}Ki=1, each with dimen-
sions M ×Ni where Ni < M , that satisfy the objective in (1), and
are far from each other in the Grassmannian. Here, Vi are assumed
to contain orthonormal columns.

3.1. Obtaining Multiple Incoherent Subspaces

Let us assume that we have already computed j subspaces and we
wish to compute the j + 1 subspace that is far from all the previ-
ous subspaces on the Grassmannian. The squared chordal distance
between Vj+1 and Vi, where i ≤ j is given by

d2(Vj+1,Vi) = max(Nj+1, Ni)− ‖VT
i Vj+1‖2F ,

= max(Nj+1, Ni)− Tr
(
VT

j+1ViV
T
i Vj+1

)
,

and hence the sum of squared distances
∑j

i=1 d
2(Vj+1,Vi) is

given as

j∑
i=1

max(Nj+1, Ni)− Tr

(
VT

j+1

j∑
i=1

(
ViV

T
i

)
Vj+1

)
. (4)

Maximizing (4) w.r.t. Vj+1 is equivalent to minimizing the negative
of the second term. Combining this with (1), the overall optimization
to compute Vj+1 is given as

Vj+1 = arg min
VTXHXTV=I

Tr

(
VT

(
XLXT + α

j∑
i=1

(
ViV

T
i

))
V

)
,

(5)

where α > 0 is the tradeoff parameter between the embedding cost
and the incoherence of the subspace. This can be solved by choosing
Nj+1 eigen vectors corresponding to the smallest eigen values from
the GED (

XLXT + α

j∑
i=1

(
ViV

T
i

))
v = λXHXTv. (6)

The K incoherent subspaces are obtained by repeating this process
K times, by including an additional subspace in each round. Note
that we orthonormalize the columns of subspace basis computed in
each round before proceeding to the next round.



(a) Faces dataset. (b) Seawater dataset. (c) Ecoli dataset.

(d) Face Videos dataset. (e) NPE Embedding. (f) Proposed Embedding.

Fig. 1. Unsupervised Graph Embedding: (a)-(d) Mean precision - Mean Recall curves for different datasets; (e)-(f) 2-D embeddings for the
UCI ecoli datasets obtained using NPE and the proposed variant.

3.2. Grassmannian Averaging

After obtaining theK subspaces, {Vi}Ki=1, we will compute the con-
sensus (mean) subspace that will have minimum sum of squared
chordal distance with these subspaces. The dimension of the mean
subspace spanned by the columns of V, will be chosen to be the
maximum of {Ni}Ki=1 and we will denote it as Nm. The optimiza-
tion problem can be now posed as

V = arg min
VTV=I

K∑
i=1

wi

(
Nm − ‖VTVi‖2F

)
,

= arg min
VTV=I

Tr

(
VT

K∑
i=1

(
wiI− wiViV

T
i

)
V

)
(7)

where wk are the optional positive weights. V can be evaluated as
the Nm eigen vectors corresponding to the smallest eigen values of∑K

i=1

(
wiI− wiViV

T
i

)
.

3.3. Supervised Embedding with Trace Ratio

As discussed in Section 2.1, globally optimal projection directions
can be obtained using trace ratio optimization in supervised embed-
ding. This can be exploited in our proposed approach as well for
supervised embedding. The only modification will be in obtaining
the incoherent subspaces, {Vi}Ki=1. We will incorporate the incoher-
ence constraint of (4) into (3) and obtain the following optimization,

Vj+1 = arg max
VTV=I

Tr
(
VTXHXTV

)
Tr
(
VT

(
XLXT + α

∑j
i=1 (ViVT

i )
)
V
) . (8)

This can be solved using the existing trace ratio optimization ap-
proaches such as DNM or ITR. After computing the incoherent sub-
spaces, they can be averaged using the approach described in Section
3.2 to obtain the final subspace.

4. RESULTS AND DISCUSSION

We evaluate the proposed algorithms using unsupervised and super-
vised, linearized graph embedding algorithms on different standard
datasets. A natural way to evaluate the usefulness of dimensional-
ity reduction algorithms is to measure the quality of the preserved
neighborhood with respect to the original high-dimensional data.
From an information retrieval perspective, this is equivalent to mea-
suring the precision/recall of the relevant neighbors. A high-quality
embedding can significantly impact the interpretability and visual-
ization of high-dimensional data. In addition, for the case of super-
vised embeddings, we measure the classification performance using
a simple k-Nearest Neighbor (k-NN) classifier.

4.1. Unsupervised Graph Embedding

For unsupervised learning experiments, we consider Locality Pre-
serving Projections (LPP), Neighborhood Preserving Embedding
(NPE), and the proposed variants of these approaches. To infer the
LPP projections, we construct a k-NN graph and compute similar-
ities using a heat kernel, Wij = exp(−γ‖xi − xj‖2). For NPE,
the similarity graph is constructed using a least-squares fit in the
neighborhood of each sample. In both approaches, we fixed the
neighborhood size, k = 15. For the proposed algorithm, we choose



(a) Landsat dataset. (b) Extended YaleB dataset. (c) USPS Digits dataset.

Fig. 2. Supervised Graph Embedding: Mean precision - Mean Recall curves for novel test data with respect to the training samples.

Table 1. Classification Performance obtained using different super-
vised embedding techniques. In each case, the performance was
evaluated using a k-NN classifier and the highest performance for
each dataset is shown in bold. GM denotes our proposed approach.

Dataset LDA LDE LDA-GM LDE-GM
Landsat 83.99 84.2 89.9 91.45
Letter 88.95 91.43 89.33 92.25
USPS 92.79 93.51 89.17 96.7

HeartDisease 69.7 82.5 77.5 84.9
YaleB 78.55 85.64 89.67 91.57
ORL 93.33 92.9 95.1 95.7

the size of the ensemble K = 20 and learn multiple incoherent
subspaces with LPP and NPE respectively.

We measure the quality of the embedding by choosingNh = 50
neighbors for each sample in the high-dimensional space and varying
the neighborhood sizeNl between 1 and 200 in the low-dimensional
space. For each sample index i, we measure the precision and recall
in the embedding as

precision(i) =
|Ωh(i) ∩ Ωl(i)|

Nl
, (9)

and

recall(i) =
|Ωh(i) ∩ Ωl(i)|

Nh
, (10)

where Ωh and Ωl denote the set of neighborhood samples for orig-
inal and embedded data respectively. Finally, the set of precision-
curves are generated by averaging across all data samples.

We used the following datasets for our experiments: (a) faces
dataset [17] that contains 10 different face images of 40 different
subjects; (b) sea-water temperature time-series dataset [18], where
each data sample is a time window of 52 weeks; (c) UCI ecoli dataset
of protein localization sites [19]; (d) face videos dataset [20]. In each
case, we repeated experiments with varying number of embedding
dimensions (N ) and report the results for the case which provided
the highest F-measure (2(P.R)/(P +R)).

Figure 1 shows the mean precision-mean recall curves for the
four datasets obtained using different linear graph embedding strate-
gies. As it can be clearly observed, the proposed algorithm signifi-
cantly improves the performance of both LPP and NPE approaches.
It is particularly interesting to note that it does not compromise the
recall performance in order to better preserve the closest neighbors.

In order to illustrate the utility of the proposed algorithm in data visu-
alization, we consider the UCI ecoli dataset and show the 2−D em-
beddings obtained using NPE and the proposed algorithm in Figure
1(e) and (f) respectively. Though the embedding is constructed us-
ing unsupervised strategies, the relation between the different classes
(color) is strongly evident in the proposed embedding and hence con-
tains much richer information from a visualization perspective.

4.2. Supervised Graph Embedding

In the next set of experiments, two linearized graph embedding al-
gorithms (Linear Discriminant Analysis (LDA) and Local Discrimi-
nant Embedding (LDE)) are used with the proposed technique to in-
fer a consensus subspace for supervised classification. In both cases,
the projection directions are computed using the iterative trace ra-
tio (ITR) method. The inter-class and intra-class neighborhood sizes
for learning the LDE projections were fixed at 10. Similar to the
previous experiment, we used K = 20 subspaces to infer the con-
sensus. In order to evaluate the performance of the embeddings, we
split each dataset into train and test sets (70% for training), learned
the subspace using the train set, and projected the test samples onto
the inferred subspace. Similar to an information retrieval setup, we
measure the precision and recall for each test sample with respect
to the training samples, in the embedded space (using ground truth
labels). In addition, we measure the classification accuracy using a
k-NN classifier (k = 5).

Table 1 lists the classification performance of the different su-
pervised embedding strategies with the following datasets: (a) UCI
landsat dataset [19]; (b) UCI letter recognition dataset [19]; (c)
USPS handwritten digits [19]; (d) UCI heart disease dataset [19];
(e) Extended YaleB dataset [21]; (f) ORL face database [17]. Figure
2 illustrates the mean precision-mean recall curves for the test data
with different embedding strategies. Significant performance gains
were obtained using the proposed algorithm in all cases.

5. CONCLUSIONS

In this paper, we proposed to build consensus of multiple incoherent
subspace projections on the Grassmannian, to obtain high-quality
graph embeddings. Evaluation with popular unsupervised and super-
vised approaches show lot of promise, and we believe it is crucial to
study the theoretical characteristics of the proposed approach. In ad-
dition, kernelization of the proposed algorithm can further improve
its performance on more complex datasets.
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