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1 Introduction

In imaging, a partial volume effect refers to the problem that arises when the system res-
olution is low relative to the size of the object being imaged [1, 2]. In this setting, it is
likely that most voxels occupied by the object are only partially covered, and that the frac-
tion covered in each voxel is low. This makes the problem of object detection and image
segmentation very difficult because the algorithms designed for these purposes rely on pixel
summary statistics. If the area covered by the object is very low in relatively many of the
total number of the voxels the object occupies, these summary statistics may not reach the
thresholds required to detect this object. It is thus important to understand the extent of
partial volume effect for a given object size and resolution. This technical report focuses
on rectangular objects and derives the probability distributions for three quantities for such
objects: 1) the number of fully covered voxels, 2) the number of partially covered voxels, and
3) the fractions of the total volume covered in the partially covered voxels. The derivations
are first shown for 2-D settings and are then extended to 3-D settings.

2 Two-Dimensional Setting

Assume a rectangular object, such as a sheet, with edge length x along the first dimension
and edge length y along the second dimension, randomly centered at location (cx, cy) in a
voxel. Assume rectangular voxels, each with edge length v1 along the first dimension and
edge length v2 along the second dimension.

The quantities x, y, v1 and v2 are assumed to be known. On the other hand, randomly
placing the center of the object in a voxel means that the location (cx, cy) is a random vari-
able with the Uniform distribution on a rectangular region (0, v1)×(0, v2). This is equivalent
to sampling cx ∼ Uniform(0, v1) and cy ∼ Uniform(0, v2) independently from each other
(for details on the Uniform distribution, as well as other basic probability concepts discussed
throughout this report, see [3]). The object is assumed to fit completely in the field of view,
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so the total number of voxels covered by the object is given by xy/(v1v2), with the non-
integer part reflecting the fact that some voxels are only partially covered.

We are interested in the following quantities:

1. The number of fully covered voxels, denoted by Nf from here on,

2. The number of partially covered voxels, denoted by Np from here on,

3. The fractions that are covered in the partially covered voxels.

Randomness in the center location (cx, cy) induces randomness in all three of the above
quantities of interest. We will obtain the distributions of these random variables.

2.1 1-D Preliminaries

We first obtain the expressions for the variables of interest outlined above in terms of
x, y, v1, v2, cx, and cy.

2.1.1 Number of Fully Covered Voxels

Consider first the number of fully and partially covered voxels in a 1-dimensional setting
where a strip of length x along the first dimension is centered at location cx inside a 1-
dimensional interval of length v1, with 0 ≤ cx ≤ v1. This is illustrated in Figure 1. Note that
if the object length is smaller than the voxel size, i.e., x < v1, the number of fully covered
voxels is identically 0, and there is nothing further to consider in that case in terms of the
number of fully covered voxels.

Therefore, from here on, we assume that x ≥ v1. The number of fully covered voxels in
this case is given by

fx =

(⌊
cx + x/2

v1

⌋
−
⌈
cx − x/2

v1

⌉)
(1)

where bnc and dne denote the floor and the ceiling of a real number n, respectively. Note that
fx is guaranteed to be non-negative when x ≥ v1 (this is shown in Appendix D.1), which is
our standing assumption in this document, unless noted otherwise. The fully covered voxels
are shown in orange in Figure 1.

Let us examine the possible values that fx can take on. Letting qx = cx/v1, we can
rewrite (1) as

fx =

⌊
qx +

x/2

v1

⌋
−
⌈
qx −

x/2

v1

⌉
= ax − bx, (2)

with

ax =

⌊
qx +

x/2

v1

⌋
(3)
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Figure 1: One-dimensional setting. A strip of length x is centered at cx. The orange part
of the strip shows the fully covered voxels, while the blue parts show the partially covered
voxels.
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and

bx =

⌈
qx −

x/2

v1

⌉
. (4)

Since cx ∼ Uniform(0, v1), we have 0 ≤ cx ≤ v1, so 0 ≤ qx ≤ 1. This means that ax and
bx can each take on two consecutive integer values. At qx = 0, ax will take on the smaller
integer value, which we will denote by kx, so

kx ≡
⌊
x/2

v1

⌋
. (5)

At qx = 1, on the other hand, ax will take on the larger value of kx + 1.

Now, ax = kx as long as

qx +
x/2

v1
< kx + 1 (6)

(there is no need for the lower bound because qx + x/2
v1
≥ kx by the definition of kx), implying

that

qx < kx + 1− x/2

v1
= kx + 1−

(⌊
x/2

v1

⌋
+ frac

(
x/2

v1

))
(7)

= kx + 1− kx − frac
(
x/2

v1

)
= 1− frac

(
x/2

v1

)
, (8)

where frac(n) is the fractional part of a real number n, that is,

frac(n) =

{
n− bnc n > 0
dne − n n < 0

(9)

To simplify the notation, we will define

mx ≡ frac

(
x/2

v1

)
=
x/2

v1
− kx. (10)

Clearly, 0 ≤ mx < 1. Thus, we have that

ax =

{
kx if qx < 1−mx

kx + 1 if qx ≥ 1−mx
(11)

Now, at qx = 0,

bx =

⌈
−x/2
v1

⌉
= −

⌊
x/2

v1

⌋
= −kx, (12)

so bx is equal to either −kx or −kx + 1. An analogous calculation to that for ax shows that

bx =

{
−kx if qx < mx

−kx + 1 if qx ≥ mx
(13)
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Putting (11) and (13) together, we have that

fx = ax − bx =


kx − (−kx) = 2kx if qx < min(1−mx,mx)
kx − (−kx + 1) = 2kx − 1 if mx ≤ qx < 1−mx

kx + 1− (−kx) = 2kx + 1 if 1−mx ≤ qx < mx

kx + 1− (−kx + 1) = 2kx if qx ≥ max(1−mx,mx)

(14)

Now,
mx ≤ 1−mx (15)

when
mx < 0.5, (16)

so (14) translates to the following:

if mx < 0.5,

fx =

{
2kx if qx < mx or qx ≥ 1−mx

2kx − 1 if mx ≤ qx < 1−mx
(17)

and

if mx ≥ 0.5,

fx =

{
2kx if qx < 1−mx or qx ≥ mx

2kx + 1 if 1−mx ≤ qx < mx
(18)

Now, since cx ∼ Uniform(0, v1) and qx = cx/v1, it follows that qx ∼ Uniform(0, 1). The
probability of qx being in any subinterval of (0,1) is therefore equal to the length of that
subinterval. This means that fx has the following distribution:

if mx < 0.5,

fx =

{
2kx with probability 2mx

2kx − 1 with probability 1− 2mx
(19)

while

if mx ≥ 0.5,

fx =

{
2kx with probability 2(1−mx)
2kx + 1 with probability 2mx − 1

(20)

Thus, fx always has a two-point distribution that depends on the values of x and v1 (as these
determine whether mx is below or above 0.5). Note also that the probabilities associated
with each of the two points depend only on the absolute distance that mx is from 0.5, so for
example, the probabilities are the same when mx = 0.3 and when mx = 0.7 since these two
values are the same distance from 0.5.

It will become convenient in later sections to express (19) and (20) as follows:

fx =

{
f
(1)
x with probability p(f

(1)
x )

f
(2)
x with probability p(f

(2)
x )

(21)
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where

f (1)
x = 2kx,

f (2)
x =

{
2kx − 1 if mx < 0.5
2kx + 1 if mx ≥ 0.5

(22)

p(f (1)
x ) =

{
2mx if mx < 0.5
2(1−mx) if mx ≥ 0.5

p(f (2)
x ) = 1− p(f (1)

x ). (23)

It can be easily shown (see Appendix A for derivation) that for both ranges of mx, the
expected (mean) value of fx is given by

E(fx) =
x

v1
− 1. (24)

Thus, the mean number of fully covered voxels is the total number of covered voxels (with
the decimal part reflecting the voxels that are partially covered) minus 1. As derived in
Appendix A, the variance of fx depends on the distance that the value of mx is from 0.5.
Specifically, the variance of fx is given by

V ar(fx) = 4 · |mx − 0.5| · (0.5− |mx − 0.5|) (25)

for 0 ≤ mx < 1.
Figure 2 shows the variance as a function of the distance that the value of mx is from

0.5. At mx = 0 and mx = 0.5, the variance of the number of fully covered voxels is 0 since in
those cases the number of fully covered voxels takes on the same value regardless of where
the object is centered. On the other hand, the variance is at its maximum value of 0.25
for mx = 0.25 and mx = 0.75 since in those cases, the two values for each of the two-point
distributions are equally likely, making the number of fully covered voxels most variable.

The standard deviation of fx is simply the square root of the variance of fx, i.e., it is
given by

σfx = 2
√
|mx − 0.5| · (0.5− |mx − 0.5|). (26)

2.1.2 Partially Covered Voxels: Number and Fractions Covered

We can now turn our attention to the partially covered voxels. We still assume that x ≥ v1,
with a brief discussion devoted to the case when x < v1 at the end of the section. In the
1-dimensional setting, there are 2 partially covered voxels (shown in blue in Figure 1), one
on the left of the interval of fully covered voxels, with the fraction of the voxel that is covered
equal to

p(1)x =

⌈
cx − x/2

v1

⌉
− cx − x/2

v1
=

⌈
qx −

x/2

v1

⌉
−
(
qx −

x/2

v1

)
(27)
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Figure 2: Variance of fx as a function of |mx − 0.5|, or the distance between mx and 0.5

and one on the right of the interval of fully covered voxels, with the fraction of the voxel
that is covered equal to

p(2)x =
cx + x/2

v1
−
⌊
cx + x/2

v1

⌋
=

(
qx +

x/2

v1

)
−
⌊
qx +

x/2

v1

⌋
. (28)

(As a check, the sum fx + p
(1)
x + p

(2)
x is equal to x/v1, the total number of voxels of length

v1 covered by a 1-d strip of length x, with the non-integer part reflecting the fact that some
voxels are only partially covered. Note that this implies that once fx and p

(1)
x are known,

p
(2)
x can be obtained as

p(2)x = x/v1 − fx − p(1)x (29)

rather than using the expression in (28)).

Now, since qx ∼ Uniform(0,1),
(
qx − x/2

v1

)
is a Uniform random variable on the interval

(−x/2
v1
, 1− x/2

v1
), while

(
qx + x/2

v1

)
is a Uniform random variable on the interval (x/2

v1
, 1 + x/2

v1
).

Thus, the length of the interval (the distance between the endpoints) for both random
variables is 1. In Appendix E.2.3, it is shown that for for any Uniform random variable
R with an integer-valued interval length, the distribution of both dRe − R and R − bRc is

Uniform(0,1). Thus, both p
(1)
x and p

(2)
x have a Uniform(0,1) distribution.

Let us briefly examine the number of partially covered voxels in the case when x < v1.
In that situation, there are two cases to consider. The first is when the entire object fits
into one partially filled voxel. In this case, the fraction covered in the partially filled voxel
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is equal to the length of the object scaled to the voxel size, i.e., x/v1. This happens if two
conditions are satisfied: cx − x/2 ≥ 0 and cx + x/2 ≤ v1, which translates to the condition

that x/2
v1
≤ qx ≤ 1− x/2

v1
. Since qx ∼ U(0, 1), this occurs with probability 1−x/v1, or 1−2mx,

because in this case mx ≡ x/2
v1

.
The other subcase of the case when x < v1 is that the object partially covers 2 voxels.

Since this occurs if 0 ≤ qx <
x/2
v1

or if 1 − x/2
v1

< qx ≤ 1, the probability of this occurring is
x/v1, or 2mx. The fractions covered in the two partially covered voxels are still defined as
in (27) and (28). However, their distributions are no longer Uniform(0,1) since the fraction
covered in either voxel is now at most x/v1 < 1 rather than 1. As shown in Appendix

E.3, p
(1)
x and p

(2)
x is each distributed Uniform(0, x/v1). The expected value for the fraction

covered in each of the 2 voxels is therefore x/2
v1

= mx, so together they are expected to cover
x/v1, as required. The standard deviation for the fraction covered in each of the 2 voxels is
x/v1√
12

.
Thus, when x < v1, with probability 1 − 2mx, there is one partially covered voxel with

the fraction covered fixed at x/v1, and with probability 2mx, there are two partially covered
voxels with the fractions covered as given in (27) and (28) and distributions, expected values
and standard deviations as described in the previous paragraph.

2.1.3 Remaining 1-D Preliminaries

If we consider the analogous 1-dimensional setting along the second dimension with the strip
of length y centered at cy inside a 1-dimensional interval of length v2, the relevant quantities
and results are analogous to those obtained earlier. In particular, if y < v2, fy ≡ 0. Thus,
assuming y ≥ v2,

fy =

⌊
cy + y/2

v2

⌋
−
⌈
cy − y/2

v2

⌉
, (30)

with the following two-point distribution:

if my < 0.5,

fy =

{
2ky with probability 2my

2ky − 1 with probability 1− 2my
(31)

while

if my ≥ 0.5,

fy =

{
2ky with probability 2(1−my)
2ky + 1 with probability 2my − 1

(32)

where

ky ≡
⌊
y/2

v2

⌋
(33)

and

my ≡ frac

(
y/2

v2

)
=
y/2

v2
− ky. (34)
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The distributions in (31) and (32) can be alternatively expressed as follows:

fy =

{
f
(1)
y with probability p(f

(1)
y )

f
(2)
y with probability p(f

(2)
y )

(35)

where

f (1)
y = 2ky,

f (2)
y =

{
2ky − 1 if my < 0.5
2ky + 1 if my ≥ 0.5

(36)

p(f (1)
y ) =

{
2my if my < 0.5
2(1−my) if my ≥ 0.5

p(f (2)
y ) = 1− p(f (1)

y ). (37)

Analogously to those of fx, the expected value and the variance of fy are given as follows:

E(fy) =
y

v2
− 1 (38)

and
V ar(fy) = 4 · |my − 0.5| · (0.5− |my − 0.5|) (39)

for 0 ≤ my < 1. The standard deviation of fy is simply the square root of the variance of
fy, i.e., it is given by

σfy = 2
√
|my − 0.5| · (0.5− |my − 0.5|). (40)

In addition, still assuming y ≥ v2,

p(1)y =

⌈
cy − y/2

v2

⌉
− cy − y/2

v2
, (41)

and

p(2)y =
cy + y/2

v2
−
⌊
cy + y/2

v2

⌋
= y/v2 − fy − p(1)y , (42)

with each following a Uniform(0,1) distribution, analogously to p
(1)
x and p

(2)
x .

If y < v2, analogously to the derivations in the x dimension, with probability 1 − 2my,
there is one partially covered voxel with the fraction covered fixed at y/v2, and with proba-
bility 2my, there are two partially covered voxels with the fractions covered as given in (41)
and (42). Each of the two fractions is distributed Uniform(0, y/v2) and has expected value

and standard deviation equal to y/2
v2

= my and y/v2√
12

, respectively.

2.2 Back to 2-D

We can now derive the number of fully covered voxels Nf , the number of partially covered
voxels Np and the fractions covered in the partially covered voxels in the 2-dimensional
setting.
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2.2.1 Number of Fully Covered Voxels Nf

In the 2-dimensional setting, the number of fully covered voxels, denoted by Nf , is equal
to the product of the numbers of the fully covered voxels for each of the two dimensions.
Thus, if x < v1 or y < v2, the number of fully covered voxels is identically equal to 0, leaving
nothing further to consider. We will, therefore, assume that both x ≥ v1 and y ≥ v2 for the
remainder of this section, which yields

Nf = fxfy =

(⌊
cx + x/2

v1

⌋
−
⌈
cx − x/2

v1

⌉)
×
(⌊

cy + y/2

v2

⌋
−
⌈
cy − y/2

v2

⌉)
, (43)

(fx and fy are defined in (1) and (30), respectively). These Nf voxels are shown in orange
in Figure 3. Since for given values of x, v1, y, and v2, fx and fy each takes on two possible
values, and Nf is the product of fx and fy, it follows that Nf takes on 4 possible values that
are all possible combinations of fx and fy values.

Moreover, fx and fy are independent due to the independence of cx and cy, so the prob-
abilities associated with each of the 4 possible values of Nf are simply the products of the
corresponding probabilities in the 1-dimensional setting. Specifically, the distribution of Nf

is given as follows:

Nf =


f
(1)
x · f (1)

y with probability p(f
(1)
x ) · p(f (1)

y )

f
(1)
x · f (2)

y with probability p(f
(1)
x ) · p(f (2)

y )

f
(2)
x · f (1)

y with probability p(f
(2)
x ) · p(f (1)

y )

f
(2)
x · f (2)

y with probability p(f
(2)
x ) · p(f (2)

y )

(44)

with f
(1)
x and f

(2)
x as defined in (22), f

(1)
y and f

(2)
y as defined in (36), p(f

(1)
x ) and p(f

(2)
x ) as

defined in (23), and p(f
(1)
y ) and p(f

(2)
y ) as defined in (37).

Since Nf = fxfy and fx and fy are independent, the expected value of Nf in the 2-
dimensional setting is given by

E(Nf ) = E(fxfy) = E(fx)E(fy) =

(
x

v1
− 1

)
·
(
y

v2
− 1

)
. (45)

The independence of fx and fy also implies the independence of f 2
x and f 2

y . This, put together
with (24), (25), (38), and (39), gives that the variance of Nf is equal to

V ar(Nf ) = E(N2
f )− (E(Nf ))2 = E(f 2

xf
2
y )− (E(fxfy))

2 = E(f 2
x)E(f 2

y )− (E(fx)E(fy))
2

=
[
V ar(fx) + (E(fx))2

]
·
[
V ar(fy) + (E(fy))

2]− (E(fx))2 (E(fy))
2

=

[
4 · |mx − 0.5| · (0.5− |mx − 0.5|) +

(
x

v1
− 1

)2
]

×

[
4 · |my − 0.5| · (0.5− |my − 0.5|) +

(
y

v2
− 1

)2
]

(46)

−
(
x

v1
− 1

)2(
y

v2
− 1

)2
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Figure 3: Two-dimensional setting. A rectangular region with side lengths x and y is centered
at (cx, cy). The voxel horizontal and vertical dimensions are v1 and v2, respectively. The
orange part of the region consists of fully covered voxels, while the numbered regions consist
of partially covered voxels. Also shown are fx and fy, the number of voxel lengths fully
covered along the x and y dimensions, respectively.
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The standard deviation of the number of fully covered voxels is simply the square root of
the expression in (46).

2.2.2 Number of Partially Covered Voxels Np

The remainder of the 2-dimensional object consists of partially covered voxels. In this section,
we assume that both x ≥ v1 and y ≥ v2 (the case when this is not true is covered in detail
in Section 2.3). Then the number of partially filled voxels, denoted by Np, is equal to

Np = 4 + 2(fx + fy) (47)

as there is one partially filled voxel in each of the 4 corners of the object (regions labeled 1,
2, 3 and 4, in Figure 3), as well as fx partially covered voxels along each of the 2 horizontal
edges of the fully-covered voxel area (regions labeled 5 and 6 in Figure 3), and fy partially
covered voxels along each of the 2 vertical edges of the fully-covered voxel area (regions
labeled 7 and 8 in Figure 3).

Since Np is only a function of fx and fy, which are independent of one another, its
distribution is given as follows:

Np =


4 + 2 · (f (1)

x + f
(1)
y ) with probability p(f

(1)
x ) · p(f (1)

y )

4 + 2 · (f (1)
x + f

(2)
y ) with probability p(f

(1)
x ) · p(f (2)

y )

4 + 2 · (f (2)
x + f

(1)
y ) with probability p(f

(2)
x ) · p(f (1)

y )

4 + 2 · (f (2)
x + f

(2)
y ) with probability p(f

(2)
x ) · p(f (2)

y )

(48)

with f
(1)
x and f

(2)
x as defined in (22), f

(1)
y and f

(2)
y as defined in (36), p(f

(1)
x ) and p(f

(2)
x ) as

defined in (23), and p(f
(1)
y ) and p(f

(2)
y ) as defined in (37).

Note that the 4 values of Np in (48) are not distinct. For any set of values of mx and my,
two of the four values of Np above are always identical (which two depends on whether mx

and my are below 0.5 or not), so the distribution of Np reduces to a three-point distribution,
with the probabilities for the identical values just adding together.

The expected value of the number of partially filled voxels is given by

E(Np) = E (4 + 2(fx + fy)) = 4 + 2 (E(fx) + E(fy)) = 4 + 2

(
x

v1
− 1 +

y

v2
− 1

)
= 2

(
x

v1
+
y

v2

)
(49)

Using the independence of fx and fy, we have that the variance of the number of partially
filled voxels is given by

V ar(Np) = V ar (4 + 2(fx + fy)) = 4 (V ar(fx) + V ar(fy))

= 16 · (|mx − 0.5| · (0.5− |mx − 0.5|)) + 16 · (|my − 0.5| · (0.5− |my − 0.5|))
(50)

The standard deviation of Np is simply the square root of the expression in (50).
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2.2.3 Fractions Covered in Partially Covered Voxels

The fraction in each of the Np partially covered voxels can be summarized by Table 1, which
lists the value of the fraction covered, its mean and standard deviation, and the number of
voxels with that fraction covered, with its mean and standard deviation, for each region in
Figure 3 for reference.

(As a check, note that the sum of the fractions covered listed in Table 1 plus the number
of fully covered voxels (given by fxfy) is equal to

p
(1)
x p

(1)
y + p

(2)
x p

(1)
y + p

(1)
x p

(2)
y + p

(2)
x p

(2)
y + fxp

(1)
y + fxp

(2)
y + fyp

(1)
x + fyp

(2)
x + fxfy =(

p
(1)
x + p

(2)
x

)(
p
(1)
y + p

(2)
y

)
+ fx

(
p
(1)
y + p

(2)
y

)
+ fy

(
p
(1)
x + p

(2)
x

)
+ fxfy = (51)(

p
(1)
x + p

(2)
x + fx

)(
p
(1)
y + p

(2)
y + fy

)
= (x/v1)(y/v2) = xy

v1v2
,

which is the total number of voxels covered by the object, as required.)

Now, as for the distributions of the fractions covered in the partially covered voxels in
Table 1 (bottom 4 values in the 2nd column), we have already derived the distributions

of four of these, namely, p
(1)
x , p

(2)
x , p

(1)
y and p

(2)
y , and showed them to be Uniform(0,1). The

expected (mean) value, the median and the standard deviation of each of these four fractions
are therefore 1/2, 1/2, and 1/

√
12 = 0.2887, respectively. The probability that any of the

four of these fractions is between values a and b (with 0 ≤ a < b ≤ 1) is simply the length
of that interval, b − a. For example, the probability that the fraction of the voxel covered
in Region 1 in Figure 3 is between 0.2 and 0.5 is equal to 0.3. The number of voxels at
each of these fractions covered is random, equal to either fx or fy, as listed in Table 1. The
distributions of these two random variables are given in (19)–(20) and (31)–(32).

The remaining four values of the fractions covered that appear in Table 1 (top 4 values in
the 2nd column) are two-way products of the first four fractions covered, so they are products
of two independent Uniform(0,1) random variables. As shown in Appendix F.2, each of the

random variables p
(1)
x p

(1)
y , p

(2)
x p

(1)
y , p

(1)
x p

(2)
y and p

(2)
x p

(2)
y has the following probability density

function (pdf), denoted by gW :

gW (w) = −log w, 0 ≤ w ≤ 1 (52)

and 0 otherwise, with w denoting the particular value of each of the 4 fractions. Thus, to
obtain the probability that any of the 4 of these fractions is in a certain interval, one needs to
integrate the function in (52) over that interval. Specifically, as shown in Appendix F.2, the
probability that any of these four fractions is between values a and b (with 0 ≤ a < b ≤ 1)
is equal to

P (a ≤ W ≤ b) = b(1− log b)− a(1− log a), (53)

with 0 · log 0 ≡ 0.
As shown in Appendix F.2, the expectation, the median, and the standard deviation of

each of the four fractions p
(1)
x p

(1)
y , p

(2)
x p

(1)
y , p

(1)
x p

(2)
y and p

(2)
x p

(2)
y are 1/4, 0.1867, and 0.2205,

respectively. Each of these four fractions covered occurs in exactly 1 voxel.
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Table 1 gives the expressions for the fractions covered in partially covered voxels within
each of the 8 regions. However, for a given set of values x, y, v1 and v2, one may be more
interested in the entire distribution of fractions covered in all partially covered voxels without
fixing the region. That is, the question of interest may be about the fraction covered by a
randomly picked partially covered voxel whatever region it may be in.

As can be surmised from the discussion so far, this distribution is a random mixture of
the distributions within each of the 8 regions in Table 1, with the mixing fractions equal to
the relative frequencies of each of the 8 regions. Note that the relative frequency of each
region is the number in the 6th column of Table 1 (i.e., 1 for regions 1 through 4, fx for
regions 5 and 6, and fy for regions 7 and 8) divided by the total number of partially covered
voxels Np = 4 + 2(fx + fy). Thus, the mixing fractions are themselves random, as they are
functions of the random variables fx and fy. Thus, the probability density function of the
fraction covered in any randomly picked partially covered voxel (across all 8 regions) is given
by

g(F ) =
∑
R

∑
fx

∑
fy

g(F | R, fx, fy) · p(R | fx, fy) · p(fx, fy), (54)

where

F denotes the fraction covered,

R denotes the region (1 through 8),

g(F | R, fx, fy) denotes the conditional density of the fraction covered in a randomly picked
voxel in a given region R and given values of fx and fy,

p(R | fx, fy) is the relative frequency of the region R for given values of fx and fy, and

p(fx, fy) is the relative frequency of a given pair of fx and fy, which is equal to p(fx) ·p(fy),
as fx and fy are independent.

Thus, the pdf of the fraction covered in a randomly picked partially covered voxel is given
by

g(F ) =
∑
R

∑
fx

∑
fy

g(F | R, fx, fy) · p(R | fx, fy) · p(fx) · p(fy) (55)

where p(fx) and p(fy) are given in (19)–(20) and (31)–(32), respectively, while the ex-
pressions for g(F | R, fx, fy) and p(R | fx, fy) for each region are given in Table 2. The
conditional distributions g(F | R, fx, fy) given in Table 2 are derived in Appendix B. In
particular, for i = 1, 2, when mx < 0.5,

p(i)x | fx = 2kx ∼ Uniform(0, 2mx), (56)

and
p(i)x | fx = 2kx − 1 ∼ Uniform(2mx, 1). (57)
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Relevant Fraction Covered # Voxels at the Fraction Covered
Region in Expres- Distri- Exp. Std. Expres- Distri- Exp. Std.
Figure 3 sion bution Value Dev. sion bution Value Dev.

1 p
(1)
x p

(1)
y Eq. (52) 1/4 0.22 1 n/a 1 0

2 p
(2)
x p

(1)
y Eq. (52) 1/4 0.22 1 n/a 1 0

3 p
(1)
x p

(2)
y Eq. (52) 1/4 0.22 1 n/a 1 0

4 p
(2)
x p

(2)
y Eq. (52) 1/4 0.22 1 n/a 1 0

5 p
(1)
y U(0,1) 1/2 0.29 fx Eq. (19)–(20) x/v1 − 1 Eq. (26)

6 p
(2)
y U(0,1) 1/2 0.29 fx Eq. (19)–(20) x/v1 − 1 Eq. (26)

7 p
(1)
x U(0,1) 1/2 0.29 fy Eq. (31)–(32) y/v2 − 1 Eq. (40)

8 p
(2)
x U(0,1) 1/2 0.29 fy Eq. (31)–(32) y/v2 − 1 Eq. (40)

Table 1: The fraction of the voxel covered for each of the partially covered voxels, its distri-
bution, expected value and standard deviation, along with the number of voxels with that
fraction covered, its distribution, expected value and standard deviation, for each region of
Figure 3, for the case when x ≥ v1 and y ≥ v2, i.e., each of the object dimensions is greater
or equal to the corresponding voxel dimension.

Region R g(F | R, fx, fy) p(R | fx, fy)
1 g(p

(1)
x p

(1)
y | fx, fy) 1/(4 + 2(fx + fy))

2 g(p
(2)
x p

(1)
y | fx, fy) 1/(4 + 2(fx + fy))

3 g(p
(1)
x p

(2)
y | fx, fy) 1/(4 + 2(fx + fy))

4 g(p
(2)
x p

(2)
y | fx, fy) 1/(4 + 2(fx + fy))

5 g(p
(1)
y | fy) fx/(4 + 2(fx + fy))

6 g(p
(2)
y | fy) fx/(4 + 2(fx + fy))

7 g(p
(1)
x | fx) fy/(4 + 2(fx + fy))

8 g(p
(2)
x | fx) fy/(4 + 2(fx + fy))

Table 2: The general expressions for g(F | R, fx, fy) and p(R | fx, fy) for each of the 8 regions

in the right-hand side of (55). In regions 5 and 6, g(p
(1)
y | fx, fy) and g(p

(2)
y | fx, fy) become

g(p
(1)
y |fy) and g(p

(2)
y |fy), respectively, since p

(1)
y and p

(2)
y do not depend on fx. Similarly,

in regions 7 and 8, g(p
(1)
x | fx, fy) and g(p

(2)
x | fx, fy) become g(p

(1)
x |fx) and g(p

(2)
x |fx),

respectively, since p
(1)
x and p

(2)
x do not depend on fy.
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1) Independently generate fx according to (19)–(20) and fy according to (31)–(32) (using Uniform(0,1) random
variables, as discussed in Appendix C.2).

2) Given fx and fy generated in step 1, generate a value from the distribution of p
(1)
x given fx and

independently a value of p
(1)
y given fy according to (56)–(59).

3) Set p
(2)
x = x/v1 − fx − p

(1)
x and p

(2)
y = y/v2 − fy − p

(1)
y .

4) Set F to be a sequence of the following 4 + 2(fx + fy) values:

p
(1)
x · p(1)y , p

(1)
x · p(2)y , p

(2)
x · p(1)y , p

(2)
x · p(2)y , p(1)y , ..., p(1)y︸ ︷︷ ︸

fx times

, p(1)x , ..., p(1)x︸ ︷︷ ︸
fy times

.

5) Repeat steps 1–4 K times for a large value K (e.g., 100000).

The resulting set of K sequences F will be a sample from the density in (55). This set can
then be queried for any summary quantity of interest, such as quantiles, percentiles, means,
medians and variances of the fractions covered in all the partially covered voxels.

Table 3: Algorithm for generating values of the fraction covered, F , from the distribution in
(55) in the 2-dimensional setting when x ≥ v1 and y ≥ v2.

When mx ≥ 0.5,
p(i)x | fx = 2kx ∼ Uniform(2mx − 1, 1) (58)

and
p(i)x | fx = 2kx + 1 ∼ Uniform(0, 2mx − 1), (59)

The distributions of p
(j)
y given fy for j = 1, 2 are equivalent to those of p

(i)
x given fx (with x

quantities replaced by the equivalent y quantities). Since p
(1)
x and p

(2)
x given fx are indepen-

dent of p
(1)
y and p

(2)
y given fy,

p(i)x p
(j)
y | fx, fy = (p(i)x | fx) · (p(j)y | fy) (60)

for i, j = 1, 2. That is, the products p
(i)
x p

(j)
y given fx and fy can be obtained by independently

sampling p
(i)
x given fx and p

(j)
y given fy and then multiplying them together.

While the exact expression in for the density of F in (55) can be written down in analytical
form, it is quite complex and moreover, it is not very useful in itself. Rather, one needs to
know how to sample from this density. Putting together the preceding discussion results in
an algorithm for sampling from the density of F in (55), which is summarized in Table 3.

2.3 Object Dimensions Smaller Than Voxel Dimensions

In this section, we consider the situation when at least one of the two object dimensions
is smaller than its corresponding voxel dimension, i.e., either x < v1 or y < v2, or both
conditions are true. For the remainder of this section, we will refer to any object dimension
that is smaller than its corresponding voxel dimension as a “small dimension”.
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When there is at least one small dimension, all the voxels covered by the object are
partially covered. That is, the number of fully covered voxels Nf is identically 0. As for the
number of partially covered voxels and their fractions covered, as discussed in Section 2.1,
there are two subcases to consider in each dimension: the object could partially cover 1 or
2 voxel lengths in each dimension. Consequently, there are 2 main cases to consider, each
with its own set of subcases:

1. 1 small dimension, i.e., one of the following is true:

x ≥ v1, y < v2

x < v1, y ≥ v2

with each of the two possibilities having

(a) 1 voxel length is partially covered along the small dimension (illustrated in the
left-hand plot of Figure 4) or

(b) 2 voxel lengths are partially covered along the small dimension (illustrated in the
right-hand plot of Figure 4)

2. 2 small dimensions, i.e., x < v1, y < v2

(a) 1 voxel length is partially covered along the x dimension and 1 voxel length is
partially covered along the y dimension (illustrated in the left-hand plot of Figure
5)

(b) 1 voxel length is partially covered along the x dimension and 2 voxel lengths are
partially covered along the y dimension (illustrated in the center plot of Figure 5)

(c) 2 voxel lengths are partially covered along the x dimension and 1 voxel length is
partially covered along the y dimension (illustrated in the center plot of Figure 5)

(d) 2 voxel lengths are partially covered along the x dimension and 2 voxel lengths
are partially covered along the y dimension (illustrated in the right-hand plot of
Figure 5)

While there is no randomness associated with which of the 2 groups of cases (or which
specific case within a group) will apply (as the cases are defined entirely by the voxel and
object dimensions, which are assumed to be known), within each case, there is randomness
associated with which of the subcases will occur (note that the probabilities of all the subcases
within each case must add up to 1).

2.3.1 Number of Partially Filled Voxels Np

1. 1 small dimension, i.e., one of the following is true:

x ≥ v1 and y < v2

x < v1 and y ≥ v2
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Figure 4: Left-hand plot: The object (shaded blue) on a grid of voxels in the case of 1 small
dimension with the object fitting entirely within one voxel length along the small dimension
(cases 1(a) and 2(a) of Section 2.3). Right-hand plot: The object (shaded blue) on a grid of
voxels in the case of 1 small dimension with the object covering parts of two voxel lengths
along the small dimension (cases 1(b) and 2(b) of Section 2.3). Note that, as pictured, the
y dimension is assumed to be the small dimension.

1

Figure 5: Left-hand plot: The object (shaded blue) on a grid of voxels in the case of 2 small
dimensions, with the object fitting entirely within one voxel length along each of the two
dimensions (case 3(a) of Section 2.3). Center plot: The object (shaded blue) on a grid of
voxels in the case of 2 small dimensions, with the object fitting entirely within one voxel
length along one of the dimensions, but covering parts of two voxel lengths along the other
small dimension (cases 3(b) and 3(c) of Section 2.3). Right-hand plot: The object (shaded
blue) on a grid of voxels in the case of 2 small dimensions, with the object covering parts of
two voxel lengths along each of the two dimensions (case 3(d) of Section 2.3).
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Since the two dimensions are interchangeable, let us denote the small dimension with
y and the other dimension with x (i.e., x and y need not correspond to horizontal and
vertical dimensions, respectively). The voxel dimensions corresponding to x and y will
be denoted as v1 and v2, respectively, as before. Thus, x ≥ v1 and y < v2. As shown
in Appendix D.2, the number of partially covered voxels in this case is given by

Np =

{
fx + 2 if my ≤ qy ≤ 1−my

2(fx + 2) otherwise
(61)

The distribution of Np (also derived in Appendix D.2) is given by

Np =


f
(1)
x + 2 with probability p(f

(1)
x ) · (1− y/v2)

f
(2)
x + 2 with probability p(f

(2)
x ) · (1− y/v2)

2(f
(1)
x + 2) with probability p(f

(1)
x ) · (y/v2)

2(f
(2)
x + 2) with probability p(f

(2)
x ) · (y/v2)

(62)

with f
(1)
x and f

(2)
x as defined in (22), and p(f

(1)
x ) and p(f

(2)
x ) as defined in (23).

As shown in Appendix D.2, the expected value of Np is given by

E(Np) =

(
x

v1
+ 1

)(
y

v2
+ 1

)
. (63)

The variance of Np is given by

V ar(Np) = 4·|mx−0.5|·(0.5−|mx−0.5|)·
(

1 +
3y

v2

)
+

y

v2

(
1− y

v2

)(
x

v1
+ 1

)2

(64)

The standard deviation of Np is the square root of the expression in (64).

2. 2 small dimensions: x < v1 and y < v2
As shown in Appendix D.2, the number of partially covered voxels is given by

Np =


1 if mx ≤ qx ≤ 1−mx and my ≤ qy ≤ 1−my

2 if mx ≤ qx ≤ 1−mx and (0 ≤ qy < my or 1−my < qy ≤ 1)
2 if my ≤ qy ≤ 1−my and (0 ≤ qx < mx or 1−mx < qx ≤ 1)
4 if (0 ≤ qx < mx or 1−mx < qx ≤ 1) and (0 ≤ qy < my or 1−my < qy ≤ 1)

(65)
The distribution of Np is thus given by

Np =


1 with probability

(
1− x

v1

)(
1− y

v2

)
2 with probability x

v1

(
1− y

v2

)
+ y

v2

(
1− x

v1

)
4 with probability x

v1
· y
v2

(66)
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As shown in Appendix D.2, the expected value of Np is given by

E(Np) =

(
x

v1
+ 1

)(
y

v2
+ 1

)
(67)

and the variance of Np is given by

V ar(Np) =

(
3x

v1
+ 1

)(
3y

v2
+ 1

)
−
(
x

v1
+ 1

)2(
y

v2
+ 1

)2

. (68)

Note that the the expected number of partially filled voxels is the same in all three cases.

2.3.2 Fractions Covered in Partially Covered Voxels

1. 1 small dimension, i.e, one of the following is true:

x ≥ v1 and y < v2

x < v1 and y ≥ v2

Again, we will denote the small dimension with y and the other dimension with x since
the two dimensions are interchangeable. Thus, x ≥ v1 and y < v2. As discussed in
Section 2.3.1, in this case there are either fx + 2 or 2(fx + 2) partially covered voxels.
The former subcase, referred to as 1(a) at the beginning of Section 2.3, corresponds to
just 1 partially covered voxel length along the y dimension (shown in the left-hand plot
of Figure 4). In this case, which occurs with probability 1−y/v2 (as shown in Appendix
D.2), the fraction covered in the fx voxels is y/v2 each, while the fraction covered in the

2 remaining voxels is p
(1)
x (y/v2) and p

(2)
x (y/v2) (this is easiest to obtain by examining

Figure 4). Since x ≥ v1, each of p
(1)
x and p

(2)
x has a Uniform(0,1) distribution. Thus,

p
(1)
x (y/v2) and p

(2)
x (y/v2) each has a Uniform(0, y/v2) distribution, so the probability

that any one of these two fractions is between two values a and b with 0 ≤ a < b ≤ y/v2
is equal to (b − a)v2/y. The expected value, median, and standard deviation of each
of these two fractions are y/(2v2), y/(2v2), and y/(

√
12v2), respectively.

The latter subcase, 1(b), corresponds to 2 partially covered voxel lengths along the y

dimension (as shown in the right-hand plot of Figure 4), one p
(1)
y and the other p

(2)
y

long. In this case, which occurs with probability y/v2 (as shown in Appendix D.2),

there are fx voxels with the fraction covered equal to p
(1)
y , fx voxels with the fraction

covered equal to p
(2)
y voxels, 1 voxel with the fraction covered equal to p

(1)
x p

(1)
y , 1 voxel

with the fraction covered equal to p
(1)
x p

(2)
y , 1 voxel with the fraction covered equal to

p
(2)
x p

(1)
y , and 1 voxel with the fraction covered equal to p

(2)
x p

(2)
y . As discussed at the

end of Section 2.1.3, p
(1)
y and p

(2)
y each has a Uniform(0, y/v2) distribution, so the

probability that any one of these two fractions is between two values a and b with
0 ≤ a < b ≤ y/v2 is equal to (b− a)v2/y. Each fraction’s expected value, median and
standard deviation are y/(2v2), y/(2v2), and y/(

√
12v2), respectively.
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Since p
(1)
x and p

(2)
x each has a Uniform(0,1) distribution, and they are independent from

p
(1)
y and p

(2)
y , according to the results obtained in Appendix F.2, the product of any

one of p
(1)
x or p

(2)
x with any one of p

(1)
y or p

(2)
y has a probability density function given

by

gW (w) =
v2
y
· (log(y/v2)− log w) , 0 ≤ w ≤ y/v2 (69)

and 0 otherwise. The probability that any one of these products is in the interval
(A,B) with 0 ≤ A < B ≤ y/v2 is therefore equal to

P (A ≤ W ≤ B) =
v2
y
· (log(y/v2) + 1) · (B − A) +

v2
y
· (A log A−B log B) (70)

with 0 · log 0 ≡ 0. According to the results obtained in Appendix F.2, the expected
value, the median, and standard deviation of each of these 4 products is y/(4v2),
(0.19y)/v2, and (0.22y)/v2, respectively. Table 4 summarizes the fractions covered and
the corresponding number of voxels at that fraction for each of the two subcases of the
case of 1 small dimension in the 2-dimensional setting. The small dimension is denoted
with y (i.e., x ≥ v1 and y < v2).

As discussed in Section 2.2.3, for a given set of values x, y, v1 and v2, one may be more
interested in the entire distribution of fractions covered in all partially covered voxels
without fixing the region. To obtain this distribution, we follow the steps equivalent
to those outlined in Section 2.2.3 and adapt them to the case of 1 small dimension.

As Table 4 shows, there are 2 subcases, one with 3 and the other with 6 regions. In
the first subcase (labeled (a) in the table), the relative frequency of each region is the
number in the 8th column of Table 4, (i.e., fx for region 1 and 1 for regions 2 and 3)
divided by the total number of partially covered voxels Np = fx + 2. In the second
subcase (labeled (b) in the table), the relative frequency of each region is the number
in the 8th column of Table 1, (i.e., fx for regions 1 and 2 and 1 for regions 4 through
6) divided by the total number of partially covered voxels Np = 2(fx + 2).

These relative frequencies, or mixing fractions, are themselves random, as was the case
in Section 2.2.3, as they are functions of fx. Thus, the probability density function
of the fraction covered F in any randomly picked partially covered voxel (across both
subcases and all regions within each subcase) is given by

g(F ) =
∑
R

∑
S

∑
fx

g(F | R, S, fx) · p(R | S, fx) · p(S | fx) · p(fx), (71)

where

R denotes the region (1 through 3 for S = (a) and 1 through 6 for S = (b)),

S denotes the subcase (a) or (b) in Table 4,

g(F | R, S, fx) denotes the conditional density of the fraction covered in a randomly
picked voxel in a given region R within the given subcase S and the value of fx,
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p(R | S, fx) is the relative frequency of the region R for a given subcase S and value
of fx,

p(S | fx) denotes the conditional probability (relative frequency) of each subcase
given the value of fx and is equal to the unconditional probability p(S) as the
probability of either subcase does not depend on fx, as can be seen from Table 4,

p(fx) is the probability (relative frequency) of the value of fx.

Thus, the pdf of the fraction covered in a randomly picked partially covered voxel is
given by

g(F ) =
∑
R

∑
S

∑
fx

g(F | R, S, fx) · p(R | S, fx) · p(S) · p(fx), (72)

where p(fx) is as given in (19)–(20), p(S) is given by

p(S) =

{
1− y

v2
S = (a)

y
v2

S = (b)
(73)

and the expressions for g(F | R, S, fx) and p(R | S, fx) for each subcase and region are
given in Table 5.

The conditional distributions g(F | R, S, fx) given in Table 5 can be easily obtained

from the results derived in Appendix B. Since, as shown in Appendix B, p
(i)
x | fx,

i = 1, 2 are all Uniform random variables, as specified in (56)–(59), and y/v2 is a

constant, p
(i)
x · (y/v2) can be obtained by first generating a random variable from the

appropriate distribution in (56)–(59) and multiplying it by y/v2. As discussed at the

end of Section 2.1.3, the distribution of each of p
(1)
y and p

(2)
y is Uniform(0, y/v2). Since

p
(1)
y and p

(2)
y are independent of p

(1)
x and p

(2)
x given fx,

p(i)x p
(j)
y | fx = (p(i)x | fx) · p(j)y (74)

for i, j = 1, 2. That is, the products p
(i)
x p

(j)
y given fx can be obtained by independently

sampling p
(i)
x given fx and p

(j)
y and then multiplying them together.

Putting together the preceding discussion results in an algorithm for sampling from
the density of F in (72), which is summarized in Table 6.

2. 2 small dimensions, i.e., x < v1, y < v2

As discussed in Section 2.3.1, in this case there are either 1, 2, or 4 partially covered
voxels. These subcases are illustrated in the left-hand, middle, and right-hand plots
of Figure 5. By referring to these plots, it is easily seen that when there is 1 partially
covered voxel, the fraction covered by it is the entire object area scaled to the voxel
area, i.e., xy/(v1v2). As shown in Appendix D.2, this occurs with probability (1 −
x/v1)(1− y/v2).
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Sub- Proba- Reg- Fraction Covered # Voxels at the Fraction Covered
case bility ion Expres- Distri- Exp. Std. Expres- Distri- Exp. Std.

sion bution Value Dev. sion bution Value Dev.
1 y

v2
n/a y

v2
0 fx Eqs.(19)–(20) x

v1
− 1 Eq.(26)

(a) 1− y
v2

2 p
(1)
x

y
v2

U(0, y
v2

) y
2v2

y√
12v2

1 n/a 1 0

3 p
(2)
x

y
v2

U(0, y
v2

) y
2v2

y√
12v2

1 n/a 1 0

1 p
(1)
y U(0, y

v2
) y

2v2

y√
12v2

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

2 p
(2)
y U(0, y

v2
) y

2v2

y√
12v2

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

(b) y
v2

3 p
(1)
x p

(1)
y Eq.(69) y

4v2

0.22y
v2

1 n/a 1 0

4 p
(1)
x p

(2)
y Eq.(69) y

4v2

0.22y
v2

1 n/a 1 0

5 p
(2)
x p

(1)
y Eq.(69) y

4v2

0.22y
v2

1 n/a 1 0

6 p
(2)
x p

(2)
y Eq.(69) y

4v2

0.22y
v2

1 n/a 1 0

Table 4: The fraction of the voxel covered for each of the partially covered voxels, its distri-
bution, expected value and standard deviation, along with the number of voxels with that
fraction covered, its distribution, expected value and standard deviation, for the case of 1
small dimension in the two-dimensional setting. The y quantities correspond to the small
dimension, so x ≥ v1 and y < v2.

Subcase S Region R g(F | R, S, fx) p(R | S, fx)
1 constant at y

v2
fx/(2 + fx)

(a) 2 g(p
(1)
x

y
v2
| fx) 1/(2 + fx)

3 g(p
(2)
x

y
v2
| fx) 1/(2 + fx)

1 g(p
(1)
y ) fx/(4 + 2fx)

2 g(p
(2)
y ) fx/(4 + 2fx)

(b) 3 g(p
(1)
x p

(1)
y | fx) 1/(4 + 2fx)

4 g(p
(1)
x p

(2)
y | fx) 1/(4 + 2fx)

5 g(p
(2)
x p

(1)
y | fx) 1/(4 + 2fx)

6 g(p
(2)
x p

(2)
y | fx) 1/(4 + 2fx)

Table 5: The general expressions for g(F | R, S, fx) and p(R | S, fx) in the right-hand side

of (72). In regions 1 and 2 of subcase (b), g(p
(1)
y | fx) and g(p

(2)
y | fx) become g(p

(1)
y ) and

g(p
(2)
y ), respectively, since p

(1)
y and p

(2)
y do not depend on fx.
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1) Generate fx according to (19)–(20) (using Uniform(0,1) random variables, as discussed in Appendix C.2).

2) Given fx generated in step 1, generate p
(1)
x from the appropriate distribution specified in (56)–(59).

3) Set p
(2)
x = x/v1 − fx − p

(1)
x

4) Generate the subcase S = (a) or (b) according to their probabilities in Table 4
(using Uniform (0,1) random variables, as discussed in Appendix C.2).

5) If S = (a) in step 4,
– set F to be a sequence of the following fx + 2 values:

y/v2, ..., y/v2︸ ︷︷ ︸
fx times

, (y/v2) · p(1)x , (y/v2) · p(2)x .

If S = (b) in step 4,

– generate p
(1)
y ∼ U(0, y/v2),

– set p
(2)
y = y/v2 − p

(1)
y , and

– set F to be a sequence of the following 2fx + 4 values:

p(1)y , ..., p(1)y︸ ︷︷ ︸
fx times

, p(2)y , ..., p(2)y︸ ︷︷ ︸
fx times

, p
(1)
x · p(1)y , p

(1)
x · p(2)y , p

(2)
x · p(1)y , p

(2)
x · p(2)y .

6) Repeat steps 1–5 K times for a large value K (e.g., 100000).

The resulting set of K sequences F will be a sample from the density in (72). This set can then
be queried for any summary quantity of interest, such as quantiles, percentiles, means, medians
and variances of the fractions covered in all the partially covered voxels.

Table 6: Algorithm for generating values of the fraction covered, F , from the distribution
in (72) in the 2-dimensional setting with 1 small dimension (y is assumed to be the small
dimension, so x ≥ v1 and y < v2).
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Two partially covered voxels occur when there is 1 partially covered voxel length cov-
ered along one dimension and 2 partially covered voxel lenghts along the other. When
the former is along the x dimension and the latter is along the y dimension (this occurs
with probability (1 − x/v1)y/v2, as shown in Appendix D.2), the fractions covered in

the two voxels are p
(1)
y (x/v1) and p

(2)
y (x/v1), respectively. Since p

(1)
y and p

(2)
y are each

Uniform(0, y/v2), each of the two fractions covered each has Uniform(0, xy
v1v2

) distri-
bution, and expected value and standard deviation of xy

2v1v2
and xy√

12v1v2
, respectively.

The probability of any one of the two fractions being between two values a and b with
0 ≤ a < b ≤ xy/(v1v2) is (b− a)v1v2

xy
.

On the other hand, when there are 2 partially covered voxel lengths along x dimension
and 1 partially covered voxel length along y dimension (this occurs with probability

x/v1(1 − y/v2), as shown in Appendix D.2), the fractions covered are p
(1)
x (y/v2) and

p
(2)
x (y/vx), respectively. Since p

(1)
x and p

(2)
x are each Uniform(0, x/v1), each of the

two fractions covered each has Uniform(0, xy
v1v2

) distribution, and expected value and
standard deviation of xy

2v1v2
and xy√

12v1v2
, respectively. The probability of any one of

the two fractions being between two values a and b with 0 ≤ a < b ≤ xy/(v1v2) is
(b− a)v1v2

xy
.

Finally, four partially covered voxels occur when there are 2 partially covered voxel
lenghts covered along both dimensions. This occurs with probability xy/(v1v2. In that

case, the fractions covered in the four voxels are p
(1)
x p

(1)
y , p

(1)
x p

(2)
y , p

(2)
x p

(1)
y , and p

(2)
x p

(2)
y .

Since each of p
(1)
x and p

(2)
x has a Uniform(0, x/v1) distribution and each of p

(1)
y and

p
(2)
y has a Uniform(0, y/v2) distribution (and the first two are independent of the other

two), according to the results derived in Appendix F.2, the probability density function
for each of the four products is given by

gW (w) =
v1v2
xy
·
(
log

(
xy

v1v2

)
− log w

)
, 0 ≤ w ≤ xy

v1v2
(75)

and 0 otherwise. The probability that any one of these products is in the interval
(A,B) with 0 ≤ A < B ≤ xy/(v1v2) is therefore equal to

P (A ≤ W ≤ B) =
v1v2
xy
·
(
log

(
xy

v1v2

)
+ 1

)
·(B−A) +

v1v2
xy
·(A log A−B log B). (76)

with 0 · log 0 ≡ 0. The expected value, median, and the standard deviation of each of
the fractions is equal to xy/(4v1v2), (0.19xy)/(v1v2), and (0.22xy)/(v1v2), respectively.

Accordingly, Table 7 summarizes the fractions covered and the corresponding number
of voxels at that fraction for each of the four subcases of the case of 2 small dimensions
in the 2-dimensional setting. To obtain the distribution of the fraction covered across
all subcases and regions, we follow the steps equivalent to those outlined in Section
2.2.3 and adapt them to the case of 2 small dimensions.

As Table 7 shows, there are 4 subcases. In the first subcase (labeled (a) in the table),
there is only 1 region, so it has the the relative frequency of of 1. In the second and
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third subcases (labeled (b) and (c) in the table), there are 2 equally likely regions, so
each one has a relative frequency of 1/2 within each subcase. In the fourth subcase
(labeled (d) in the table), there are 4 equally likely regions, so each region has a relative
frequency of 1/4. Note that the relative frequency of the region is fixed in all 4 subcases.

Thus, the probability density function of the fraction covered F in any randomly picked
partially covered voxel (across the four subcases and all regions within each subcase)
is given by

g(F ) =
∑
R

∑
S

g(F | R, S) · p(R | S) · p(S), (77)

where, as before,

R denotes the region (1 for S = (a), 1 or 2 for S = (b) or (c) and and 1 through 4
for S = (d)),

S denotes the subcase (a), (b), (c) or (d) in Table 7,

g(F | R, S) denotes the conditional density of the fraction covered in a randomly
picked voxel in a given region R within the given subcase S,

p(R | S) is the relative frequency of the region R for a given subcase S

p(S) denotes the probability (relative frequency) of each subcase and is given in Table
7.

and the expressions for g(F | R, S) and p(R | S) for each subcase and region are given
in Table 8. The distributions g(F | R, S) given in Table 8 can be easily obtained from
the results derived earlier in this section and in Section 2.1. Recall in particular that

p(i)x ∼ U(0, x/v1) (78)

for i = 1, 2 and
p(j)y ∼ U(0, y/v2) (79)

for j = 1, 2. Furthermore, p
(i)
x and p

(j)
y are independent from each other for i, j = 1, 2,

implying that the distributions of the products can be generated by independently
sampling p

(i)
x and p

(j)
y and then multiplying them together.

Putting together the preceding discussion results in an algorithm for sampling from
the density of F in (77), which is summarized in Table 9.

2.4 Summary

Table 10 contains the summary of the resulting variables of interest when a rectangular 2-
dimensional object with edge lengths x and y is placed inside a rectangular grid of voxels,
each with edge lengths v1 and v2, with x ≥ v1 and y ≥ v2 and with the center of the object
randomly located inside a voxel at a point (cx, cy) (with 0 ≤ cx ≤ v1 and 0 ≤ cy ≤ v2).
Tables 11 and 12 contain the summaries equivalent to that in Table 10 for the cases of 1
small dimension (either x < v1 or y < v2, but not both) and 2 small dimensions (x < v1 and
y < v2), respectively.
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Sub- Proba- Reg- Fraction Covered # Voxels at
case bility ion Expres- Distri- Exp. Std. the Fraction

sion bution Value Dev. Covered

(a)
(

1− x
v1

)(
1− y

v2

)
1 xy

v1v2
n/a xy

v1v2
0 1

(b)
(

1− x
v1

)
y
v2

1 p
(1)
y (x/v1) U

(
0, xy

v1v2

)
xy

2v1v2

xy√
12v1v2

1

2 p
(2)
y (x/v1) U

(
0, xy

v1v2

)
xy

2v1v2

xy√
12v1v2

1

(c) x
v1

(
1− y

v2

)
1 p

(1)
x (y/v2) U

(
0, xy

v1v2

)
xy

2v1v2

xy√
12v1v2

1

2 p
(2)
x (y/v2) U

(
0, xy

v1v2

)
xy

2v1v2

xy√
12v1v2

1

(d) xy
v1v2

1 p
(1)
x p

(1)
y Eq. (75) xy

4v1v2

0.22xy
v1v2

1

2 p
(1)
x p

(2)
y Eq. (75) xy

4v1v2

0.22xy
v1v2

1

3 p
(2)
x p

(1)
y Eq. (75) xy

4v1v2

0.22xy
v1v2

1

4 p
(2)
x p

(2)
y Eq. (75) xy

4v1v2

0.22xy
v1v2

1

Table 7: The fraction of the voxel covered for each of the partially covered voxels, its distri-
bution, expected value and standard deviation, along with the number of voxels with that
fraction covered, for the case of 2 small dimensions in the 2-dimensional setting (i.e., x < v1
and y < v2).

Subcase S Region R g(F | R, S) p(R | S)
(a) 1 constant at xy

v1v2
1

(b) 1 g(p
(1)
y

x
v1

) 1/2

2 g(p
(2)
y

x
v1

) 1/2

(c) 1 g(p
(1)
x

y
v2

) 1/2

2 g(p
(2)
x

y
v2

) 1/2

(d) 1 g(p
(1)
x p

(1)
y ) 1/4

2 g(p
(1)
x p

(2)
y ) 1/4

3 g(p
(2)
x p

(1)
y ) 1/4

4 g(p
(2)
x p

(2)
y ) 1/4

Table 8: The general expressions for g(F | R, S) and p(R | S) in the right-hand side of (77).
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1) Generate the subcase S (a), (b), (c), or (d) according to their probabilities in Table 7 (using
Uniform (0,1) random variables, as discussed in Appendix C.2).

2) If S = (a) in step 1,
– set F equal to (x/v1) · (y/v2).

If S = (b) in step 1,

– generate p
(1)
y ∼ U(0, y/v2) ,

– set p
(2)
y = y/v2 − p

(1)
y , and

– set F to be the sequence of the following 2 values:

x/v1 · p(1)y , x/v1 · p(2)y .

If S = (c) in step 1,

– generate p
(1)
x ∼ U(0, x/v1) ,

– set p
(2)
x = x/v1 − p

(1)
x , and

– set F to be the sequence of the following 2 values:

y/v2 · p(1)x , y/v2 · p(2)x .

If S = (d) in step 1,

– generate p
(1)
x ∼ U(0, x/v1) and p

(1)
y ∼ U(0, y/v2),

– set p
(2)
x = x/v1 − p

(1)
x , and p

(2)
y = y/v2 − p

(1)
y , and

– set F to be the sequence of the following 4 values:

p
(1)
x · p(1)y , p

(1)
x · p(2)y , p

(2)
x · p(1)y , p

(2)
x · p(2)y .

3) Repeat steps 1–2 K times for a large value K (e.g., 100000).

The resulting set of K sequences F will be a sample from the density in (77). This set can then
be queried for any summary quantity of interest, such as quantiles, percentiles, means, medians
and variances of the fractions covered in all the partially covered voxels.

Table 9: Algorithm for generating values of the fraction covered, F , from the distribution in
(77) in the 2-dimensional setting with 2 small dimensions (x < v1 and y < v2).
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Variable Notation Expression Distribution Expected Standard
Value Deviation

# Fully Covered Voxels Nf Eq. (43) Eq. (44) Eq. (45) Sq. root of (46)

# Partially Covered Voxels Np Eq. (47) Eq. (48) Eq. (49) Sq. root of (50)

Fractions Covered
In Partially Covered see Tables 1 and 3
Voxels

Table 10: Summary of the variables of interest in the 2-dimensional setting for the case when
the sheet dimensions are both greater than the corresponding voxel dimensions (i.e., x ≥ v1

and y ≥ v2).

Variable Notation Expres- Distribu- Expected Standard
sion tion Value Deviation

# Fully Covered Voxels Nf 0 fixed at 0 0 0

# Partially Covered Voxels Np Eq. (61) Eq. (62)
(

1 + x
v1

)(
1 + y

v2

)
Sq. root of (64)

Fractions Covered
In Partially Covered see Tables 4 and 6
Voxels

Table 11: Summary of the variables of interest in the 2-dimensional setting for the case of 1
small dimension. The small dimension is denoted with y, so when x ≥ v1 and y < v2.

Variable Notation Expres- Distribu- Expected Standard
sion tion Value Deviation

# Fully Covered Voxels Nf 0 fixed at 0 0 0

# Partially Covered Voxels Np Eq. (65) Eq. (66)
(

1 + x
v1

)(
1 + y

v2

)
Sq. root of (68)

Fractions Covered
In Partially Covered see Tables 7 and 9
Voxels

Table 12: Summary of the variables of interest in the 2-dimensional setting for the case of 2
small dimensions, i.e., x < v1 and y < v2.
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3 Three-Dimensional Setting

All the results developed in for the 2-dimensional setting in Section 2 can now be easily
extended to the 3-dimensional setting. Assume a rectangular object with edge length x
along the first dimension, edge length y along the second dimension, and edge length z along
the third dimension, randomly centered at location (cx, cy, cz) in a voxel. Assume rectangular
voxels, each with edge length v1 along the first dimension, edge length v2 along the second
dimension and edge length v3 along the third dimension.

The quantities x, y, z, v1, v2 and v3 are assumed to be known. Analogously to the 2-
dimensional setting, randomly placing the center of the object in a voxel means that the
location (cx, cy, cz) is a random variable with the Uniform distribution on a rectangular
region (0, v1) × (0, v2) × (0, v3). This is equivalent to sampling cx ∼ Uniform(0, v1), cy ∼
Uniform(0, v2) and cz ∼ Uniform(0,1) independently from each other. The object is assumed
to fit completely in the field of view, so the total number of voxels covered by the object
is given by xyz/(v1v2v3), with the non-integer part reflecting the fact that some voxels are
only partially covered.

As in Section 2, we will first assume that x ≥ v1, y ≥ v2 and z ≥ v3. Section 3.5 covers
the special cases when at least one of the object dimensions is smaller than the corresponding
voxel dimension.

3.1 Notation and Remaining Preliminaries

The variables fx and fy are defined in (1) and (30), and their distributions are given in
(19)–(20) and (31)–(32), respectively. An analogous random variable in the third dimension,
fz, is given by

fz =

⌊
cz + z/2

v3

⌋
−
⌈
cz − z/2

v3

⌉
. (80)

Letting kz and mz be defined as

kz ≡
⌊
z/2

v3

⌋
(81)

and

mz ≡ frac

(
z/2

v3

)
=
z/2

v3
− kz, (82)

following analogous steps to those for deriving the distribution of fx, the distribution of fz
is then obtained as follows:

if mz < 0.5,

fz =

{
2kz with probability 2mz

2kz − 1 with probability 1− 2mz
(83)
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while

if mz ≥ 0.5,

fz =

{
2kz with probability 2(1−mz)
2kz + 1 with probability 2mz − 1

(84)

The distributions in (83) and (84) can be alternatively expressed as follows:

fz =

{
f
(1)
z with probability p(f

(1)
z )

f
(2)
z with probability p(f

(2)
z )

(85)

where

f (1)
z = 2kz,

f (2)
z =

{
2kz − 1 if mz < 0.5
2kz + 1 if mz ≥ 0.5

(86)

p(f (1)
z ) =

{
2mz if mz < 0.5
2(1−mz) if mz ≥ 0.5

p(f (2)
z ) = 1− p(f (1)

z ). (87)

Analogously to fx and fy, the expected value of fz is given by

E(fz) =
z

v3
− 1, (88)

while the variance of fz is given by

V ar(fz) = 4 · |mz − 0.5| · (0.5− |mz − 0.5|) (89)

for 0 ≤ mz < 1. The standard deviation of fz is the square root of the variance of fz, i.e., it
is given by

σfz = 2
√
|mz − 0.5| · (0.5− |mz − 0.5|). (90)

Also, define

p(1)z =

⌈
cz − z/2

v3

⌉
− cz − z/2

v3
(91)

and

p(2)z =
cz + z/2

v3
−
⌊
cz + z/2

v3

⌋
. (92)

Since these are exactly equivalent to their counterparts p
(1)
x and p

(2)
x (as well as p

(1)
y and p

(2)
y ),

they each follow the Uniform(0,1) distribution.
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3.2 Number of Fully Covered Voxels Nf

Analogously to the 2-dimensional setting, the number of fully covered voxels in the 3-
dimensional setting, still denoted by Nf , is just the product of the number of fully covered
voxels in each dimension. That is, Nf = fxfyfz with fx, fy, and fz defined in (1), (30) and
(80), or

Nf = fxfyfz

=

(⌊
cx + x/2

v1

⌋
−
⌈
cx − x/2

v1

⌉)
×

(⌊
cy + y/2

v2

⌋
−
⌈
cy − y/2

v2

⌉)
(93)

×
(⌊

cz + z/2

v3

⌋
−
⌈
cz − z/2

v3

⌉)
Since each of fx, fy, and fz takes on 2 possible values for a given set of x, y, z, v1, v2 and v3
values, Nf takes on 8 possible values.

Since fx, fy, and fz are independent of each other due to the independence of cx, cy, and
cz, the probabilities associated with each of the 8 possible values are just the products of the
probabilities of each possible value in the 1-dimensional setting. Thus, we have the following
8-point distribution for Nf :

Nf =



f
(1)
x · f (1)

y · f (1)
z with probability p(f

(1)
x ) · p(f (1)

y ) · p(f (1)
z )

f
(1)
x · f (1)

y · f (2)
z with probability p(f

(1)
x ) · p(f (1)

y ) · p(f (2)
z )

f
(1)
x · f (2)

y · f (1)
z with probability p(f

(1)
x ) · p(f (2)

y ) · p(f (1)
z )

f
(1)
x · f (2)

y · f (2)
z with probability p(f

(1)
x ) · p(f (2)

y ) · p(f (2)
z )

f
(2)
x · f (1)

y · f (1)
z with probability p(f

(2)
x ) · p(f (1)

y ) · p(f (1)
z )

f
(2)
x · f (1)

y · f (2)
z with probability p(f

(2)
x ) · p(f (1)

y ) · p(f (2)
z )

f
(2)
x · f (2)

y · f (1)
z with probability p(f

(2)
x ) · p(f (2)

y ) · p(f (1)
z )

f
(2)
x · f (2)

y · f (2)
z with probability p(f

(2)
x ) · p(f (2)

y ) · p(f (2)
z )

(94)

with f
(1)
x and f

(2)
x as defined in (22), f

(1)
y and f

(2)
y as defined in (36), f

(1)
z and f

(2)
z as defined

in (86), p(f
(1)
x ) and p(f

(2)
x ) as defined in (23), p(f

(1)
y ) and p(f

(2)
y ) as defined in (37), and

p(f
(1)
z ) and p(f

(2)
z ) as defined in (87).

Since Nf = fxfyfz and fx, fy and fz are independent, the expected value of Nf in the
3-dimensional setting is given by

E(Nf ) = E(fxfyfz) = E(fx)E(fy)E(fz) =

(
x

v1
− 1

)(
y

v2
− 1

)(
z

v3
− 1

)
. (95)

The independence of fx, fy and fz also implies the independence of f 2
x , f 2

y and f 2
z . This, put
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together with (24), (25), (38), (39), (88), and (89), gives that the variance of Nf is equal to

V ar(Nf ) = E(N2
f )− (E(Nf ))2 = E(f 2

xf
2
y f

2
z )− (E(fxfyfz))

2

= E(f 2
x)E(f 2

y )− (E(fx)E(fy)E(fz))
2

=
[
V ar(fx) + (E(fx))2

]
·
[
V ar(fy) + (E(fy))

2] · [V ar(fz) + (E(fz))
2]

− (E(fx))2 (E(fy))
2 (E(fz))

2

=

[
4 · |mx − 0.5| · (0.5− |mx − 0.5|) +

(
x

v1
− 1

)2
]

×

[
4 · |my − 0.5| · (0.5− |my − 0.5|) +

(
y

v2
− 1

)2
]

×

[
4 · |mz − 0.5| · (0.5− |mz − 0.5|) +

(
z

v3
− 1

)2
]

(96)

−
(
x

v1
− 1

)2(
y

v2
− 1

)2(
z

v3
− 1

)2

The standard deviation of the number of fully covered voxels is the square root of the ex-
pression in (96).

3.3 Number of Partially Covered Voxels Np

In the 2-dimensional setting, the following contributed to the total number of partially
covered voxels:

1. 1 voxel in each of the 4 corners of the object,

2. fx voxels along each of the 2 horizontal edges (top and bottom) excluding the corners
of item 1,

3. fy voxels along each of the 2 vertical edges (left and right) excluding the corners of
item 1.

In the 3-dimensional setting, the partially covered voxels are found in equivalent locations,
plus in some new ones that did not exist in the 2-dimensional setting. Specifically, there are
26 regions of partially covered voxels, comprising of the following:

1. Regions 1–8: 1 voxel in each of the 8 corners of the object,

2. Regions 9–12: fx voxels along each of the 4 horizontal edges (top and bottom, front
and back) excluding the voxels of item 1,

3. Regions 13–16: fy voxels along each of the 4 vertical edges (left and right, front and
back) excluding the voxels of item 1,
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4. Regions 17–20: fz voxels along each of the 4 front-back edges (left and right, top and
bottom) excluding the voxels of item 1,

5. Regions 21, 22: fxfy voxels on each of the front and back faces excluding the voxels of
items 1, 2, 3,

6. Regions 23, 24: fxfz voxels on each of the top and bottom faces excluding the voxels
of items 1, 2, 4,

7. Regions 25, 26: fyfz voxels on each of the left and right faces excluding the voxels of
items 1, 3, 4,

(Note that regions 1–4 above are the 3-dimensional equivalents of regions 1–4 in Figure 3,
regions 9 and 10 above are the 3-dimensional equivalents of regions 5 and 6 in Figure 3, while
regions 13 and 14 above are the 3-dimensional equivalents of regions 7 and 8 in Figure 3.)

Thus, the number of partially covered voxels is equal to

Np = 8 + 4(fx + fy + fz) + 2(fxfy + fxfz + fyfz). (97)

Since Np is only a function of fx, fy and fz, each of which can take on 2 possible values, Np

takes on 8 possible values. Moreover, since fx, fy and fz are independent, the probability
of any given value resulting from a specific combination of these three variables is just
the product of their individual probabilities in the one-dimensional setting. Therefore, the
distribution of Np is given as follows:

Np =



8 + 4 · (f (1)
x + f

(1)
y + f

(1)
z ) + 2 · (f (1)

x f
(1)
y + f

(1)
x f

(1)
z + f

(1)
y f

(1)
z ) with pr. p(f

(1)
x ) · p(f (1)

y ) · p(f (1)
z )

8 + 4 · (f (1)
x + f

(1)
y + f

(2)
z ) + 2 · (f (1)

x f
(1)
y + f

(1)
x f

(2)
z + f

(1)
y f

(2)
z ) with pr. p(f

(1)
x ) · p(f (1)

y ) · p(f (2)
z )

8 + 4 · (f (1)
x + f

(2)
y + f

(1)
z ) + 2 · (f (1)

x f
(2)
y + f

(1)
x f

(1)
z + f

(2)
y f

(1)
z ) with pr. p(f

(1)
x ) · p(f (2)

y ) · p(f (1)
z )

8 + 4 · (f (1)
x + f

(2)
y + f

(2)
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x f
(2)
y + f

(1)
x f

(2)
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(2)
y f

(2)
z ) with pr. p(f

(1)
x ) · p(f (2)
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y f
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(2)
x ) · p(f (1)

y ) · p(f (2)
z )

8 + 4 · (f (2)
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x f
(2)
y + f
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x f

(1)
z + f

(2)
y f

(1)
z ) with pr. p(f

(2)
x ) · p(f (2)

y ) · p(f (1)
z )

8 + 4 · (f (2)
x + f

(2)
y + f

(2)
z ) + 2 · (f (2)

x f
(2)
y + f

(2)
x f

(2)
z + f

(2)
y f

(2)
z ) with pr. p(f

(2)
x ) · p(f (2)

y ) · p(f (2)
z )

(98)
Using the independence of fx, fy, and fz again, we have that the expected value of Np is

equal to

E(Np) = 8 + 4 · [E(fx) + E(fy) + E(fz)] + 2 · [E(fx)E(fy) + E(fx)E(fz) + E(fy)E(fz)]

= 8 + 4

(
x

v1
− 1 +

y

v2
− 1 +

z

v3
− 1

)
+ 2

[(
x

v1
− 1

)(
y

v2
− 1

)
+

(
x

v1
− 1

)(
z

v3
− 1

)
+

(
y

v2
− 1

)(
z

v3
− 1

)]
= 2

(
x

v1

y

v2
+
x

v1

z

v3
+
y

v2

z

v3
+ 1

)
. (99)
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As shown in Appendix G, the variance of Np is equal to

V ar(Np) = 4 (V ar(fxfy) + V ar(fxfz) + V ar(fyfz))

+ 8

[
V ar(fx)

(
y

v2

z

v3
+
y

v2
+
z

v3
− 1

)
+ V ar(fy)

(
x

v1

z

v3
+
x

v1
+
z

v3
− 1

)
(100)

+ V ar(fz)

(
x

v1

y

v2
+
x

v1
+
y

v2
− 1

)]
.

The standard deviation of Np is just the square root of the expression in (100).

3.4 Fractions Covered in Partially Covered Voxels

As described in Section 3.3, there are 26 distinct regions of partially covered voxels in a 3-
dimensional rectangular object. Table 13 lists each of these regions, its location in the object,
each region’s value of the fraction covered, its distribution, expected value and standard
deviation, as well as the number of partially covered voxels in that region, its distribution,
expected value and standard deviation.

(As a check, note that the sum of the fractions covered in regions 1–8 is equal to(
p(1)x + p(2)x

) (
p(1)y + p(2)y

) (
p(1)z + p(2)z

)
, (101)

the sum of the fractions covered in regions 9–12 is equal to

fx
(
p(1)y + p(2)y

) (
p(1)z + p(2)z

)
, (102)

the sum of the fractions covered in regions 13–16 is equal to

fy
(
p(1)x + p(2)x

) (
p(1)z + p(2)z

)
, (103)

the sum of the fractions covered in regions 17–20 is equal to

fz
(
p(1)x + p(2)x

) (
p(1)y + p(2)y

)
, (104)

while the sum of the fractions covered in regions 21–26 is equal to

fxfy
(
p(1)z + p(2)z

)
+ fxfz

(
p(1)y + p(2)y

)
+ fyfz

(
p(1)x + p(2)x

)
. (105)

Adding (101)–(105) and the number of fully covered voxels Nf = fxfyfz gives the sum

(
p(1)x + p(2)x + fx

) (
p(1)y + p(2)y + fy

) (
p(1)z + p(2)z + fz

)
=

(
x

v1

)(
y

v2

)(
z

v3

)
=

xyz

v1v2v3
, (106)

the total number of voxels covered by the object, as required.)
Now, as for the distributions of the fractions covered in the partially covered voxels in

the 3rd column of Table 13, we have already derived the distributions of all but those in
regions 1–8. The distributions of fractions in regions 21–26, p

(1)
x , p

(2)
x , p

(1)
y , p

(2)
y , p

(1)
z , p

(2)
z ,
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Reg- Region Description Fraction covered # Voxels at That Fraction Covered
ion Expression Distri- Exp. Std. Expres- Distri- Exp. Std.

bution Value Dev. sion bution Value Dev.

1 Lt btm corner of frt face p
(1)
x p

(1)
y p

(1)
z Eq. (108) 1/8 0.15 1 n/a 1 0

2 Rt btm corner of frt face p
(2)
x p

(1)
y p

(1)
z Eq. (108) 1/8 0.15 1 n/a 1 0

3 Lt top corner of frt face p
(1)
x p

(2)
y p

(1)
z Eq. (108) 1/8 0.15 1 n/a 1 0

4 Rt top corner of frt face p
(2)
x p

(2)
y p

(1)
z Eq. (108) 1/8 0.15 1 n/a 1 0

5 Lt btm corner of back face p
(1)
x p

(1)
y p

(2)
z Eq. (108) 1/8 0.15 1 n/a 1 0

6 Rt btm corner of back face p
(2)
x p

(1)
y p

(2)
z Eq. (108) 1/8 0.15 1 n/a 1 0

7 Lt top corner of back face p
(1)
x p

(2)
y p

(2)
z Eq. (108) 1/8 0.15 1 n/a 1 0

8 Rt top corner of back face p
(2)
x p

(2)
y p

(2)
z Eq. (108) 1/8 0.15 1 n/a 1 0

9 Btm horiz. edge of frt face p
(1)
y p

(1)
z Eq. (52) 1/4 0.22 fx Eq. (19)-(20) x/v1 − 1 Eq. (26)

excl. regions 1, 2

10 Top horiz. edge of frt face p
(2)
y p

(1)
z Eq. (52) 1/4 0.22 fx Eq. (19)-(20) x/v1 − 1 Eq. (26)

excl. regions 3, 4

11 Btm horiz. edge of back face p
(1)
y p

(2)
z Eq. (52) 1/4 0.22 fx Eq. (19)-(20) x/v1 − 1 Eq. (26)

excl. regions 5, 6

12 Top horiz. edge of back face p
(2)
y p

(2)
z Eq. (52) 1/4 0.22 fx Eq. (19)-(20) x/v1 − 1 Eq. (26)

excl. regions 7, 8

13 Lt vert. edge of frt face p
(1)
x p

(1)
z Eq. (52) 1/4 0.22 fy Eq. (31)-(32) y/v2 − 1 Eq. (40)

excl. regions 1, 3

14 Rt vert. edge of frt face p
(2)
x p

(1)
z Eq. (52) 1/4 0.22 fy Eq. (31)-(32) y/v2 − 1 Eq. (40)

excl. regions 2, 4

15 Lt vert. edge of back face p
(1)
x p

(2)
z Eq. (52) 1/4 0.22 fy Eq. (31)-(32) y/v2 − 1 Eq. (40)

excl. regions 5, 7

16 Rt vert. edge of back face p
(2)
x p

(2)
z Eq. (52) 1/4 0.22 fy Eq. (31)-(32) y/v2 − 1 Eq. (40)

excl. regions 6, 8

17 Btm frt-back edge of lt face p
(1)
x p

(1)
y Eq. (52) 1/4 0.22 fz Eq. (83)-(84) z/v3 − 1 Eq. (90)

excl. regions 1, 5

18 Btm frt-back edge of rt face p
(2)
x p

(1)
y Eq. (52) 1/4 0.22 fz Eq. (83)-(84) z/v3 − 1 Eq. (90)

excl. regions 2, 6

19 Top frt-back edge of lt face p
(1)
x p

(2)
y Eq. (52) 1/4 0.22 fz Eq. (83)-(84) z/v3 − 1 Eq. (90)

excl. regions 3, 7

20 Top frt-back edge of rt face p
(2)
x p

(2)
y Eq. (52) 1/4 0.22 fz Eq. (83)-(84) z/v3 − 1 Eq. (90)

excl. regions 4, 8

21 Frt face excl. regions p
(1)
z U(0,1) 1/2 0.29 fxfy Eq. (110) Eq. (113) Sq. root of (114)

1–4, 9, 10, 13, 14

22 Back face excl. regions p
(2)
z U(0,1) 1/2 0.29 fxfy Eq. (110) Eq. (113) Sq. root of (114)

5–8, 11, 12, 15, 16

23 Btm face excl. regions p
(1)
y U(0,1) 1/2 0.29 fxfz Eq. (111) Eq. (115) Sq. root of (116)

1, 2, 5, 6, 9, 11, 17, 18

24 Top face excl. regions p
(2)
y U(0,1) 1/2 0.29 fxfz Eq. (111) Eq. (115) Sq. root of (116)

3, 4, 7, 8, 10, 12, 19, 20

25 Lt face excl. regions p
(1)
x U(0,1) 1/2 0.29 fyfz Eq. (112) Eq. (117) Sq. root of (118)

1, 3, 5, 7, 13, 15, 17, 19

26 Rt face excl. regions p
(2)
x U(0,1) 1/2 0.29 fyfz Eq. (112) Eq. (117 Sq. root of (118)

2, 4, 6, 8, 14, 16, 18, 20

Table 13: The location of each of the 26 regions of partially covered voxels in a 3-dimensional
rectangular object (lt = left, rt = right, btm = bottom, frt = front, excl. = excluding, horiz.
= horizontal, vert. = vertical), the fraction of the voxel covered in each region of the partially
covered voxels, its distribution, expected value and standard deviation, and the number of
voxels with that fraction covered, its distribution, expected value and standard deviation.
Note that regions 1–4 above are the 3-dimensional equivalents of regions 1–4 in Figure 3,
regions 9 and 10 above are the 3-dimensional equivalents of regions 5 and 6 in Figure 3, and
regions 13 and 14 above are the 3-dimensional equivalents of regions 7 and 8 in Figure 3.
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have been shown to be Uniform(0,1) in Sections 2.1 and 3.1. The expected (mean) value,
the median and the standard deviation of each of these 6 fractions are therefore 1/2, 1/2,
and 1/

√
12 = 0.2887, respectively. The probability that any of the six of these fractions is

between values a and b (with 0 ≤ a < b ≤ 1) is simply the length of that interval, b− a. For
example, the probability that the fraction of the voxel covered in Region 26 is between 0.2
and 0.5 is equal to 0.3.

The distributions of the fractions covered in regions 9–20 in Table 13 have also been
previously discussed in Section 2.2.3 and have each been shown (Appendix F.2) to have the
the probability density function given by

gW (w) = −log w, 0 ≤ w ≤ 1 (107)

and 0 otherwise, where w is the particular value of each of the 12 fractions.
The fractions covered in regions 1–8 in Table 13 are products of three Uniform(0,1)

random variables. As shown in Section F.3, each of these has the following probability
density function (pdf), denoted by hW :

hW (w) =
(log w)2

2
, 0 ≤ w ≤ 1 (108)

and 0 otherwise, where w denotes the particular value of each of the 8 fractions. Thus, to
obtain the probability that any of the 8 of these fractions is in a certain interval, one needs to
integrate the function in (108) over that interval. Specifically, as shown in Section F.3, the
probability that any of these four fractions is between values a and b (with 0 ≤ a < b ≤ 1)
is equal to

P (a ≤ W ≤ b) =
b ((log b− 1)2 + 1)− a ((log a− 1)2 + 1)

2
(109)

with 0 · (log 0 − 1)2 ≡ 0. As shown in Section F.3, the expectation, the median, and the
standard deviation of each of the 8 fractions in regions 1–8 of Table 13 are 0.125, 0.069, and
0.1463, respectively.

As for the number of voxels at each fraction covered, as shown in Table 13, it is fixed at
1 in regions 1–8 and is equal to fx in regions 9–12, fy in regions 13–16, fz in regions 17–20,
fxfy in regions 21 and 22, fxfz in regions 23 and 24 and fyfz in regions 25 and 26. The
distributions, the means and the standard deviations of fx, fy and fz have been previously
derived and are shown in Table 13. The distribution, the mean and standard deviation of
fxfy was derived, as well, as it is exactly the expression for the number of fully covered voxels
Nf in the 2-dimensional setting. Specifically, as shown in (44), the distribution of fxfy is
given as follows:

fxfy =


f
(1)
x · f (1)

y with probability p(f
(1)
x ) · p(f (1)

y )

f
(1)
x · f (2)

y with probability p(f
(1)
x ) · p(f (2)

y )

f
(2)
x · f (1)

y with probability p(f
(2)
x ) · p(f (1)

y )

f
(2)
x · f (2)

y with probability p(f
(2)
x ) · p(f (2)

y )

(110)
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Similarly, the distributions of fxfz and fyfz are given by

fxfz =


f
(1)
x · f (1)

z with probability p(f
(1)
x ) · p(f (1)

z )

f
(1)
x · f (2)

z with probability p(f
(1)
x ) · p(f (2)

z )

f
(2)
x · f (1)

z with probability p(f
(2)
x ) · p(f (1)

z )

f
(2)
x · f (2)

z with probability p(f
(2)
x ) · p(f (2)

z )

(111)

fyfz =


f
(1)
y · f (1)

z with probability p(f
(1)
y ) · p(f (1)

z )

f
(1)
y · f (2)

z with probability p(f
(1)
y ) · p(f (2)

z )

f
(2)
y · f (1)

z with probability p(f
(2)
y ) · p(f (1)

z )

f
(2)
y · f (2)

z with probability p(f
(2)
y ) · p(f (2)

z )

(112)

In (45), the mean of fxfy was shown to be equal to

E(fxfy) =

(
x

v1
− 1

)
·
(
y

v2
− 1

)
, (113)

while the variance of fxfy was shown in (46) to be equal to

V ar(fxfy) =

[
4 · |mx − 0.5| · (0.5− |mx − 0.5|) +

(
x

v1
− 1

)2
]

×

[
4 · |my − 0.5| · (0.5− |my − 0.5|) +

(
y

v2
− 1

)2
]

(114)

−
(
x

v1
− 1

)2(
y

v2
− 1

)2

Analogously, the mean of fxfz is given by

E(fxfz) =

(
x

v1
− 1

)
·
(
z

v3
− 1

)
, (115)

while the variance of fxfz is equal to

V ar(fxfz) =

[
4 · |mx − 0.5| · (0.5− |mx − 0.5|) +

(
x

v1
− 1

)2
]

×

[
4 · |mz − 0.5| · (0.5− |mz − 0.5|) +

(
z

v3
− 1

)2
]

(116)

−
(
x

v1
− 1

)2(
z

v3
− 1

)2

The mean of fyfz is given by

E(fyfz) =

(
y

v2
− 1

)
·
(
z

v3
− 1

)
, (117)
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while the variance of fyfz is equal to

V ar(fyfz) =

[
4 · |my − 0.5| · (0.5− |my − 0.5|) +

(
y

v2
− 1

)2
]

×

[
4 · |mz − 0.5| · (0.5− |mz − 0.5|) +

(
z

v3
− 1

)2
]

(118)

−
(
y

v2
− 1

)2(
z

v3
− 1

)2

As discussed in Section 2.2.3, one may be more interested in the entire distribution
of fractions covered in all partially covered voxels without fixing the region. That is, the
question of interest may be about the fraction covered by a randomly picked partially covered
voxel whatever region it may be in. This distribution is a random mixture of the distributions
within each of the 26 regions in Table 13, with the mixing fractions equal to the relative
frequencies of each of the 26 regions. Note that the relative frequency of each region is
the number in the 7th column of Table 13 (i.e., 1 for regions 1–8, fx for regions 9–12, fy
for regions 13–16, fz for regions 17–20, fxfy for regions 21 and 22, fxfz for regions 23 and
24, and fyfz for regions 25 and 26) divided by the total number of partially covered voxels
Np = 8 + 4(fx + fy + fz) + 2(fxfy + fxfz + fyfz). Thus, the mixing fractions are themselves
random, as they are functions of the random variables fx, fy and fz. Extending the equation
in (55) to the 3-dimensional setting, we have that the density for the fraction covered F is
given by

g(F ) =
∑
R

∑
fx

∑
fy

∑
fz

g(F | R, fx, fy, fz) · p(R | fx, fy, fz) · p(fx) · p(fy) · p(fz) (119)

where

R denotes the region (1 through 26),

g(F | R, fx, fy, fz) denotes the conditional density of the fraction covered in a randomly
picked voxel in a given region R and given values of fx, fy and fz,

p(R | fx, fy, fz) is the relative frequency of the region R for given values of fx, fy and fz,
and

p(fx) is given in (19)–(20), p(fy) is given in (31)–(32), and p(fz) is given in (83)–(84),

Extending the procedure outlined in Table 3 to the 3-dimensional setting and following Table
13, the procedure for generating from the density in (119) is given in Table 14.
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1) Independently generate fx according to (19)–(20), fy according to (31)–(32) and fz according
to (83)–(84) (using Uniform(0,1) random variables, as discussed in Appendix C.2).

2) Given fx, fy and fz generated in step 1, independently generate a value from the distribution

of p
(1)
x given fx, a value from the distribution of p

(1)
y given fy, and a value from the distribution

of p
(1)
z given fz according to (56)–(59).

3) Set p
(2)
x = x/v1 − fx − p

(1)
x , p

(2)
y = y/v2 − fy − p

(1)
y , and p

(2)
z = z/v3 − fz − p

(1)
z .

4) Set F to be a sequence of the following 8 + 4(fx + fy) + 2(fxfy + fxfz + fyfz) values:

p
(1)
x p

(1)
y p

(1)
z , p

(2)
x p

(1)
y p

(1)
z , p

(1)
x p

(2)
y p

(1)
z , p

(2)
x p

(2)
y p

(1)
z ,

p
(1)
x p

(1)
y p

(2)
z , p

(2)
x p

(1)
y p

(2)
z , p

(1)
x p

(2)
y p

(2)
z , p

(2)
x p

(2)
y p

(2)
z ,

p(1)y p(1)z , p(2)y p(1)z , p(1)y p(2)z , p(2)y p(2)z , ...︸ ︷︷ ︸
repeat fx times

,

p(1)x p(1)z , p(2)x p(1)z , p(1)x p(2)z , p(2)x p(2)z , ...︸ ︷︷ ︸
repeat fy times

,

p(1)x p(1)y , p(2)x p(1)y , p(1)x p(2)y , p(2)x p(2)y , ...︸ ︷︷ ︸
repeat fz times

,

p(1)z , p(2)z , ...︸ ︷︷ ︸
repeat fxfy times

, p(1)y , p(2)y , ...︸ ︷︷ ︸
repeat fxfz times

, p(1)x , p(2)x , ...︸ ︷︷ ︸
repeat fyfz times

.

5) Repeat steps 1–4 K times for a large value K (e.g., 100000).

The resulting set of K sequences F will be a sample from the density in (119). This set can
then be queried for any summary quantity of interest, such as quantiles, percentiles, means,
medians and variances of the fractions covered in all the partially covered voxels.

Table 14: Algorithm for generating values of the fraction covered, F , from the distribution
in (119) in the 3-dimensional setting when x ≥ v1, y ≥ v2 and z ≥ v3.
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3.5 Object Dimensions Smaller Than Voxel Dimensions

In this section, we consider the situation when at least one of the object dimensions is smaller
than the corresponding voxel dimension, i.e., at least one of the following is true: x < v1,
y < v2, z < v3. The results here are an extension of the results obtained in the 2-dimensional
setting in Section 2.3.

As in the 2-dimensional setting, all the voxels covered by the object are partially covered.
That is, the number of fully covered voxels Nf is identically 0. As for the number of partially
covered voxels and their fractions covered, as discussed in Section 2.1, there are two subcases
to consider in each dimension: the object could partially cover 1 or 2 voxel lengths in each
dimension. As in Section 2.3, we will use the term “small dimension” to refer to an object
dimension that is smaller than its corresponding voxel dimension. There are 3 groups of
cases to consider, each with its own set of subcases:

1. 1 small dimension, i.e., one of the following is true:

x ≥ v1, y ≥ v2, z < v3

x ≥ v1, y < v2, z ≥ v3

x < v1, y ≥ v2, z ≥ v3

(a) 1 voxel length is partially covered along the small dimension

(b) 2 voxel lengths are partially covered along the small dimension

2. 2 small dimensions, i.e., one of the following is true:

x ≥ v1, y < v2, z < v3

x < v1, y ≥ v2, z < v3

x < v1, y < v2, z ≥ v3

(a) 1 voxel length is partially covered along the 1st small dimension and 1 voxel length
is partially covered along the 2nd small dimension

(b) 1 voxel length is partially covered along the 1st small dimension and 2 voxel
lengths are partially covered along the 2nd small dimension

(c) 2 voxel lengths are partially covered along the 1st small dimension and 1 voxel
length is partially covered along the 2nd small dimension

(d) 2 voxel lengths are partially covered along the 1st small dimension and 2 voxel
lengths are partially covered along the 2nd small dimension

3. 3 small dimensions, i.e., x < v1, y < v2, z < v3

(a) 1 voxel length is partially covered along the x dimension, 1 voxel length is partially
covered along the y dimension, 1 voxel length is partially covered along the z
dimension
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(b) 1 voxel length is partially covered along the x dimension, 1 voxel length is partially
covered along the y dimension, 2 voxel lengths are partially covered along the z
dimension

(c) 1 voxel length is partially covered along the x dimension, 2 voxel lengths are
partially covered along the y dimension, 1 voxel length is partially covered along
the z dimension

(d) 2 voxel lengths are partially covered along the x dimension, 1 voxel length is
partially covered along the y dimension, 1 voxel length is partially covered along
the z dimension

(e) 1 voxel length is partially covered along the x dimension, 2 voxel lengths are
partially covered along the y dimension, 2 voxel lengths are partially covered
along the z dimension

(f) 2 voxel lengths are partially covered along the x dimension, 1 voxel length is
partially covered along the y dimension, 2 voxel lengths are partially covered
along the z dimension

(g) 2 voxel lengths are partially covered along the x dimension, 2 voxel lengths are
partially covered along the y dimension, 1 voxel length is partially covered along
the z dimension

(h) 2 voxel lengths are partially covered along the x dimension, 2 voxel lengths are
partially covered along the y dimension, 2 voxel lengths are partially covered along
the z dimension

While there is no randomness associated with which of the 3 groups of cases (or which
specific case within a group) will apply (since the cases are defined entirely by the voxel and
object dimensions, which are assumed to be known), within each case, there is randomness
associated with which of the subcases will occur (note that the probabilities of all the subcases
within each case must add up to 1).

3.5.1 Number of Partially Filled Voxels Np

1. 1 small dimension, i.e., one of the following is true:

x ≥ v1, y ≥ v2, z < v3

x ≥ v1, y < v2, z ≥ v3

x < v1, y ≥ v2, z ≥ v3

Since all the dimensions are interchangeable, we will denote the small dimension with
z and the other two dimensions with x and y. The voxel dimensions corresponding
to x, y, and z are still denoted as v1, v2, and v3, respectively. Thus, x ≥ v1, y ≥ v2,
z < v3. As shown in Appendix D.3,the number of partially covered voxels in this case
is given by

Np =

{
(fx + 2)(fy + 2) if mz ≤ qz ≤ 1−mz

2(fx + 2)(fy + 2) otherwise
(120)
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with qz = cz/v3, as before. The distribution of Np (also derived in Appendix D.3) is
given by

Np =



(f
(1)
x + 2)(f

(1)
y + 2) with probability p(f

(1)
x ) · p(f (1)

y ) · (1− z/v3)
(f

(1)
x + 2)(f

(2)
y + 2) with probability p(f

(1)
x ) · p(f (2)

y ) · (1− z/v3)
(f

(2)
x + 2)(f

(1)
y + 2) with probability p(f

(2)
x ) · p(f (1)

y ) · (1− z/v3)
(f

(2)
x + 2)(f

(2)
y + 2) with probability p(f

(2)
x ) · p(f (2)

y ) · (1− z/v3)
2(f

(1)
x + 2)(f

(1)
y + 2) with probability p(f

(1)
x ) · p(f (1)

y ) · (z/v3)
2(f

(1)
x + 2)(f

(2)
y + 2) with probability p(f

(1)
x ) · p(f (2)

y ) · (z/v3)
2(f

(2)
x + 2)(f

(1)
y + 2) with probability p(f

(2)
x ) · p(f (1)

y ) · (z/v3)
2(f

(2)
x + 2)(f

(2)
y + 2) with probability p(f

(2)
x ) · p(f (2)

y ) · (z/v3)

(121)

with f
(1)
x and f

(2)
x as defined in (22), f

(1)
y and f

(2)
y as defined in (36), p(f

(1)
x ) and p(f

(2)
x )

as defined in (23) and p(f
(1)
y ) and p(f

(2)
y ) as defined in (37).

The expected value of Np is given by

E(Np) =

(
x

v1
+ 1

)(
y

v2
+ 1

)(
z

v3
+ 1

)
. (122)

The variance of Np is given by

V ar(Np) =

(
4 · |mx − 0.5| · (0.5− |mx − 0.5|) +

(
x

v1
+ 1

)2
)

×

(
4 · |my − 0.5| · (0.5− |my − 0.5|) +

(
y

v2
+ 1

)2
)
·
(

1 +
3z

v3

)
−

(
x

v1
+ 1

)2(
1 +

y

v2

)2(
1 +

z

v3

)2

(123)

The standard deviation of Np is the square root of the expression in (123).

2. 2 small dimensions, i.e., one of the following is true:

x ≥ v1, y < v2, z < v3

x < v1, y ≥ v2, z < v3

x < v1, y < v2, z ≥ v3

Since the three dimensions are interchangeable, we will denote the 2 small dimensions
with y and z and the third dimension with x. Thus, x ≥ v1, y < v2, z < v3. As shown
in Appendix D.3, the number of partially covered voxels in this case is given by

Np =


fx + 2 if my ≤ qy ≤ 1−my and mz ≤ qz ≤ 1−mz

2(fx + 2) if my ≤ qy ≤ 1−my and (0 ≤ qz < mz or 1−mz < qz ≤ 1)
2(fx + 2) if mz ≤ qz ≤ 1−mz and (0 ≤ qy < my or 1−my < qy ≤ 1)
4(fx + 2) if (0 ≤ qy < my or 1−my < qy ≤ 1) and (0 ≤ qz < mz or 1−mz < qz ≤ 1)

(124)
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with qy = cy/v2 and qz = cz/v3, as before. The distribution of Np is thus given by

Np =



f
(1)
x + 2 with probability p(f

(1)
x ) ·

(
1− y

v2

)
·
(

1− z
v3

)
f
(2)
x + 2 with probability p(f

(2)
x ) ·

(
1− y

v2

)
·
(

1− z
v3

)
2(f

(1)
x + 2) with probability p(f

(1)
x ) ·

(
y
v2
·
(

1− z
v3

)
+ z

v3

(
1− y

v2

))
2(f

(2)
x + 2) with probability p(f

(2)
x ) ·

(
y
v2
·
(

1− z
v3

)
+ z

v3

(
1− y

v2

))
4(f

(1)
x + 2) with probability p(f

(1)
x ) · y

v2
· z
v3

4(f
(2)
x + 2) with probability p(f

(2)
x ) · y

v2
· z
v3

(125)

with f
(1)
x and f

(2)
x as defined in (22) and p(f

(1)
x ) and p(f

(2)
x ) as defined in (23).

As shown in Appendix D.3, the expected value of Np is given by

E(Np) =

(
x

v1
+ 1

)(
y

v2
+ 1

)(
z

v3
+ 1

)
.

Note that it is exactly the same as the expected value of the number of partially covered
voxels in all cases of 1 small dimension. The variance of Np is given by

V ar(Np) =

[(
4 · |mx − 0.5| · (0.5− |mx − 0.5|) +

(
x

v1
+ 1

)2
)

×
(

3y

v2
+ 1

)
×

(
3z

v3
+ 1

)]
−

(
x

v1
+ 1

)2(
y

v2
+ 1

)2(
z

v3
+ 1

)2

.

(126)

The standard deviation is the square root of the expression in (126).

3. 3 small dimensions: x < v1, y < v2 and z < v3
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As shown in Appendix D.3, the number of partially covered voxels is given by

Np =



1 if mx ≤ qx ≤ 1−mx and my ≤ qy ≤ 1−my and mz ≤ qz ≤ 1−mz

2 if mx ≤ qx ≤ 1−mx and my ≤ qy ≤ 1−my and (0 ≤ qz < mz or 1−mz < qz ≤ 1)
2 if mx ≤ qx ≤ 1−mx and (0 ≤ qy < my or 1−my < qy ≤ 1) and mz ≤ qz ≤ 1−mz

2 if (0 ≤ qx < mx or 1−mx < qx ≤ 1) and my ≤ qy ≤ 1−my and mz ≤ qz ≤ 1−mz

4 if mx ≤ qx ≤ 1−mx and (0 ≤ qy < my or 1−my < qy ≤ 1) and
(0 ≤ qz < mz or 1−mz < qz ≤ 1)

4 if (0 ≤ qx < mx or 1−mx < qx ≤ 1) and my ≤ qy ≤ 1−my and
(0 ≤ qz < mz or 1−mz < qz ≤ 1)

4 if (0 ≤ qx < mx or 1−mx < qx ≤ 1) and (0 ≤ qy < my or 1−my < qy ≤ 1) and
mz ≤ qz ≤ 1−mz

8 (0 ≤ qx < mx or 1−mx < qx ≤ 1) and (0 ≤ qy < my or 1−my < qy ≤ 1) and
(0 ≤ qz < mz or 1−mz < qz ≤ 1)

(127)

where qx = cx/v1, qy = cy/v2 and qz = cz/v3, as before. Therefore, as also shown in
Appendix D.3, the distribution of the number of partially covered voxels in this case
is given by

Np =


1 with probability

(
1− x

v1

)(
1− y

v2

)(
1− z

v3

)
2 with probability

(
1− x

v1

)(
1− y

v2

)
z
v3

+
(

1− x
v1

)
y
v2

(
1− z

v3

)
+ x

v1

(
1− y

v2

)(
1− z

v3

)
4 with probability

(
1− x

v1

)
y
v2

z
v3

+ x
v1

(
1− y

v2

)
z
v3

+ x
v1

y
v2

(
1− z

v3

)
8 with probability x

v1
y
v2

z
v3
.

(128)

The expected value of Np is given by

E(Np) =

(
x

v1
+ 1

)(
y

v2
+ 1

)(
z

v3
+ 1

)
.

Note that the expected value is the same as that in the cases of 1 and 2 small dimen-
sions. The variance of Np is given by

V ar(Np) =

(
3x

v1
+ 1

)(
3y

v2
+ 1

)(
3z

v3
+ 1

)
−
(
x

v1
+ 1

)2(
y

v2
+ 1

)2(
z

v3
+ 1

)2

.

(129)
The standard deviation is the square root of the expression in (129).

3.5.2 Fractions Covered in Partially Covered Voxels

1. 1 small dimension, i.e., one of the following is true:

x ≥ v1, y ≥ v2, z < v3

x ≥ v1, y < v2, z ≥ v3

x < v1, y ≥ v2, z ≥ v3
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Still denoting the small dimension with z, as before, we have x ≥ v1, y ≥ v2, z < v3. As
discussed in Section 3.5.1, in this case there are either (fx+2)(fy+2) or 2(fx+2)(fy+2)
partially covered voxels. The former subcase, referred to as 1(a) at the beginning of
Section 3.5, corresponds to just 1 partially covered voxel length along the z dimension.
In this case, which occurs with probability 1 − z/v3 (as shown in Appendix D.2), the
fractions covered in the partially covered voxels are as follows:

• fxfy voxels are each covered z/v3 of the volume,

• fy voxels are each covered p
(1)
x (z/v3) of the volume,

• fy voxels are each covered p
(2)
x (z/v3) of the volume,

• fx voxels are each covered p
(1)
y (z/v3) of the volume,

• fx voxels are each covered p
(2)
y (z/v3) of the volume,

• 1 voxel covered p
(1)
x p

(1)
y (z/v3) of the volume,

• 1 voxel covered p
(1)
x p

(2)
y (z/v3) of the volume,

• 1 voxel covered p
(2)
x p

(1)
y (z/v3) of the volume,

• 1 voxel covered p
(2)
x p

(2)
y (z/v3) of the volume.

Since x ≥ v1, each of p
(1)
x and p

(2)
x has a Uniform(0,1) distribution. Likewise, since

y ≥ v2, each of p
(1)
y and p

(2)
y has a Uniform(0,1) distribution, as well. Thus, each of the

fractions covered p
(1)
x (z/v3), p

(2)
x (z/v3), p

(1)
y (z/v3), and p

(2)
y (z/v3) has a Uniform(0, z/v3)

distribution, and expected value, median, and standard deviation of z/(2v3), z/(2v3),
and z/(

√
12v3), respectively. The probability of any one of these four fractions covered

being between two values a and b with 0 ≤ a < b ≤ z/v3 is equal to (b− a)v3/z.

According to the results in Appendix F.4, each of the products p
(1)
x p

(1)
y (z/v3), p

(1)
x p

(2)
y (z/v3),

p
(2)
x p

(1)
y (z/v3) and p

(2)
x p

(2)
y (z/v3) has the probability density function given by

gW (w) =
v3
z
· (log(z/v3)− log w) , 0 ≤ w ≤ z/v3 (130)

and 0 otherwise. As also shown in that section, the probability that any of these four
fractions is between two values A and B with 0 ≤ A < B ≤ z/v3:

P (A ≤ W ≤ B) =
v3
z
· (log(z/v3) + 1) · (B − A) +

v3
z
· (A log A−B log B) (131)

with 0 · log 0 ≡ 0. The expected value, median and standard deviation of each of these
four fractions covered are z/(4v3), (0.19z)/v3, and (0.22z)/v3, respectively.

The subcase of 2(fx + 2)(fy + 2) partially covered voxels (referred to as 1(b) at the
beginning of Section 3.5)corresponds to 2 partially covered voxel lengths along the z

dimension, one p
(1)
z and the other p

(2)
z long. In this case, which occurs with probability

z/v3 (as shown in Appendix D.2), the fractions covered in the partially covered voxels
are as follows:
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• fxfy voxels at p
(1)
z each,

• fxfy voxels at p
(2)
z each,

• fx voxels at p
(1)
y p

(1)
z each,

• fx voxels at p
(1)
y p

(2)
z each,

• fx voxels at p
(2)
y p

(1)
z each,

• fx voxels at p
(2)
y p

(2)
z each,

• fy voxels at p
(1)
x p

(1)
z each,

• fy voxels at p
(1)
x p

(2)
z each,

• fy voxels at p
(2)
x p

(1)
z each,

• fy voxels at p
(2)
x p

(2)
z each,

• 1 voxel at p
(1)
x p

(1)
y p

(1)
z ,

• 1 voxel at p
(1)
x p

(1)
y p

(2)
z ,

• 1 voxel at p
(1)
x p

(2)
y p

(1)
z ,

• 1 voxel at p
(1)
x p

(2)
y p

(2)
z ,

• 1 voxel at p
(2)
x p

(1)
y p

(1)
z ,

• 1 voxel at p
(2)
x p

(1)
y p

(2)
z ,

• 1 voxel at p
(2)
x p

(2)
y p

(1)
z ,

• 1 voxel at p
(2)
x p

(2)
y p

(2)
z .

By analogy to the results obtained in Appendix E.3, each of the fractions p
(1)
z and

p
(2)
z has a Uniform(0, z/v3) distribution, so their expected value, median and standard

deviation are z/(2v3), z/(2v3), and z/(
√

12v3), respectively. Each fraction’s probability
of being between values a and b with 0 ≤ a < b ≤ z/v3 is equal to (b− a)v3/z.

Since x ≥ v1, p
(1)
x and p

(2)
x each has a Uniform(0, 1) distribution. Also, y ≥ v2, so

each of p
(1)
y and p

(2)
y has a Uniform(0, 1) distribution. Finally, as each of p

(1)
z and

p
(2)
z has a Uniform(0, z/v3) distribution, and these fractions are independent from

their counterparts in the x and y dimensions, according to the results obtained in
Appendix F.2, each of the products p

(1)
x p

(1)
z , p

(1)
x p

(2)
z , p

(2)
x p

(1)
z , p

(2)
x p

(2)
z , as well as p

(1)
y p

(1)
z ,

p
(1)
y p

(2)
z , p

(2)
y p

(1)
z , and p

(2)
y p

(2)
z has the same distribution as the quantities p

(1)
x p

(1)
y (z/v3),

p
(1)
x p

(2)
y (z/v3), p

(2)
x p

(1)
y (z/v3), and p

(2)
x p

(2)
y (z/v3), considered earlier. Thus, each of these

fractions has the probability density function given in (130). The probability that any
one of these fractions is in the interval (A,B) with 0 ≤ A < B ≤ z/v3 is therefore the
same as that given in (131). The expected value, median and standard deviation of
each of these products is z/(4v3), (0.19z)/v3 and (0.22z)/v3, respectively.
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According to the results in Section F.3, each of the 8 triple products p
(1)
x p

(1)
y p

(1)
z ,

p
(1)
x p

(1)
y p

(2)
z , p

(1)
x p

(2)
y p

(1)
z , p

(1)
x p

(2)
y p

(2)
z , p

(2)
x p

(1)
y p

(1)
z , p

(2)
x p

(1)
y p

(2)
z , p

(2)
x p

(2)
y p

(1)
z , and p

(2)
x p

(2)
y p

(2)
z

has the probability density function given by

hW (w) =
v3
2z

(log(z/v3)− log w)2, 0 ≤ w ≤ z/v3 (132)

and 0 otherwise. The probability that any one of these fractions is in the interval
(A,B) with 0 ≤ A < B ≤ z/v3 is therefore equal to

P (A ≤W ≤ B) =
v3
2z

[
B
(
(log B − log(z/v3)− 1)2 + 1

)
−A

(
(log A− log(z/v3)− 1)2 + 1

)]
(133)

with 0 · log 0 ≡ 0. According to the results obtained in Section F.3, the expected
value, median and standard deviation of each of these products is z/(8v3), (0.07z)/v3
and (0.15z)/v3, respectively. Table 15 summarizes the fractions covered and the cor-
responding number of voxels at that fraction for each of the two subcases of 1 small
dimension in the 3-dimensional setting. The small dimension is denoted with z, so the
case when x ≥ v1, y ≥ v2 and z < v3.

To obtain the entire distribution of fractions covered in all partially covered voxels
without fixing the region, we extend the steps outlined in Section 2.3.2 to the three-
dimensional setting. Extending equation (72) to the 3-dimensional setting, we have
that the probability density function of the fraction covered F in any randomly picked
partially covered voxel (across both subcases and all regions within each subcase) is
given by

g(F ) =
∑
R

∑
S

∑
fx

∑
fy

g(F | R, S, fx, fy) · p(R | S, fx, fy) · p(S) · p(fx) · p(fy), (134)

where

R denotes the region (1 through 9 for S = (a) and 1 through 18 for S = (b)),

S denotes the subcase (a) or (b) in Table 15,

g(F | R, S, fx, fy) denotes the conditional density of the fraction covered in a randomly
picked voxel in a given region R within the given subcase S and the values of fx
and fy,

p(R | S, fx, fy) is the relative frequency of the region R for a given subcase S and the
values of fx and fy,

p(S) denotes the probability of each subcase and is given in Table 15,

p(fx) is given in (19)–(20), and p(fy) is given in (31)–(32).

Extending the procedure outlined in Table 6 to the 3-dimensional setting and following
Table 15, the procedure for generating from the density in (134) is given in Table 16.

2. 2 small dimensions, i.e., one of the following is true:
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Sub- Proba- Reg- Fraction Covered # Voxels at the Fraction Covered
case bility ion Expres- Distri- Exp. Std. Exp. Distri- Exp. Std.

sion bution Value Dev. bution Value Dev.
1 z

v3
n/a z

v3
0 fxfy Eq.(110) Eq.(113) Sq. root of Eq.(114)

2 p
(1)
x

z
v3

U(0, z
v3

) z
2v3

z√
12v3

fy Eqs.(31)–(32) y
v2
− 1 Eq.(40)

3 p
(2)
x

z
v3

U(0, z
v3

) z
2v3

z√
12v3

fy Eqs.(31)–(32) y
v2
− 1 Eq.(40)

4 p
(1)
y

z
v3

U(0, z
v3

) z
2v3

z√
12v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

(a) 1− z
v3

5 p
(2)
y

z
v3

U(0, z
v3

) z
2v3

z√
12v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

6 p
(1)
x p

(1)
y

z
v3

Eq.(130) z
4v3

0.22z
v3

1 n/a 1 0

7 p
(1)
x p

(2)
y

z
v3

Eq.(130) z
4v3

0.22z
v3

1 n/a 1 0

8 p
(2)
x p

(1)
y

z
v3

Eq.(130) z
4v3

0.22z
v3

1 n/a 1 0

9 p
(2)
x p

(2)
y

z
v3

Eq.(130) z
4v3

0.22z
v3

1 n/a 1 0

1 p
(1)
z U(0, z

v3
) z

2v3

z√
12v3

fxfy Eq.(110) Eq.(113) Sq. root of Eq. (114)

2 p
(2)
z U(0, z

v3
) z

2v3

z√
12v3

fxfy Eq.(110) Eq.(113) Sq. root of Eq. (114)

3 p
(1)
x p

(1)
z Eq.(130) z

4v3

0.22z
v3

fy Eqs.(31)–(32) y
v2
− 1 Eq.(40)

4 p
(1)
x p

(2)
z Eq.(130) z

4v3

0.22z
v3

fy Eqs.(31)–(32) y
v2
− 1 Eq.(40)

5 p
(2)
x p

(1)
z Eq.(130) z

4v3

0.22z
v3

fy Eqs.(31)–(32) y
v2
− 1 Eq.(40)

6 p
(2)
x p

(2)
z Eq.(130) z

4v3

0.22z
v3

fy Eqs.(31)–(32) y
v2
− 1 Eq.(40)

7 p
(1)
y p

(1)
z Eq.(130) z

4v3

0.22z
v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

8 p
(1)
y p

(2)
z Eq.(130) z

4v3

0.22z
v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

(b) z
v3

9 p
(2)
y p

(1)
z Eq.(130) z

4v3

0.22z
v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

10 p
(2)
y p

(2)
z Eq.(130) z

4v3

0.22z
v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

11 p
(1)
x p

(1)
y p

(1)
z Eq.(132) z

8v3

0.15z
v3

1 n/a 1 0

12 p
(1)
x p

(1)
y p

(2)
z Eq.(132) z

8v3

0.15z
v3

1 n/a 1 0

13 p
(1)
x p

(2)
y p

(1)
z Eq.(132) z

8v3

0.15z
v3

1 n/a 1 0

14 p
(1)
x p

(2)
y p

(2)
z Eq.(132) z

8v3

0.15z
v3

1 n/a 1 0

15 p
(2)
x p

(1)
y p

(1)
z Eq.(132) z

8v3

0.15z
v3

1 n/a 1 0

16 p
(2)
x p

(1)
y p

(2)
z Eq.(132) z

8v3

0.15z
v3

1 n/a 1 0

17 p
(2)
x p

(2)
y p

(1)
z Eq.(132) z

8v3

0.15z
v3

1 n/a 1 0

18 p
(2)
x p

(2)
y p

(2)
z Eq.(132) z

8v3

0.15z
v3

1 n/a 1 0

Table 15: The fraction of the voxel covered for each of the partially covered voxels, its
distribution, expected value and standard deviation, along with the number of voxels with
that fraction covered, its distribution, expected value and standard deviation, for the case
of 1 small dimension in the 3-dimensional setting. The small dimension is denoted with z,
so x ≥ v1, y ≥ v2 and z < v3.
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1) Independently generate fx according to (19)–(20) and fy according to (31)–(32)
(using Uniform(0,1) random variables, as discussed in Appendix C.2).

2) Given fx and fy generated in step 1, independently generate a value from the distribution

of p
(1)
x given fx and a value from the distribution of p

(1)
y given fy according to (56)–(59).

3) Set p
(2)
x = x/v1 − fx − p

(1)
x and p

(2)
y = y/v2 − fy − p

(1)
y

4) Generate the subcase S = (a) or (b) according to their probabilities in Table 15
(using Uniform (0,1) random variables, as discussed in Appendix C.2).

5) If S = (a) in step 4,
– set F to be a sequence of the following fxfy + 2(fx + fy) + 4 values:

z/v3, ...︸ ︷︷ ︸
repeat fxfy times

, (z/v3) · p(1)x , (z/v3) · p(2)x , ...︸ ︷︷ ︸
repeat fy times

, (z/v3) · p(1)y , (z/v3) · p(2)y , ...︸ ︷︷ ︸
repeat fx times

,

(z/v3) · p(1)x p
(1)
y , (z/v3) · p(1)x p

(1)
y , (z/v3) · p(1)x p

(1)
y , (z/v3) · p(1)x p

(1)
y

If S = (b) in step 4,

– generate p
(1)
z ∼ U(0, z/v3),

– set p
(2)
z = z/v3 − p

(1)
z , and

– set F to be a sequence of the following 2fxfy + 4(fx + fy) + 8 values:

p(1)z , p(2)z , ...︸ ︷︷ ︸
repeat fxfy times

, p(1)x p(1)z , p(1)x p(2)z , p(1)x p(2)z , p(2)x p(2)z , ...︸ ︷︷ ︸
repeat fy times

, p(1)y p(1)z , p(1)y p(2)z , p(1)y p(2)z , p(2)y p(2)z , ...︸ ︷︷ ︸
repeat fx times

,

p
(1)
x p

(1)
y p

(1)
z , p

(1)
x p

(1)
y p

(2)
z , p

(1)
x p

(2)
y p

(1)
z , p

(1)
x p

(2)
y p

(2)
z ,

p
(2)
x p

(1)
y p

(1)
z , p

(2)
x p

(1)
y p

(2)
z , p

(2)
x p

(2)
y p

(1)
z , p

(2)
x p

(2)
y p

(2)
z

6) Repeat steps 1–5 K times for a large value K (e.g., 100000).

The resulting set of K sequences F will be a sample from the density in (134). This set can then
be queried for any summary quantity of interest, such as quantiles, percentiles, means, medians
and variances of the fractions covered in all the partially covered voxels.

Table 16: Algorithm for generating values of the fraction covered, F , from the distribution
in (134) in the 3-dimensional setting with 1 small dimension (z is assumed to be the small
dimension, so x ≥ v1, y ≥ v2 and z < v3).
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x ≥ v1, y < v2, z < v3

x < v1, y ≥ v2, z < v3

x < v1, y < v2, z ≥ v3

As before, we denote the small dimensions with y and z and the third dimension with
x. Thus, x ≥ v1, y < v2 and z < v3. As discussed in Section 3.5.1, in this case
there are either (fx + 2) (subcase (a), 2(fx + 2) (subcases (b) and (c)) or 4(fx + 2)
(subcase (d)) partially covered voxels. The first subcase corresponds to 1 partially
covered voxel length along both the y and the z dimensions. In this case, which occurs
with probability (1−y/v2)(1−z/v3) (as shown in Appendix D.2), the fractions covered
in the partially covered voxels are as follows:

• fx voxels at yz/(v2v3) each,

• 1 voxel at p
(1)
x · yz/(v2v3)

• 1 voxel at p
(2)
x · yz/(v2v3)

Since p
(1)
x and p

(2)
x is each Uniform(0,1), p

(1)
x (yz)/(v2v3) and p

(2)
x (yz)/(v2v3) is each

Uniform(0, yz/(v2v3)). Thus, each of these fractions has the expected value, median
and standard deviation of yz/(2v2v3), yz/(2v2v3) and yz/(

√
12v2v3), respectively.

There are 2(fx + 2) partially covered voxels when 1 voxel length is covered along the
y dimension, and 2 voxel lengths are covered along the z dimension. This occurs with
probability (1 − y/v2)(z/v3). The fractions covered in the partially covered voxels in
this case are as follows:

• fx voxels at p
(1)
z · y/v2 each

• fx voxels at p
(2)
z · y/v2 each

• 1 voxel at p
(1)
x p

(1)
z (y/v2) each

• 1 voxel at p
(1)
x p

(2)
z (y/v2) each

• 1 voxel at p
(2)
x p

(1)
z (y/v2) each

• 1 voxel at p
(2)
x p

(2)
z (y/v2) each

Since p
(1)
z and p

(2)
z is each Uniform(0,z/v3), each of the fractions p

(1)
z · y/v2 and p

(2)
z ·

y/v2 is Uniform(0, yz/(v2v3)) and thus has the expected value, median and standard
deviation of yz/(2v2v3), yz/(2v2v3), and yz/(

√
12v2v3), respectively. According to the

results obtained in Appendix F.4, each of the fractions p
(1)
x p

(1)
z (y/v2), p

(1)
x p

(2)
z (y/v2),

p
(2)
x p

(1)
z (y/v2) , and p

(2)
x p

(2)
z (y/v2) has the probability density function given by

gW (w) =
v2v3
yz
·
(
log

(
yz

v2v3

)
− log w

)
, 0 ≤ w ≤ yz/(v2v3) (135)
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and 0 otherwise. Hence, the probability that any of these four fractions is between two
values A and B with 0 ≤ A < B ≤ yz/(v2v3):

P (A ≤ W ≤ B) =
v2v3
yz
·
(
log

(
yz

v2v3

)
+ 1

)
·(B−A) +

v2v3
yz
·(A log A−B log B) (136)

with 0 · log 0 ≡ 0. The expected value, median, and standard deviation of each of these
four fractions are yz/(4v2v3), (0.19yz)/(v2v3), and (0.22yz)/(v2v3), respectively.

There are also 2(fx + 2) partially covered voxels when 1 voxel length is covered along
the z dimension, and 2 voxel lengths are covered along the y dimension. This occurs
with probability (1−z/v3)(y/v2). The fractions covered in the partially covered voxels
in this case are as follows:

• fx voxels at p
(1)
y · z/v3 each

• fx voxels at p
(2)
y · z/v3 each

• 1 voxel at p
(1)
x p

(1)
y (z/v3) each

• 1 voxel at p
(1)
x p

(2)
y (z/v3) each

• 1 voxel at p
(2)
x p

(1)
y (z/v3) each

• 1 voxel at p
(2)
x p

(2)
y (z/v3) each

By symmetry, the distributions, expected values, medians and standard deviations of
the above quantities are the same as the ones in the previous paragraph.

Finally, there are 4(fx + 2) voxels when 2 voxel lengths are covered along both the y
and the z dimensions. This occurs with probability yz/(v2v3). The fractions covered
in the partially covered voxels are as follows:

• fx voxels at p
(1)
y p

(1)
z each

• fx voxels at p
(1)
y p

(2)
z each

• fx voxels at p
(2)
y p

(1)
z each

• fx voxels at p
(2)
y p

(2)
z each

• 1 voxel at p
(1)
x p

(1)
y p

(1)
z each

• 1 voxel at p
(1)
x p

(1)
y p

(2)
z each

• 1 voxel at p
(1)
x p

(2)
y p

(1)
z each

• 1 voxel at p
(1)
x p

(2)
y p

(2)
z each

• 1 voxel at p
(2)
x p

(1)
y p

(1)
z each

• 1 voxel at p
(2)
x p

(1)
y p

(2)
z each

• 1 voxel at p
(2)
x p

(2)
y p

(1)
z each
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• 1 voxel at p
(2)
x p

(2)
y p

(2)
z each

According to the results derived in Appendix F.2, the probability density function for
each of the fractions p

(1)
y p

(1)
z , p

(1)
y p

(2)
z , p

(2)
y p

(1)
z and p

(2)
y p

(2)
z has the same distribution

as p
(1)
x p

(1)
z (y/v2), p

(1)
x p

(2)
z (y/v2), p

(2)
x p

(1)
z (y/v2), and p

(2)
x p

(2)
z (y/v2). Thus, each of these

fractions has the same probability density function as that given in (135). The prob-
ability that W is in the interval (A,B) with 0 ≤ A < B ≤ yz/(v2v3) is therefore the
same as that given in (136). The expected value, median and standard deviation of
each of these four fractions are thus yz/(4v2v3), (0.19yz)/(v2v3), and (0.22yz)/(v2v3),
respectively.

According to the results derived in Section F.3, the probability density function of each
of the fractions p

(1)
x p

(1)
y p

(1)
z , p

(1)
x p

(1)
y p

(2)
z , p

(1)
x p

(2)
y p

(1)
z , p

(1)
x p

(2)
y p

(2)
z , p

(2)
x p

(1)
y p

(1)
z , p

(2)
x p

(1)
y p

(2)
z ,

p
(2)
x p

(2)
y p

(1)
z , and p

(2)
x p

(2)
y p

(2)
z is given by

gW (w) =
v2v3
2yz

(
log

(
yz

v2v3

)
− log w

)2

, 0 ≤ w ≤ yz

v2v3
. (137)

The probability that W is in the interval (A,B) with 0 ≤ A < B ≤ yz/(v2v3) is
therefore equal to

P (A ≤W ≤ B) =
v2v3
2yz

B

(
(log B − log

(
yz

v2v3

)
− 1)2 + 1

)
−A

(
(log A− log

(
yz

v2v3

)
− 1)2 + 1

)
(138)

with 0 · log 0 ≡ 0. The expected value, median and standard deviation of each of
these eight fractions are yz/(8v2v3), (0.07yz)/(v2v3), and (0.15yz)/(v2v3), respectively.
Table 17 summarizes the fractions covered and the corresponding number of voxels
at that fraction for each of the four subcases of the case of 2 small dimensions in the
3-dimensional setting. The small dimensions are denoted with y and z, so when x ≥ v1,
y < v2 and z < v3.

To obtain the entire distribution of fractions covered in all partially covered voxels
without fixing the region, we extend the steps outlined for 1 small dimension in the
2-dimensional setting to 2 small dimensions in the 3-dimensional setting. As in (72),
we have that the probability density function of the fraction covered F in any randomly
picked partially covered voxel (across both subcases and all regions within each subcase)
is given by

g(F ) =
∑
R

∑
S

∑
fx

g(F | R, S, fx) · p(R | S, fx) · p(S) · p(fx), (139)

where

R denotes the region (1 through 3 for S = (a) and 1 through 6 for S = (b) or S = (c)
and 1 through 12 for S = (d)),

S denotes the subcase (a), (b), (c) or (d) in Table 17,
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Sub- Proba- Reg- Fraction Covered # Voxels at the Fraction Covered
case bility ion Expres- Distri- Exp. Std. Exp. Distri- Exp. Std.

sion bution Value Dev. bution Value Dev.
1 yz

v2v3
n/a yz

v2v3
0 fx Eqs.(19)–(20) x

v1
− 1 Eq.(26)

(a)
(
1− y

v2

)(
1− z

v3

)
2 p

(1)
x · yz/(v2v3) U(0, yz

v2v3
) yz

2v2v3

yz√
12v2v3

1 n/a 1 0

3 p
(2)
x · yz/(v2v3) U(0, yz

v2v3
) yz

2v2v3

yz√
12v2v3

1 n/a 1 0

1 p
(1)
z · y/v2 U(0, yz

v2v3
) yz

2v2v3

yz√
12v2v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

2 p
(2)
z · y/v2 U(0, yz

v2v3
) yz

2v2v3

yz√
12v2v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

(b)
(
1− y

v2

)
z
v3

3 p
(1)
x p

(1)
z (y/v2) Eq.(135) yz

4v2v3

0.22yz
v2v3

1 n/a 1 0

4 p
(1)
x p

(2)
z (y/v2) Eq.(135) yz

4v2v3

0.22yz
v2v3

1 n/a 1 0

5 p
(2)
x p

(1)
z (y/v2) Eq.(135) yz

4v2v3

0.22yz
v2v3

1 n/a 1 0

6 p
(2)
x p

(2)
z (y/v2) Eq.(135) yz

4v2v3

0.22yz
v2v3

1 n/a 1 0

1 p
(1)
y · z/v3 U(0, yz

v2v3
) yz

2v2v3

yz√
12v2v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

2 p
(2)
y · z/v3 U(0, yz

v2v3
) yz

2v2v3

yz√
12v2v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

(c)
(
1− z

v3

)
y
v2

3 p
(1)
x p

(1)
y (z/v3) Eq.(135) yz

4v2v3

0.22yz
v2v3

1 n/a 1 0

4 p
(1)
x p

(2)
y (z/v3) Eq.(135) yz

4v2v3

0.22yz
v2v3

1 n/a 1 0

5 p
(2)
x p

(1)
y (z/v3) Eq.(135) yz

4v2v3

0.22yz
v2v3

1 n/a 1 0

6 p
(2)
x p

(2)
y (z/v3) Eq.(135) yz

4v2v3

0.22yz
v2v3

1 n/a 1 0

1 p
(1)
y p

(1)
z Eq. (135) yz

4v2v3

0.22yz
v2v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

2 p
(1)
y p

(2)
z Eq. (135) yz

4v2v3

0.22yz
v2v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

3 p
(2)
y p

(1)
z Eq. (135) yz

4v2v3

0.22yz
v2v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

4 p
(2)
y p

(2)
z Eq. (135) yz

4v2v3

0.22yz
v2v3

fx Eqs.(19)–(20) x
v1
− 1 Eq.(26)

5 p
(1)
x p

(1)
y p

(1)
z Eq. (137) yz

8v2v3

0.15yz
v2v3

1 n/a 1 0

(d) yz
v2v3

6 p
(1)
x p

(1)
y p

(2)
z Eq. (137) yz

8v2v3

0.15yz
v2v3

1 n/a 1 0

7 p
(1)
x p

(2)
y p

(1)
z Eq. (137) yz

8v2v3

0.15yz
v2v3

1 n/a 1 0

8 p
(1)
x p

(2)
y p

(2)
z Eq. (137) yz

8v2v3

0.15yz
v2v3

1 n/a 1 0

9 p
(2)
x p

(1)
y p

(1)
z Eq. (137) yz

8v2v3

0.15yz
v2v3

1 n/a 1 0

10 p
(2)
x p

(1)
y p

(2)
z Eq. (137) yz

8v2v3

0.15yz
v2v3

1 n/a 1 0

11 p
(2)
x p

(2)
y p

(1)
z Eq. (137) yz

8v2v3

0.15yz
v2v3

1 n/a 1 0

12 p
(2)
x p

(2)
y p

(2)
z Eq. (137) yz

8v2v3

0.15yz
v2v3

1 n/a 1 0

Table 17: The fraction of the voxel covered for each of the partially covered voxels, its
distribution, expected value and standard deviation, along with the number of voxels with
that fraction covered, its distribution, expected value and standard deviation, for the case
of 2 small dimensions in the 3-dimensional setting. The small dimensions are denoted with
y and z, so x ≥ v1, y < v2 and z < v3.
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g(F | R, S, fx) denotes the conditional density of the fraction covered in a randomly
picked voxel in a given region R within the given subcase S and the value of fx,

p(R | S, fx) is the relative frequency of the region R for a given subcase S and value
of fx,

p(S) denotes the probability of each subcase and is given in Table 17,

p(fx) is given in (19)–(20).

Following Table 17 and the steps equivalent to those of Table 6, we have the procedure
for generating from the density in (139) as outlined in Table 18.

3. 3 small dimensions, i.e., x < v1, y < v2 and z < v3.
As discussed in Section 3.5.1, in this case there are either 1 (subcase (a)), 2 (subcases
(b)–(d)), 4 (subcases (e)–(g)) or 8 (subcase (h)) partially covered voxels. The subcase
of 1 partially covered voxel corresponds to 1 partially covered voxel length along each of
3 dimensions. In this case, which occurs with probability (1−x/v1)(1−y/v2)(1−z/v3)
(as shown in Appendix D.2), the fraction covered in the 1 partially covered voxel is
the entire area of the object scaled to the voxel dimensions, i.e., xyz/(v1v2v3).

The subcases of 2 partially covered voxels corresponds to 1 partially covered voxel
lengths along two of the dimensions and 2 partially covered voxel lengths along the
third dimension. Let us first consider subcase (b), in which the dimension with 2
partially covered voxel lengths is z. In this case, which occurs with probability (1 −
x/v1)(1−y/v2)(z/v3) (as shown in Appendix D.2), the fractions covered in the partially
covered voxels are as follows:

• 1 voxel at p
(1)
z · xy/(v1v2)

• 1 voxel at p
(2)
z · xy/(v1v2)

Since p
(1)
z and p

(2)
z is each Uniform(0, z/v3), each of the fractions covered p

(1)
z ·xy/(v1v2)

and p
(2)
z · xy/(v1v2) has a Uniform(0, xyz/(v1v2v3)) distribution. The expected value,

median and standard deviation of each is thus xyz/(2v1v2v3), xyz/(2v1v2v3) and xyz/(
√

12v1v2v3),
respectively. The subcase (c) is the same as (b), with the y and z quantities inter-
changed, while subcase (d) is the same as (b), with the x and z quantities interchanged.

The subcases of 4 partially covered voxels corresponds to 2 partially covered voxel
lengths along two of the dimensions and 1 partially covered voxel length along the
third dimension. Let us first consider subcase (e), in which the dimensions with 2
partially covered voxel lengths are y and z. In this case, which occurs with probability
(1−x/v1)(y/v2)(z/v3) (as shown in Appendix D.2), the fractions covered in the partially
covered voxels are as follows:

• 1 voxel at p
(1)
y p

(1)
z (x/v1)

• 1 voxel at p
(1)
y p

(2)
z (x/v1)
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1) Generate fx according to (19)–(20) (using Uniform(0,1) random variables, as discussed in Appendix C.2).

2) Given fx generated in step 1, generate p
(1)
x from the appropriate distribution specified in (56)–(59).

3) Set p
(2)
x = x/v1 − fx − p

(1)
x

4) Generate the subcase S = (a), (b), (c) or (d) according to their probabilities in Table 17
(using Uniform (0,1) random variables, as discussed in Appendix C.2).

5) If S = (a) in step 4,
– set F to be a sequence of the following fx + 2 values:

yz
v2v3
·

 1, ...︸︷︷︸
repeat fx times

, p
(1)
x , p

(2)
x

.

If S = (b) in step 4,

– generate p
(1)
z ∼ U(0, z/v3),

– set p
(2)
z = z/v3 − p

(1)
z , and

– set F to be a sequence of the following 2fx + 4 values:

y
v2
·

p(1)z , p(2)z , ...︸ ︷︷ ︸
repeat fx times

, p
(1)
x p

(1)
z , p

(1)
x p

(2)
z , p

(2)
x p

(1)
z , p

(2)
x p

(2)
z

.

If S = (c) in step 4,

– generate p
(1)
y ∼ U(0, y/v2),

– set p
(2)
y = y/v2 − p

(1)
y , and

– set F to be a sequence of the following 2fx + 4 values:

z
v3
·

p(1)y , p(2)y , ...︸ ︷︷ ︸
repeat fx times

, p
(1)
x p

(1)
y , p

(1)
x p

(2)
y , p

(2)
x p

(1)
y , p

(2)
x p

(2)
y

.

If S = (d) in step 4,

– generate p
(1)
y ∼ U(0, y/v2) and p

(1)
z ∼ U(0, y/v3),

– set p
(2)
y = y/v2 − p

(1)
y and p

(2)
z = z/v3 − p

(1)
z ,

– set F to be a sequence of the following 4fx + 8 values:

p(1)y p(1)z , p(1)y p(2)z , p(2)y p(1)z , p(2)y p(2)z , ...︸ ︷︷ ︸
repeat fx times

p
(1)
x p

(1)
y p

(1)
z , p

(1)
x p

(1)
y p

(2)
z , p

(1)
x p

(2)
y p

(1)
z , p

(1)
x p

(2)
y p

(2)
z ,

p
(2)
x p

(1)
y p

(1)
z , p

(2)
x p

(1)
y p

(2)
z , p

(2)
x p

(2)
y p

(1)
z , p

(2)
x p

(2)
y p

(2)
z

6) Repeat steps 1–5 K times for a large value K (e.g., 100000).

The resulting set of K sequences F will be a sample from the density in (139). This set can then
be queried for any summary quantity of interest, such as quantiles, percentiles, means, medians
and variances of the fractions covered in all the partially covered voxels.

Table 18: Algorithm for generating values of the fraction covered, F , from the distribution
in (139) in the 3-dimensional setting with 2 small dimensions (y and z are assumed to be
the small dimensions, so x ≥ v1, y < v2 and z < v3).
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• 1 voxel at p
(2)
y p

(1)
z (x/v1)

• 1 voxel at p
(2)
y p

(2)
z (x/v1)

According to the results derived in Appendix F.4, the probability density function for
each of the fractions is given by

gW (w) =
v1v2v3
xyz

·
(
log

xyz

v1v2v3
− log w

)
, 0 ≤ w ≤ xyz/(v1v2v3) (140)

and 0 otherwise. Therefore, according to (338), the probability that any of these four
fractions is in the interval (A,B) with 0 ≤ A < B ≤ xyz/(v1v2v3) is equal to

P (A ≤ W ≤ B) =
v1v2v3
xyz

·
(
log

xyz

v1v2v3
+ 1

)
· (B−A) +

v1v2v3
xyz

· (A log A−B log B)

(141)
with 0 · log 0 ≡ 0, as before. From the results developed in Appendix F.4, we have
that the expected value, median and standard deviation of each of the four fractions is
equal to xyz/(4v1v2v3), (0.19xyz)/(v1v2v3), and (0.22xyz)/(v1v2v3), respectively. The
results for subcase (f) are the same with the x and y quantities interchanged, while
the results for subcase (g) are the same with the x and z quantities interchanged.

The subcase of 8 partially covered voxels occurs when there are 2 voxel lenghts partially
covered along each of the 3 dimensions. In this case, which occurs with probability
xyz/(v1v2v3), the fractions covered in the partially covered voxels are as follows:

• 1 voxel at p
(1)
x p

(1)
y p

(1)
z

• 1 voxel at p
(1)
x p

(1)
y p

(2)
z

• 1 voxel at p
(1)
x p

(2)
y p

(1)
z

• 1 voxel at p
(1)
x p

(2)
y p

(2)
z

• 1 voxel at p
(2)
x p

(1)
y p

(1)
z

• 1 voxel at p
(2)
x p

(1)
y p

(2)
z

• 1 voxel at p
(2)
x p

(2)
y p

(1)
z

• 1 voxel at p
(2)
x p

(2)
y p

(2)
z

According to the results developed in Section F.3, each of these 8 fractions has the
probability density function given by

gW (w) =
v1v2v3
2xyz

(
log

xyz

v1v2v3
− log w

)2

, 0 ≤ w ≤ xyz/(v1v2v3) (142)

and 0 otherwise. Therefore, according to (333), the probability that any of these eight
fractions is in the interval (A,B) with 0 ≤ A < B ≤ xyz/(v1v2v3) is equal to

P (A ≤W ≤ B) =
v1v2v3
2xyz

[
B

(
(log B − log

xyz

v1v2v3
− 1)2 + 1

)
−A

(
(log A− log

xyz

v1v2v3
− 1)2 + 1

)]
(143)
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with 0 · log 0 ≡ 0. The expected value, median and standard deviation of each of
these eight fractions are xyz/(8v1v2v3), (0.07xyz)/(v1v2v3), and (0.15xyz)/(v1v2v3),
respectively.

Table 19 summarizes the fractions covered and the corresponding number of voxels
at that fraction for each of the 8 subcases of the case of 3 small dimensions in the
3-dimensional setting, i.e., x <, y < v2 and z < v3.

To obtain the entire distribution of fractions covered in all partially covered voxels
without fixing the region, we extend the steps outlined for 2 small dimensions in the
3-dimensional setting to 3 small dimensions in the 3-dimensional setting. As in (77),
we have that the probability density function of the fraction covered F in any randomly
picked partially covered voxel (across both subcases and all regions within each subcase)
is given by

g(F ) =
∑
R

∑
S

g(F | R, S) · p(R | S) · p(S), (144)

where, as before,

R denotes the region (1 for S = (a), 1 or 2 for S = (b), (c) and (d), 1 through 4 for
S = (e), (f), and (g), and 1 through 8 for S = (h)).

S denotes the subcase (a), (b), (c), (d), (e), (f), (g) or (h) in Table 19,

g(F | R, S) denotes the conditional density of the fraction covered in a randomly
picked voxel in a given region R within the given subcase S,

p(R | S) is the relative frequency of the region R for a given subcase S,

p(S) denotes the probability (relative frequency) of each subcase and is given in Table
19.

Following Table 19 and the steps equivalent to those of Table 9, we have the procedure
for generating from the density in (144) as outlined in Table 20.

1) Generate the subcase S = (a), (b), (c), (d), (e), (f), (g) or (h) according to their probabilities
in Table 19 (using Uniform (0,1) random variables, as discussed in Appendix C.2).

2) If S = (a) in step 1,
– set F equal to xyz

v1v2v3
.

If S = (b) in step 1,

– generate p
(1)
z ∼ U(0, z/v3) ,

– set p
(2)
z = z/v3 − p(1)z , and

– set F to be the sequence of the following 2 values:
xy
v1v2
· (p(1)z , p

(2)
z ).

If S = (c) in step 1,
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– generate p
(1)
y ∼ U(0, y/v2) ,

– set p
(2)
y = y/v2 − p(1)y , and

– set F to be the sequence of the following 2 values:
xz
v1v3
· (p(1)y , p

(2)
y ).

If S = (d) in step 1,

– generate p
(1)
x ∼ U(0, x/v1) ,

– set p
(2)
x = x/v1 − p(1)x , and

– set F to be the sequence of the following 2 values:
yz
v2v3
· (p(1)x , p

(2)
x ).

If S = (e) in step 1,

– independently generate p
(1)
y ∼ U(0, y/v2) and p

(1)
z ∼ U(0, z/v3),

– set p
(2)
y = y/v2 − p(1)y , and p

(2)
z = z/v3 − p(1)z , and

– set F to be the sequence of the following 4 values:
x
v1
· (p(1)y p

(1)
z , p

(1)
y p

(2)
z , p

(2)
y p

(1)
z , p

(2)
y p

(2)
z ).

If S = (f) in step 1,

– independently generate p
(1)
x ∼ U(0, x/v1) and p

(1)
z ∼ U(0, z/v3),

– set p
(2)
x = x/v1 − p(1)x , and p

(2)
z = z/v3 − p(1)z , and

– set F to be the sequence of the following 4 values:
y
v2
· (p(1)x p

(1)
z , p

(1)
x p

(2)
z , p

(2)
x p

(1)
z , p

(2)
x p

(2)
z ).

If S = (g) in step 1,

– independently generate p
(1)
x ∼ U(0, x/v1) and p

(1)
y ∼ U(0, y/v2),

– set p
(2)
x = x/v1 − p(1)x , and p

(2)
y = y/v2 − p(1)y , and

– set F to be the sequence of the following 4 values:
z
v3
· (p(1)x p

(1)
y , p

(1)
x p

(2)
y , p

(2)
x p

(1)
y , p

(2)
x p

(2)
y ).

If S = (h) in step 1,

– independently generate p
(1)
x ∼ U(0, x/v1), p

(1)
y ∼ U(0, y/v2) and p

(1)
z ∼ U(0, z/v3),

– set p
(2)
x = x/v1 − p(1)x , p

(2)
y = y/v2 − p(1)y , and p

(2)
z = z/v3 − p(1)z

– set F to be the sequence of the following 8 values:

p
(1)
x p

(1)
y p

(1)
z , p

(1)
x p

(1)
y p

(2)
z , p

(1)
x p

(2)
y p

(1)
z , p

(1)
x p

(2)
y p

(2)
z ,

p
(2)
x p

(1)
y p

(1)
z , p

(2)
x p

(1)
y p

(2)
z , p

(2)
x p

(2)
y p

(1)
z , p

(2)
x p

(2)
y p

(2)
z .

3) Repeat steps 1–2 K times for a large value K (e.g., 100000).

The resulting set of K sequences F will be a sample from the density in (144). This set can then
be queried for any summary quantity of interest, such as quantiles, percentiles, means, medians
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and variances of the fractions covered in all the partially covered voxels.
Table 20: Algorithm for generating values of the frac-
tion covered, F , from the distribution in (144) in the
3-dimensional setting with 3 small dimensions (x < v1,
y < v2 and z < v3).

3.6 Summary

Table 21 contains the summary of the resulting variables of interest when a rectangular
3-dimensional object with edge lengths x, y, and z is placed inside a rectangular grid of
voxels, each with edge lengths v1, v2, and v3, with x ≥ v1, y ≥ v2, and z ≥ v3 (i.e., no small
dimensions) and with the center of the object randomly located inside a voxel at a point
(cx, cy, cz) (with 0 ≤ cx ≤ v1, 0 ≤ cy ≤ v2, and 0 ≤ cz ≤ v3). Tables 22 – 24 contain the
summaries equivalent to that in Table 21 for the cases of 1 small dimension (exactly one of
the following is true: x < v1, y < v2, or z < v3), 2 small dimensions (exactly two of the
following is true: x < v1, y < v2, or z < v3), and 3 small dimensions (x < v1, y < v2, and
z < v3).
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Sub- Proba- Reg- Fraction Covered # Voxels at
case bility ion Expres- Distri- Exp. Std. the Fraction

sion bution Value Dev. Covered

(a)
(

1− x
v1

)(
1− y

v2

)(
1− z

v3

)
1 xyz/(v1v2v3) n/a xyz

v1v2v3
0 1

(b)
(

1− x
v1

)(
1− y

v2

)(
z
v3

)
1 p

(1)
z · xy/(v1v2) U(0, xyz

v1v2v3
) xyz

2v1v2v3

xyz√
12v1v2v3

1

2 p
(2)
z · xy/(v1v2) U(0, xyz

v1v2v3
) xyz

2v1v2v3

xyz√
12v1v2v3

1

(c)
(

1− x
v1

)(
y
v2

)(
1− z

v3

)
1 p

(1)
y · xz/(v1v3) U(0, xyz

v1v2v3
) xyz

2v1v2v3

xyz√
12v1v2v3

1

2 p
(2)
y · xz/(v1v3) U(0, xyz

v1v2v3
) xyz

2v1v2v3

xyz√
12v1v2v3

1

(d)
(

x
v1

)(
1− y

v2

)(
1− z

v3

)
1 p

(1)
x · yz/(v2v3) U(0, xyz

v1v2v3
) xyz

2v1v2v3

xyz√
12v1v2v3

1

2 p
(2)
x · yz/(v2v3) U(0, xyz

v1v2v3
) xyz

2v1v2v3

xyz√
12v1v2v3

1

(e)
(

1− x
v1

)(
y
v2

)(
z
v3

)
1 p

(1)
y p

(1)
z (x/v1) Eq. (140) xyz

4v1v2v3

0.22xyz
v1v2v3

1

2 p
(1)
y p

(2)
z (x/v1) Eq. (140) xyz

4v1v2v3

0.22xyz
v1v2v3

1

3 p
(2)
y p

(1)
z (x/v1) Eq. (140) xyz

4v1v2v3

0.22xyz
v1v2v3

1

4 p
(2)
y p

(2)
z (x/v1) Eq. (140) xyz

4v1v2v3

0.22xyz
v1v2v3

1

(f)
(

x
v1

)(
1− y

v2

)(
z
v3

)
1 p

(1)
x p

(1)
z (y/v2) Eq. (140) xyz

4v1v2v3

0.22xyz
v1v2v3

1

2 p
(1)
x p

(2)
z (y/v2) Eq. (140) xyz

4v1v2v3

0.22xyz
v1v2v3

1

3 p
(2)
x p

(1)
z (y/v2) Eq. (140) xyz

4v1v2v3

0.22xyz
v1v2v3

1

4 p
(2)
x p

(2)
z (y/v2) Eq. (140) xyz

4v1v2v3

0.22xyz
v1v2v3

1

(g)
(

x
v1

)(
y
v2

)(
1− z

v3

)
1 p

(1)
x p

(1)
y (z/v3) Eq. (140) xyz

4v1v2v3

0.22xyz
v1v2v3

1

2 p
(1)
x p

(2)
y (z/v3) Eq. (140) xyz

4v1v2v3

0.22xyz
v1v2v3

1

3 p
(2)
x p

(1)
y (z/v3) Eq. (140) xyz

4v1v2v3

0.22xyz
v1v2v3

1

4 p
(2)
x p

(2)
y (z/v3) Eq. (140) xyz

4v1v2v3

0.22xyz
v1v2v3

1

(h)
(

x
v1

)(
y
v2

)(
z
v3

)
1 p

(1)
x p

(1)
y p

(1)
z Eq. (142) xyz

8v1v2v3

0.15xyz
v1v2v3

1

2 p
(1)
x p

(1)
y p

(2)
z Eq. (142) xyz

8v1v2v3

0.15xyz
v1v2v3

1

3 p
(1)
x p

(2)
y p

(1)
z Eq. (142) xyz

8v1v2v3

0.15xyz
v1v2v3

1

4 p
(1)
x p

(2)
y p

(2)
z Eq. (142) xyz

8v1v2v3

0.15xyz
v1v2v3

1

5 p
(2)
x p

(1)
y p

(1)
z Eq. (142) xyz

8v1v2v3

0.15xyz
v1v2v3

1

6 p
(2)
x p

(1)
y p

(2)
z Eq. (142) xyz

8v1v2v3

0.15xyz
v1v2v3

1

7 p
(2)
x p

(2)
y p

(1)
z Eq. (142) xyz

8v1v2v3

0.15xyz
v1v2v3

1

8 p
(2)
x p

(2)
y p

(2)
z Eq. (142) xyz

8v1v2v3

0.15xyz
v1v2v3

1

Table 19: The fraction of the voxel covered for each of the partially covered voxels, its
distribution, expected value and standard deviation, along with the number of voxels with
that fraction covered, for the case of 3 small dimensions in the 3-dimensional setting, i.e.,
when x < v1, y < v2 and z < v3.
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Variable Notation Expression Distribution Expected Standard
Value Deviation

# Fully Covered Voxels Nf Eq. (93) Eq. (94) Eq. (95) Sq. root of (96)

# Partially Covered Voxels Np Eq. (97) Eq. (98) Eq. (99) Sq. root of (100)

Fractions Covered
In Partially Covered see Tables 13 and 14
Voxels

Table 21: Summary of the variables of interest in the 3-dimensional setting for the case when
x ≥ v1, y ≥ v2, z ≥ v3.

Variable Notation Expres- Distribu- Expected Standard
sion tion Value Deviation

# Fully Covered Voxels Nf 0 fixed at 0 0 0
# Partially Covered Voxels Np Eq. (120) Eq. (121) Eq. (122) Sq. root of (123)
Fractions Covered
In Partially Covered see Tables 15 and 16
Voxels

Table 22: Summary of the variables of interest in the 3-dimensional setting for the case of 1
small dimension. The small dimension is denoted with z, so when x ≥ v1, y ≥ v2 and z < v3
.

Variable Notation Expres- Distribu- Expected Standard
sion tion Value Deviation

# Fully Covered Voxels Nf 0 fixed at 0 0 0
# Partially Covered Voxels Np Eq. (124) Eq. (125) Eq. (122) Sq. root of (126)
Fractions Covered
In Partially Covered see Tables 17 and 18
Voxels

Table 23: Summary of the variables of interest in the 3-dimensional setting for the case of 2
small dimensions, with the small dimensions denoted with y and z, i.e., x ≥ v1, y < v2 and
z < v3 .

Variable Notation Expres- Distribu- Expected Standard
sion tion Value Deviation

# Fully Covered Voxels Nf 0 fixed at 0 0 0
# Partially Covered Voxels Np Eq. (127) Eq. (128) Eq. (122) Sq. root of (129)
Fractions Covered
In Partially Covered see Tables 19 and 20
Voxels

Table 24: Summary of the variables of interest in the 3-dimensional setting for the case of 3
small dimensions, i.e., x < v1, y < v2 and z < v3 .
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Appendix A Expectation and Variance of fx

From (19) and (20), we have that

if mx < 0.5,

fx =

{
2kx with probability 2mx

2kx − 1 with probability 1− 2mx
(145)

while

if mx ≥ 0.5,

fx =

{
2kx with probability 2(1−mx)
2kx + 1 with probability 2mx − 1

(146)

Therefore, in the case when mx < 0.5, the expected value of fx is equal to

E(fx) = 2kx2mx + (2kx − 1)(1− 2mx)

= 4kxmx + 2kx − 1− 4kxmx + 2mx

= 2(kx +mx)− 1 = 2 · x/2
v1
− 1

=
x

v1
− 1 (147)

(By definition of kx and mx in Section 2.1, kx +mx = x/2
v1

.)
In the case when mx ≥ 0.5, the expected value of fx is equal to

E(fx) = 2kx2(1−mx) + (2kx + 1)(2mx − 1)

= 4kx − 4kxmx + 4kxmx + 2mx − 2kx − 1

= 2(kx +mx)− 1 = 2 · x/2
v1
− 1

=
x

v1
− 1 (148)

Thus, for any value of mx, E(fx) = x/v1 − 1.
For any value of mx, the distribution of fx is a two-point distribution. For any random

variable R that has a two-point distribution given by

R =

{
a with probability p
b with probability 1− p , (149)

the variance of R is given by

V ar(R) = E(R2)− (E(R))2 = a2p+ b2(1− p)− (ap+ b(1− p))2

= a2p+ b2(1− p)− a2p2 − 2abp(1− p)− b2(1− p)2

= a2p(1− p) + b2(1− p)(1− (1− p))− 2abp(1− p)
= a2p(1− p) + b2p(1− p)− 2abp(1− p) = p(1− p)(a− b)2 (150)

63



That is, the variance of a random variable with a two-point distribution is equal to the
product of the probabilities of the two values times the square of the difference of the two
values that the variable takes on.

Therefore, when mx < 0.5, the variance of fx is equal to

V ar(fx) = 2mx(1− 2mx)(2kx − (2kx − 1))2 = 2mx(1− 2mx) (151)

and when mx ≥ 0.5, the variance of the number of fully covered voxels is given by

V ar(fx) = 2(1−mx)(2mx − 1)(2kx + 1− 2kx)2 = 2(1−mx)(2mx − 1). (152)

An equivalent and more compact way to express the two cases above for any value of mx

between 0 and 1 is
V ar(fx) = 4 · |mx − 0.5| · (0.5− |mx − 0.5|). (153)
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Appendix B Conditional Distributions of p
(i)
x given fx

and p
(j)
y given fy

We first obtain the conditional distribution of p
(1)
x given fx. Recall from Section 2.1 that p

(1)
x

is defined as

p(1)x =

⌈
cx − x/2

v1

⌉
− cx − x/2

v1
=

⌈
qx −

x/2

v1

⌉
−
(
qx −

x/2

v1

)
, (154)

which can be re-written as

p(1)x = bx − (qx − h) = bx − qx + h (155)

where

h =
x/2

v1
, (156)

qx =
cx
v1
, (157)

and
bx = dqx − he . (158)

Thus, kx = bhc and mx = h− kx. As before, let

ax = bqx + hc . (159)

Consider first the case when mx < 0.5. Then fx can take on two values: 2kx − 1 and 2kx.
Consider first fx = 2kx−1, which occurs with probability 1−2mx (as shown in Section 2.1).

Thus, for a real number n, the conditional distribution function of p
(1)
x given fx = 2kx− 1 is

equal to

P (p(1)x ≤ n | fx = 2kx − 1) = P (p(1)x ≤ n ∩ fx = 2kx − 1)/P (fx = 2kx − 1)

= P (p(1)x ≤ n ∩ fx = 2kx − 1)/(1− 2mx) (160)

Now, as discussed in Section 2.1, fx = 2kx − 1 when ax = kx and bx = −kx + 1. Putting
this together with the definitions of ax and bx in (159) and (158), the numerator in (160) is
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equal to

P (p(1)x ≤ n ∩ fx = 2kx − 1) =

= P (bx − qx + h ≤ n ∩ ax = kx ∩ bx = −kx + 1) =

= P (−kx + 1− qx + h ≤ n ∩ kx ≤ qx + h < kx + 1 ∩ −kx < qx − h ≤ −kx + 1) =

= P ((h− kx) + 1− n ≤ qx ∩ kx − h ≤ qx < kx − h+ 1 ∩ h− kx < qx ≤ h− kx + 1) =

= P (mx + 1− n ≤ qx ∩ −mx ≤ qx < 1−mx ∩ mx < qx ≤ 1 +mx︸ ︷︷ ︸
mx>0 ⇒ −mx<mx and 1−mx<1+mx

) =

= P (1 +mx − n ≤ qx ∩ mx ≤ qx < 1−mx︸ ︷︷ ︸
mx<1−mx since mx<0.5

) =

= P (max(1 +mx − n,mx) ≤ qx < 1−mx)

=

{
P (1 +mx − n ≤ qx < 1−mx) if 1 +mx − n ≥ mx ⇒ n ≤ 1
P (mx ≤ qx < 1−mx) if 1 +mx − n < mx ⇒ n > 1

(161)

As shown in Section 2.1, qx ∼ U(0, 1). Thus, for the case n > 1, since 0 ≤ mx ≤ 1−mx ≤ 1
(the 2nd inequality is true since mx < 0.5),

P (mx ≤ qx < 1−mx) = 1−mx −mx = 1− 2mx. (162)

When n ≤ 1, 1 +mx − n ≥ 0 (and 1−mx ≤ 1, as before), so

P (1 +mx − n ≤ qx < 1−mx) =

{
1−mx − (1 +mx − n) 1 +mx − n < 1−mx

0 1 +mx − n ≥ 1−mx

=

{
n− 2mx n ≥ 2mx

0 n < 2mx
(163)

Thus, putting together (161)–(163),

P (p(1)x ≤ n ∩ fx = 2kx − 1) =


0 n < 2mx

n− 2mx 2mx ≤ n ≤ 1
1− 2mx n > 1

(164)

Hence,

P (p(1)x ≤ n | fx = 2kx − 1) = P (p(1)x ≤ n ∩ fx = 2kx − 1)/P (fx = 2kx − 1)

= P (p(1)x ≤ n ∩ fx = 2kx − 1)/(1− 2mx)

=


0 n < 2mx

n−2mx

1−2mx
2mx ≤ n ≤ 1

1 n > 1
(165)

The expression in (165) is the distribution function of a Uniform(2mx, 1) random variable,
so we have shown that when mx < 0.5,

p(1)x | fx = 2kx − 1 ∼ Uniform(2mx, 1). (166)
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Now, we turn to the conditional distribution of p
(1)
x given fx = 2kx (mx < 0.5 still). As

shown in Section 2.1, P (fx = 2kx) = 2mx, so we have

P (p(1)x ≤ n | fx = 2kx) = P (p(1)x ≤ n ∩ fx = 2kx)/P (fx = 2kx)

= P (p(1)x ≤ n ∩ fx = 2kx)/(2mx). (167)

We can derive P (p
(1)
x ≤ n ∩ fx = 2kx) using an argument equivalent to that used above to

derive P (p
(1)
x ≤ n ∩ fx = 2kx − 1), but it is easier to note that when mx < 0.5, the event

that fx = 2kx is the complement of the event that fx = 2kx − 1, so

P (p(1)x ≤ n ∩ fx = 2kx) = P (p(1)x ≤ n)− P (p(1)x ≤ n ∩ fx = 2kx − 1) (168)

Now, since, as shown in Section 2.1, p
(1)
x ∼ U(0, 1), we have

P (p(1)x ≤ n) =


0 n < 0
n 0 ≤ n ≤ 1
1 n > 1

(169)

so putting (169) together with (164), we have

P (p(1)x ≤ n ∩ fx = 2kx) =


0− 0 n < 0
n− 0 0 ≤ n ≤ 2mx

n− (n− 2mx) 2mx < n ≤ 1
1− (1− 2mx) n > 1

(170)

=


0 n < 0
n 0 ≤ n ≤ 2mx

2mx n > 2mx

(171)

Thus,

P (p(1)x ≤ n | fx = 2kx) = P (p(1)x ≤ n ∩ fx = 2kx)/(2mx)

=


0 n < 0
n

2mx
0 ≤ n ≤ 2mx

1 n > 2mx

(172)

The above is the distribution function of a Uniform(0, 2mx) random variable, so have shown
that when mx < 0.5,

p(1)x | fx = 2kx ∼ Uniform(0, 2mx). (173)

We derive the conditional distribution of p
(1)
x given fx for the case mx ≥ 0.5 by repeating

the arguments used above for the case mx < 0.5. When mx ≥ 0.5, fx can take on two values:
2kx + 1 and 2kx. Consider first fx = 2kx + 1, which occurs with probability 2mx − 1 (as
shown in Section 2.1). Thus, for a real number n, the conditional distribution function of

p
(1)
x given fx = 2kx + 1 is equal to

P (p(1)x ≤ n | fx = 2kx + 1) = P (p(1)x ≤ n ∩ fx = 2kx + 1)/P (fx = 2kx + 1)

= P (p(1)x ≤ n ∩ fx = 2kx + 1)/(2mx − 1). (174)
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Now, as discussed in Section 2.1, fx = 2kx + 1 when ax = kx + 1 and bx = −kx. Putting
this together with the definitions of ax and bx in (159) and (158), the numerator in (174) is
equal to

P (p(1)x ≤ n ∩ fx = 2kx + 1) =

= P (bx − qx + h ≤ n ∩ ax = kx + 1 ∩ bx = −kx) =

= P (−kx − qx + h ≤ n ∩ kx + 1 ≤ qx + h < kx + 2 ∩ −kx − 1 < qx − h ≤ −kx) =

= P ((h− kx)− n ≤ qx ∩ kx − h+ 1 ≤ qx < kx − h+ 2 ∩ h− kx − 1 < qx ≤ h− kx) =

= P (mx − n ≤ qx ∩ 1−mx ≤ qx < 2−mx ∩ mx − 1 < qx ≤ mx︸ ︷︷ ︸
mx<1 ⇒ mx−1<1−mx and mx<2−mx

) =

= P (mx − n ≤ qx ∩ 1−mx ≤ qx < mx︸ ︷︷ ︸
1−mx<mx since mx≥0.5

) =

= P (max(mx − n, 1−mx) ≤ qx < mx)

=

{
P (mx − n ≤ qx < mx) mx − n ≥ 1−mx

P (1−mx ≤ qx < mx) mx − n < 1−mx

=

{
P (mx − n ≤ qx < mx) n ≤ 2mx − 1
P (1−mx ≤ qx < mx) n > 2mx − 1

=


0 n < 0
n 0 ≤ n < 2mx − 1

2mx − 1 n > 2mx − 1
(175)

since qx ∼ U(0, 1) (the top 0 is due to the fact that if n < 0, mx − n > mx, so P (mx − n ≤
qx < mx) = 0). Hence,

P (p(1)x ≤ n | fx = 2kx + 1) = P (p(1)x ≤ n ∩ fx = 2kx + 1)/P (fx = kx + 1)

=


0 n < 0
n

2mx−1 0 ≤ n ≤ 2mx − 1

1 n > 2mx − 1
(176)

The expression in (176) is the distribution function of a Uniform(0, 2mx−1) random variable,
so we have shown that when mx ≥ 0.5,

p(1)x | fx = 2kx + 1 ∼ Uniform(0, 2mx − 1). (177)

Now, we derive the distribution of p
(1)
x given fx = 2kx (for mx ≥ 0.5). As shown in

Section 2.1, P (fx = 2kx) = 2(1−mx), so we have

P (p(1)x ≤ n | fx = 2kx) = P (p(1)x ≤ n ∩ fx = 2kx)/P (fx = 2kx)

= P (p(1)x ≤ n ∩ fx = 2kx)/(2(1−mx)). (178)

Furthermore, we note that when mx ≥ 0.5, the event that fx = 2kx is the complement of
the event that fx = 2kx + 1, so

P (p(1)x ≤ n ∩ fx = 2kx) = P (p(1)x ≤ n)− P (p(1)x ≤ n ∩ fx = 2kx + 1), (179)
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so putting togehter (169) together and (175), we have

P (p(1)x ≤ n ∩ fx = 2kx) =


0− 0 n < 0
n− n 0 ≤ n < 2mx − 1

n− (2mx − 1) 2mx − 1 ≤ n ≤ 1
1− (2mx − 1) n > 1

(180)

=


0 n < 2mx − 1

n− (2mx − 1) 2mx − 1 ≤ n ≤ 1
2(1−mx) n > 1

(181)

Thus,

P (p(1)x ≤ n | fx = 2kx) = P (p(1)x ≤ n ∩ fx = 2kx)/(2(1−mx))

=


0 n < 2mx − 1

n−(2mx−1)
2(1−mx)

2mx − 1 ≤ n ≤ 1

1 n > 1

(182)

The above is the distribution function of a Uniform(2mx − 1, 1) random variable, so have
shown that when mx ≥ 0.5,

p(1)x | fx = 2kx ∼ Uniform(2mx − 1, 1). (183)

Now, we derive the conditional distributions of p
(2)
x given fx. We first note that since, as

shown in Section 2.1,

p(2)x =
x

v1
− fx − p(1)x , (184)

the conditional distribution function of p
(2)
x given fx (for either range of mx or value of fx)

is equal to

P (p(2)x ≤ n | fx) = P (x/v1 − fx − p(1)x ≤ n | fx)

= P (p(1)x ≥ x/v1 − fx − n | fx)

= 1− P (p(1)x ≤ x/v1 − fx − n | fx). (185)

Therefore, in each case, the conditional distribution of p
(1)
x given fx derived above can be

used to derive the conditional distribution of p
(2)
x given fx. Recall also that by definition of

kx and mx in Section 2.1,

kx +mx =
x/2

v1
, (186)

so
2kx + 2mx =

x

v1
. (187)
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Then when mx < 0.5, from (185), using the result in (165), we have

P (p(2)x ≤ n | fx = 2kx − 1) = 1− P (p(1)x ≤ x/v1 − 2kx + 1− n | fx = 2kx − 1)

= 1−


0 x/v1 − 2kx + 1− n < 2mx

x/v1−2kx+1−n−2mx

1−2mx
2mx ≤ x/v1 − 2kx + 1− n ≤ 1

1 x/v1 − 2kx + 1− n > 1

= 1−


0 n > x/v1 − (2kx + 2mx) + 1

x/v1−(2kx+2mx)+1−n
1−2mx

x/v1 − 2kx ≤ n ≤ x/v1 − (2kx + 2mx) + 1

1 n < x/v1 − 2kx

= 1−


0 n > 1 (due

1−n
1−2mx

2mx ≤ n ≤ 1 to

1 n < 2mx (187))

=


0 n < 2mx

n−2mx

1−2mx
2mx ≤ n ≤ 1

1 n > 1
(188)

The above is the distribution function of a Uniform(2mx, 1) random variable, so we have
shown that when mx < 0.5,

p(2)x | fx = 2kx − 1 ∼ Uniform(2mx, 1), (189)

i.e., the conditional distribution of p
(2)
x given fx = 2kx− 1 is exactly the same as that of p

(1)
x

given fx = 2kx − 1.
Repeating the same argument for the case mx < 0.5 and fx = 2kx, we have from (185)

and (172)

P (p(2)x ≤ n | fx = 2kx) = 1− P (p(1)x ≤ x/v1 − 2kx − n | fx = 2kx)

= 1−


0 x/v1 − 2kx − n < 0

x/v1−2kx−n
2mx

0 ≤ x/v1 − 2kx − n ≤ 2mx

1 x/v1 − 2kx − n > 2mx

= 1−


0 n > x/v1 − 2kx

x/v1−2kx−n
2mx

x/v1 − (2kx + 2mx) ≤ n ≤ x/v1 − 2kx
1 n < x/v1 − (2kx + 2mx)

= 1−


0 n > 2mx (due

2mx−n
2mx

0 ≤ n ≤ 2mx to

1 n < 0 (187)

=


0 n < 0
n

2mx
0 ≤ n ≤ 2mx

1 n > 2mx

(190)

The above is the expression for the distribution function of a Uniform(0, 2mx) random vari-

able, so we have shown that when mx < 0.5, the conditional distribution of p
(2)
x given
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fx = 2kx is given by
p(2)x | fx = 2kx ∼ Uniform(0, 2mx), (191)

i.e., the same as that of p
(1)
x given fx = 2kx.

When mx ≥ 0.5 and fx = 2kx + 1, from (185) and (176), we have

P (p(2)x ≤ n | fx = 2kx + 1) = 1− P (p(1)x ≤ x/v1 − 2kx − 1− n | fx = 2kx + 1)

= 1−


0 x/v1 − 2kx − 1− n < 0

x/v1−2kx−1−n
2mx−1 0 ≤ x/v1 − 2kx − 1− n ≤ 2mx − 1

1 x/v1 − 2kx − 1− n > 2mx − 1

= 1−


0 n > x/v1 − 2kx − 1

x/v1−2kx−1−n
2mx−1 x/v1 − (2kx + 2mx) ≤ n ≤ x/v1 − 2kx − 1

1 n < x/v1 − (2kx + 2mx)

= 1−


0 n > 2mx − 1 (due

2mx−1−n
2mx−1 0 ≤ n ≤ 2mx − 1 to

1 n < 0 (187))

=


0 n < 0
n

2mx−1 0 ≤ n ≤ 2mx − 1

1 n > 2mx − 1
(192)

The above expression is the distribution function of a Uniform(0, 2mx− 1) random variable,

so we have shown that when mx ≥ 0.5, the conditional distribution of p
(2)
x given fx = 2kx +1

is given by
p(2)x | fx = 2kx + 1 ∼ Uniform(0, 2mx − 1), (193)

i.e., the same as that of p
(1)
x given fx = 2kx + 1.

Finally, when mx ≥ 0.5 and fx = 2kx, from (185) and (182), we have

P (p(2)x ≤ n | fx = 2kx) = 1− P (p(1)x ≤ x/v1 − 2kx − n | fx = 2kx)

= 1−


0 x/v1 − 2kx − n < 2mx − 1

x/v1−2kx−n−(2mx−1)
2(1−mx)

2mx − 1 ≤ x/v1 − 2kx − n ≤ 1

1 x/v1 − 2kx − n > 1

= 1−


0 n > x/v1 − (2kx + 2mx) + 1

x/v1−(2kx+2mx)−n+1
2(1−mx)

x/v1 − 2kx − 1 ≤ n ≤ x/v1 − (2kx + 2mx) + 1

1 n < x/v1 − 2kx − 1

= 1−


0 n > 1 (due

1−n
2(1−mx)

2mx − 1 ≤ n ≤ 1 to

1 n < 2mx − 1 (187)

=


0 n < 2mx − 1

n−(2mx−1)
2(1−mx)

2mx − 1 ≤ n ≤ 1

1 n > 1

(194)
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The above expression is the distribution function of a Uniform(2mx− 1, 1) random variable,

so we have shown that when mx ≥ 0.5, the conditional distribution of p
(2)
x given fx = 2kx is

given by
p(2)x | fx = 2kx ∼ Uniform(2mx − 1, 1), (195)

i.e., the same as that of p
(1)
x given fx = 2kx.

The conditional distributions of p
(1)
y and p

(2)
y given fy will be exactly analogous to those

of p
(1)
x and p

(2)
x given fx just derived, with the x quantities replaced by the y analogs.

Thus, in summary, we have the following results:

When mx < 0.5,
p(i)x | fx = 2kx − 1 ∼ U(2mx, 1), i = 1, 2 (196)

and
p(i)x | fx = 2kx ∼ U(0, 2mx), i = 1, 2. (197)

When mx ≥ 0.5,
p(i)x | fx = 2kx + 1 ∼ U(0, 2mx − 1), i = 1, 2 (198)

and
p(i)x | fx = 2kx ∼ U(2mx − 1, 1), i = 1, 2. (199)

When my < 0.5,
p(i)y | fy = 2ky − 1 ∼ U(2my, 1), i = 1, 2 (200)

and
p(i)y | fx = 2ky ∼ U(0, 2my), i = 1, 2. (201)

When my ≥ 0.5,
p(i)y | fy = 2ky + 1 ∼ U(0, 2my − 1), i = 1, 2 (202)

and
p(i)y | fy = 2ky ∼ U(2my − 1, 1), i = 1, 2. (203)
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Appendix C Generating From Distributions of fx, fy
and fz

C.1 Generating from an Arbitrary Discrete Distribution

In general, a sample from a discrete distribution of a random variable X given by

X =


x1 with probability p1
x2 with probability p2
... ...
xn with probability pn

(204)

can be done as follows:

1. Generate U ∼ Uniform(0,1)

2. Find i = 1, ..., n such that
i−1∑
j=0

pj ≤ U <
i∑

j=0

pj, (205)

with p0 ≡ 0.

3. Take the sample equal to xi.

To generate a string of values from this distribution, one can repeat steps 1–3 a number of
times.

This works because by construction, the eventX = xi is equivalent to the event
∑i−1

j=0 pj ≤
U <

∑i
j=0 pj, and since U ∼ Uniform(0,1),

P (X = xi) = P

(
i−1∑
j=0

pj ≤ U <
i∑

j=0

pj

)
=

i∑
j=1

pj −
i−1∑
j=0

pj = pi, (206)

as required.

C.2 Generating From Distributions of fx, fy and fz

As shown in Section 2.1, the distribution of fx is given as follows:

fx =

{
f
(1)
x with probability p(f

(1)
x )

f
(2)
x with probability p(f

(2)
x )

(207)

where

f (1)
x = 2kx,

f (2)
x =

{
2kx − 1 if mx < 0.5
2kx + 1 if mx ≥ 0.5

(208)
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p(f (1)
x ) =

{
2mx if mx < 0.5
2(1−mx) if mx ≥ 0.5

p(f (2)
x ) = 1− p(f (1)

x ). (209)

Thus, following Appendix C.1, a sample from the distribution of fx can be generated as
follows:

1. Generate U ∼ Uniform(0,1)

2. If U < p(f
(1)
x ), take the sample equal to f

(1)
x . Otherwise, take the sample equal to f

(2)
x .

Sampling from the distributions of fy and fz can be done in an equivalent way with x
quantities replaced by the y and z quantities, respectively.
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Appendix D Object Dimension and Voxel Dimension

This section gives detailed arguments and calculations relevant to the situation when the
object dimension is smaller than the corresponding voxel dimension (in one-dimensional
setting this translates to x < v1). In addition, this section shows proof of the claim that fx,
as defined in (1), is guaranteed to be non-negative when x ≥ v1.

D.1 Non-negativity of fx when x ≥ v1

We show that as long as x ≥ v1, i.e., as long as the object size in is no smaller than the voxel
size in one-dimensional setting, the expression for fx in (1) is guaranteed to be non-negative.
The number of fully covered voxels fx was defined there as

fx =

(⌊
cx + x/2

v1

⌋
−
⌈
cx − x/2

v1

⌉)
, (210)

and was shown in Section 2.1 to take on the following 3 possible values:

fx =


2kx if qx < min(1−mx,mx) or qx ≥ max(1−mx,mx)
2kx − 1 if mx ≤ qx < 1−mx

2kx + 1 if 1−mx ≤ qx < mx

(211)

Since kx ≥ 0, the only one of these values that can be negative is 2kx−1 in case kx = 0. This
happens if mx ≤ qx < 1−mx. Now, mx < 1−mx if and only if mx < 1/2, or equivalently, if

and only if x/2
v1

< 1/2 since kx = 0 implies that mx = x/2
v1

. That in turn is true if and only if
x < v1. Therefore, as long as x ≥ v1, the expression in (1) is guaranteed to be non-negative
for x ≥ v1.

D.2 Number of Partially Filled Voxels Np in 2-D

D.2.1 1 small dimension

In this case, one of the following is true:

x ≥ v1 and y < v2

x < v1 and y ≥ v2

Since the two dimensions are interchangeable, we will denote the small dimension with y
and the other dimension with x. Thus, x ≥ v1 and y < v2. In this case, there are two
subcases: 1 or 2 partially filled voxel lengths along the y dimension. As discussed in Section
2.1.3, the former subcase is equivalent to the event that my ≤ qy ≤ 1−my, while the latter
is equivalent to its complement, i.e., the event that 0 ≤ qy < my or 1 −my < qy ≤ 1. By
referring to Figure 4, it is easily seen that

Np =

{
fx + 2 if my ≤ qy ≤ 1−my

2(fx + 2) otherwise
(212)
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with qy = cy/v2, as before. As discussed at the end of Section 2.1.3, the two events occur

with probability 1− 2my and 2my, respectively. Moreover, when y < v2, my = y/2
v2
< 0.5, so

my = frac
(

y/2
v2

)
= y/2

v2
, leading to 2my = y/v2. Therefore, conditional on the value of fx,

the distribution of Np is given by

Np =

{
fx + 2 with probability 1− y/v2

2(fx + 2) with probability y/v2
(213)

This implies that the (unconditional) distribution of Np is given by

Np =


f
(1)
x + 2 with probability p(f

(1)
x ) · (1− y/v2)

f
(2)
x + 2 with probability p(f

(2)
x ) · (1− y/v2)

2(f
(1)
x + 2) with probability p(f

(1)
x ) · (y/v2)

2(f
(2)
x + 2) with probability p(f

(2)
x ) · (y/v2)

(214)

with f
(1)
x and f

(2)
x as defined in (22), and p(f

(1)
x ) and p(f

(2)
x ) as defined in (23).

Although the expected value of Np can be obtained directly from (214), it is easier to
obtain it from (212) using the formula for the iterated expectation (for any two random
variables A and B, E(A) = EB(E(A|B)) =

∑
bE(A|B = b)P (B = b); see [3] for more

detail):

E(Np) = E(Np given 1 partially filled voxel along y) · P (1 partially filled voxel along y)

+ E(Np given 2 partially filled voxels along y) · P (2 partially filled voxels along y)

= E(fx + 2)

(
1− y

v2

)
+ E(2(fx + 2)) · y

v2
= E(fx + 2)

(
1− y

v2
+ 2 · y

v2

)
= (E(fx) + 2)

(
1 +

y

v2

)
=

(
x

v1
− 1 + 2

)(
1 +

y

v2

)
=

=

(
x

v1
+ 1

)(
y

v2
+ 1

)
(215)

(recall that E(fx) = x/v1 − 1, as shown in Appendix A). Using the iterated expectation
again, we can obtain E(N2

p ), as follows:

E(N2
p ) = E(N2

p given 1 partially filled voxel along y) · P (1 partially filled voxel along y)

+ E(N2
p given 2 partially filled voxels along y) · P (2 partially filled voxels along y)

=
(
E(fx + 2)2

)(
1− y

v2

)
+
(
E(2(fx + 2))2

)
· y
v2

=
(
E(fx + 2)2

)(
1− y

v2
+ 4 · y

v2

)
=

(
E(fx + 2)2

)(
1 +

3y

v2

)
=
(
V ar(fx + 2) + (E(fx + 2))2

)(
1 +

3y

v2

)
=

(
V ar(fx) + (E(fx) + 2)2

)(
1 +

3y

v2

)
=

(
V ar(fx) +

(
x

v1
+ 1

)2
)(

1 +
3y

v2

)
(216)
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Thus, using (215) and (216), the variance of Np is equal to

V ar(Np) = E(N2
p )− (E(Np))

2

=

(
V ar(fx) +

(
x

v1
+ 1

)2
)(

1 +
3y

v2

)
−
(
x

v1
+ 1

)2(
1 +

y

v2

)2

= V ar(fx)

(
1 +

3y

v2

)
+

(
x

v1
+ 1

)2
(

1 +
3y

v2
−
(

1 +
y

v2

)2
)

= V ar(fx)

(
1 +

3y

v2

)
+

(
x

v1
+ 1

)2

·
(

1− y

v2

)
· y
v2

= 4 · |mx − 0.5| · (0.5− |mx − 0.5|) ·
(

1 +
3y

v2

)
+
y

v2

(
1− y

v2

)(
x

v1
+ 1

)2

(217)

since V ar(fx) = 4 · |mx − 0.5| · (0.5− |mx − 0.5|), as shown in Appendix A). The standard
deviation of Np is then simply the square root of the expression in (217).

D.2.2 2 small dimensions

In this case, we have x < v1 and y < v2, and there are 4 subcases: there can be 1 or 2
partially voxel lengths along each of the two dimensions. Therefore, the number of partially
covered voxels is given by

Np =


1 if mx ≤ qx ≤ 1−mx and my ≤ qy ≤ 1−my

2 if mx ≤ qx ≤ 1−mx and (0 ≤ qy < my or 1−my < qy ≤ 1)
2 if my ≤ qy ≤ 1−my and (0 ≤ qx < mx or 1−mx < qx ≤ 1)
4 if (0 ≤ qx < mx or 1−mx < qx ≤ 1) and (0 ≤ qy < my or 1−my < qy ≤ 1)

(218)
where qx = cx/v1 and qy = cy/v2, as before. Since qx and qy are independent and Uni-
form(0,1), and x < v1 implies that 2mx = x/v1 and y < v2 implies that 2my = y/v2, the
distribution of Np is given by

Np =


1 with probability

(
1− x

v1

)(
1− y

v2

)
2 with probability x

v1

(
1− y

v2

)
2 with probability y

v2

(
1− x

v1

)
4 with probability x

v1
· y
v2

(219)

or

Np =


1 with probability

(
1− x

v1

)(
1− y

v2

)
2 with probability x

v1

(
1− y

v2

)
+ y

v2

(
1− x

v1

)
4 with probability x

v1
· y
v2

(220)
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Hence, the expected value of the number of partially covered voxels in this case is given
by

E(Np) =

(
1− x

v1

)(
1− y

v2

)
+ 2 · y

v2

(
1− x

v1

)
+ 2 · x

v1

(
1− y

v2

)
+ 4 · x

v1

y

v2

=

(
x

v1
+ 1

)(
y

v2
+ 1

)
. (221)

Also,

E(N2
p ) =

(
1− x

v1

)(
1− y

v2

)
+ 4 · y

v2

(
1− x

v1

)
+ 4 · x

v1

(
1− y

v2

)
+ 16 · x

v1

y

v2

=

(
3x

v1
+ 1

)(
3y

v2
+ 1

)
, (222)

so the variance of Np is given by

V ar(Np) = E(N2
p )− (E(Np))

2

=

(
3x

v1
+ 1

)(
3y

v2
+ 1

)
−
(
x

v1
+ 1

)2(
y

v2
+ 1

)2

. (223)

The standard deviation is the square root of the expression in (223).

D.3 Number of Partially Filled Voxels Np in 3-D

D.3.1 1 small dimension

Since the three dimensions are interchangeable, we will denote the small dimension with z.
Thus, x ≥ v1, y ≥ v2 and z < v3 In this case, there are two subcases: 1 or 2 partially
filled voxel lengths along the z dimension. Following the results obtained in Section 2.1.3,
the former subcase is equivalent to the event that mz ≤ qz ≤ 1 − mz, while the latter is
equivalent to its complement, i.e., the event that 0 ≤ qz < mz or 1−mz < qz ≤ 1. Extending
the results in Appendix D.2, we have that

Np =

{
(fx + 2)(fy + 2) if mz ≤ qz ≤ 1−mz

2(fx + 2)(fy + 2) otherwise
(224)

with qz = cz/v3, as before. As discussed at the end of Section 2.1.3, the two events occur

with probability 1− 2mz and 2mz, respectively. Moreover, when z < v3, mz = z/2
v3
< 0.5, so

mz = frac
(

z/2
v3

)
= z/2

v3
, leading to 2mz = z/v3. Therefore, conditional on the values of fx

and fy, the distribution of Np is given by

Np =

{
(fx + 2)(fy + 2) with probability 1− z/v3
2(fx + 2)(fy + 2) with probability z/v3

(225)
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This implies that the (unconditional) distribution of Np is given by

Np =



(f
(1)
x + 2)(f

(1)
y + 2) with probability p(f

(1)
x ) · p(f (1)

y ) · (1− z/v3)
(f

(1)
x + 2)(f

(2)
y + 2) with probability p(f

(1)
x ) · p(f (2)

y ) · (1− z/v3)
(f

(2)
x + 2)(f

(1)
y + 2) with probability p(f

(2)
x ) · p(f (1)

y ) · (1− z/v3)
(f

(2)
x + 2)(f

(2)
y + 2) with probability p(f

(2)
x ) · p(f (2)

y ) · (1− z/v3)
2(f

(1)
x + 2)(f

(1)
y + 2) with probability p(f

(1)
x ) · p(f (1)

y ) · (z/v3)
2(f

(1)
x + 2)(f

(2)
y + 2) with probability p(f

(1)
x ) · p(f (2)

y ) · (z/v3)
2(f

(2)
x + 2)(f

(1)
y + 2) with probability p(f

(2)
x ) · p(f (1)

y ) · (z/v3)
2(f

(2)
x + 2)(f

(2)
y + 2) with probability p(f

(2)
x ) · p(f (2)

y ) · (z/v3)

(226)

with f
(1)
x and f

(2)
x as defined in (22), f

(1)
y and f

(2)
y as defined in (36), p(f

(1)
x ) and p(f

(2)
x ) as

defined in (23) and p(f
(1)
y ) and p(f

(2)
y ) as defined in (37).

Although the expected value of Np can be obtained directly from (226), it is easier to
obtain it from (224) using the formula for the iterated expectation (for any two random
variables A and B, E(A) = EB(E(A|B)) =

∑
bE(A|B = b)P (B = b); see [3] for more

detail):

E(Np) = E(Np given 1 partially filled voxel along z) · P (1 partially filled voxel along z)

+ E(Np given 2 partially filled voxels along z) · P (2 partially filled voxels along z)

= E[(fx + 2)(fy + 2)]

(
1− z

v3

)
+ E[2(fx + 2)(fy + 2)] · z

v3

= E[(fx + 2)(fy + 2)]

(
1− z

v3
+ 2 · z

v3

)
= E(fx + 2)E(fy + 2)

(
1 +

z

v3

)
=

(
x

v1
− 1 + 2

)(
y

v2
− 1 + 2

)(
1 +

z

v3

)
=

=

(
x

v1
+ 1

)(
y

v2
+ 1

)(
z

v3
+ 1

)
(227)

(Recall that fx and fy are independent, so E[(fx+2)(fy+2)] = E(fx+2)E(fy+2). Moreover,
E(fx) = x/v1 − 1, as shown in Appendix A and analogously, E(fy) = y/v2 − 1.)
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Using the iterated expectation again, we can obtain E(N2
p ), as follows:

E(N2
p ) = E(N2

p given 1 partially filled voxel along z) · P (1 partially filled voxel along z)

+ E(N2
p given 2 partially filled voxels along z) · P (2 partially filled voxels along z)

=
(
E((fx + 2)(fy + 2))2

)(
1− z

v3

)
+
(
E(2(fx + 2)(fy + 2))2

)
· z
v3

=
(
E((fx + 2)(fy + 2))2

)(
1− z

v3
+ 4 · z

v3

)
=

(
E(fx + 2)2

) (
E(fY + 2)2

)(
1 +

3z

v3

)
=

(
V ar(fx + 2) + (E(fx + 2))2

) (
V ar(fy + 2) + (E(fy + 2))2

)(
1 +

3z

v3

)
=

(
V ar(fx) + (E(fx) + 2)2

) (
V ar(fy) + (E(fy) + 2)2

)(
1 +

3z

v3

)
=

(
V ar(fx) +

(
x

v1
+ 1

)2
)(

V ar(fy) +

(
y

v2
+ 1

)2
)(

1 +
3z

v3

)
(228)

Thus, using (227) and (228), the variance of Np is equal to

V ar(Np) = E(N2
p )− (E(Np))

2

=

(
V ar(fx) +

(
x

v1
+ 1

)2
)
·

(
V ar(fy) +

(
y

v2
+ 1

)2
)
·
(

1 +
3z

v3

)
−

(
x

v1
+ 1

)2(
1 +

y

v2

)2(
1 +

z

v3

)2

=

(
4 · |mx − 0.5| · (0.5− |mx − 0.5|) +

(
x

v1
+ 1

)2
)

×

(
4 · |my − 0.5| · (0.5− |my − 0.5|) +

(
y

v2
+ 1

)2
)
·
(

1 +
3z

v3

)
−

(
x

v1
+ 1

)2(
1 +

y

v2

)2(
1 +

z

v3

)2

(229)

since V ar(fx) = 4 · |mx − 0.5| · (0.5− |mx − 0.5|), as shown in Appendix A, and V ar(fy) =
4 · |my − 0.5| · (0.5 − |my − 0.5|), by analogy. The standard deviation of Np is then simply
the square root of the expression in (229).

D.3.2 2 small dimensions

Since the three dimensions are interchangeable, we will denote the two small dimensions
with y and z. Thus, x ≥ v1, y < v2 and z < v3. In this case, there are 4 subcases: there can
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be 1 or 2 partially voxel lengths along each of the two small dimensions. Since x ≥ v1, there
are fx + 2 voxel lengths covered along the x dimension. Therefore, the number of partially
covered voxels is given by

Np =


fx + 2 if my ≤ qy ≤ 1−my and mz ≤ qz ≤ 1−mz

2(fx + 2) if my ≤ qy ≤ 1−my and (0 ≤ qz < mz or 1−mz < qz ≤ 1)
2(fx + 2) if mz ≤ qz ≤ 1−mz and (0 ≤ qy < my or 1−my < qy ≤ 1)
4(fx + 2) if (0 ≤ qy < my or 1−my < qy ≤ 1) and (0 ≤ qz < mz or 1−mz < qz ≤ 1)

(230)
where qy = cy/v2 and qz = cz/v3, as before. Since qy and qz are independent and Uni-
form(0,1), and y < v2 implies that 2my = y/v2 and z < v3 implies that 2mz = z/v3,
conditional on fx, the distribution of Np is given by

Np =


fx + 2 with probability

(
1− y

v2

)(
1− z

v3

)
2(fx + 2) with probability y

v2

(
1− z

v3

)
2(fx + 2) with probability z

v3

(
1− y

v2

)
4(fx + 2) with probability y

v2
· z
v3

(231)

or

Np =


fx + 2 with probability

(
1− y

v2

)(
1− z

v3

)
2(fx + 2) with probability y

v2

(
1− z

v3

)
+ z

v3

(
1− y

v2

)
4(fx + 2) with probability y

v2
· z
v3

(232)

Hence, the (unconditional) distribution of Np is given by

Np =



f
(1)
x + 2 with probability p(f

(1)
x ) ·

(
1− y

v2

)
·
(

1− z
v3

)
f
(2)
x + 2 with probability p(f

(2)
x ) ·

(
1− y

v2

)
·
(

1− z
v3

)
2(f

(1)
x + 2) with probability p(f

(1)
x ) ·

(
y
v2
·
(

1− z
v3

)
+ z

v3

(
1− y

v2

))
2(f

(2)
x + 2) with probability p(f

(2)
x ) ·

(
y
v2
·
(

1− z
v3

)
+ z

v3

(
1− y

v2

))
4(f

(1)
x + 2) with probability p(f

(1)
x ) · y

v2
· z
v3

4(f
(2)
x + 2) with probability p(f

(2)
x ) · y

v2
· z
v3

(233)

with f
(1)
x and f

(2)
x as defined in (22) and p(f

(1)
x ) and p(f

(2)
x ) as defined in (23).

From (232), using the iterated expectation formula, we have that the expected value of
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the number of partially covered voxels in this case is given by

E(Np) = E(fx + 2) ·
(

1− y

v2

)(
1− z

v3

)
+ E(2(fx + 2)) ·

(
y

v2

(
1− z

v3

)
+
z

v3

(
1− y

v2

))
+ E(4(fx + 2)) · y

v2
· z
v3

= E(fx + 2)

(
y

v2
+ 1

)(
z

v3
+ 1

)
=

(
x

v1
+ 1

)(
y

v2
+ 1

)(
z

v3
+ 1

)
. (234)

Also,

E(N2
p ) = E((fx + 2)2) ·

(
1− y

v2

)(
1− z

v3

)
+ E(4(fx + 2)2) ·

(
y

v2

(
1− z

v3

)
+
z

v3

(
1− y

v2

))
+ E(16(fx + 2)2) · y

v2
· z
v3

= E((fx + 2)2)

(
3y

v2
+ 1

)(
3z

v3
+ 1

)
= (V ar(fx) + (E(fx + 2))2)

(
3y

v2
+ 1

)(
3z

v3
+ 1

)
=

(
V ar(fx) +

(
x

v1
+ 1

)2
)(

3y

v2
+ 1

)(
3z

v3
+ 1

)
, (235)

so the variance of Np is given by

V ar(Np) = E(N2
p )− (E(Np))

2

=

(
V ar(fx) +

(
x

v1
+ 1

)2
)(

3y

v2
+ 1

)(
3z

v3
+ 1

)
(236)

−
(
x

v1
+ 1

)2(
y

v2
+ 1

)2(
z

v3
+ 1

)2

=

(
4 · |mx − 0.5| · (0.5− |mx − 0.5|) +

(
x

v1
+ 1

)2
)(

3y

v2
+ 1

)(
3z

v3
+ 1

)
−

(
x

v1
+ 1

)2(
y

v2
+ 1

)2(
z

v3
+ 1

)2

(237)

The standard deviation is the square root of the expression in (236).
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D.3.3 3 small dimensions

Here, we consider the case when x < v1, y < v2 and z < v3. There can be 1 or 2 partially
voxel lengths covered along each of the three small dimensions. Thus, there can be 1, 2, 4,
and 8 partially covered voxels. The number of partially covered voxels is given by

Np =



1 if mx ≤ qx ≤ 1−mx and my ≤ qy ≤ 1−my and mz ≤ qz ≤ 1−mz

2 if mx ≤ qx ≤ 1−mx and my ≤ qy ≤ 1−my and (0 ≤ qz < mz or 1−mz < qz ≤ 1)
2 if mx ≤ qx ≤ 1−mx and (0 ≤ qy < my or 1−my < qy ≤ 1) and mz ≤ qz ≤ 1−mz

2 if (0 ≤ qx < mx or 1−mx < qx ≤ 1) and my ≤ qy ≤ 1−my and mz ≤ qz ≤ 1−mz

4 if mx ≤ qx ≤ 1−mx and (0 ≤ qy < my or 1−my < qy ≤ 1) and
(0 ≤ qz < mz or 1−mz < qz ≤ 1)

4 if (0 ≤ qx < mx or 1−mx < qx ≤ 1) and my ≤ qy ≤ 1−my and
(0 ≤ qz < mz or 1−mz < qz ≤ 1)

4 if (0 ≤ qx < mx or 1−mx < qx ≤ 1) and (0 ≤ qy < my or 1−my < qy ≤ 1) and
mz ≤ qz ≤ 1−mz

8 (0 ≤ qx < mx or 1−mx < qx ≤ 1) and (0 ≤ qy < my or 1−my < qy ≤ 1) and
(0 ≤ qz < mz or 1−mz < qz ≤ 1)

(238)
where qx = cx/v1, qy = cy/v2 and qz = cz/v3, as before. Since qx, qy and qz are independent
and Uniform(0,1), and x < v1 implies that 2mx = x/v1, y < v2 implies that 2my = y/v2, and
z < v3 implies that 2mz = z/v3, the distribution of the number of partially covered voxels is
given by

Np =



1 with probability
(

1− x
v1

)(
1− y

v2

)(
1− z

v3

)
2 with probability

(
1− x

v1

)(
1− y

v2

)
z
v3

2 with probability
(

1− x
v1

)
y
v2

(
1− z

v3

)
2 with probability x

v1

(
1− y

v2

)(
1− z

v3

)
4 with probability

(
1− x

v1

)
y
v2

z
v3

4 with probability x
v1

(
1− y

v2

)
z
v3

4 with probability x
v1

y
v2

(
1− z

v3

)
8 with probability x

v1

y
v2

z
v3

(239)

or

Np =


1 with probability

(
1− x

v1

)(
1− y

v2

)(
1− z

v3

)
2 with probability

(
1− x

v1

)(
1− y

v2

)
z
v3

+
(

1− x
v1

)
y
v2

(
1− z

v3

)
+ x

v1

(
1− y

v2

)(
1− z

v3

)
4 with probability

(
1− x

v1

)
y
v2

z
v3

+ x
v1

(
1− y

v2

)
z
v3

+ x
v1

y
v2

(
1− z

v3

)
8 with probability x

v1

y
v2

z
v3
.

(240)
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The expected value of Np is given by

E(Np) =

(
1− x

v1

)(
1− y

v2

)(
1− z

v3

)
+ 2 ·

((
1− x

v1

)(
1− y

v2

)
z

v3
+

(
1− x

v1

)
y

v2

(
1− z

v3

)
+
x

v1

(
1− y

v2

)(
1− z

v3

))
+ 4 ·

((
1− x

v1

)
y

v2

z

v3
+
x

v1

(
1− y

v2

)
z

v3
+
x

v1

y

v2

(
1− z

v3

))
+ 8 · x

v1

y

v2

z

v3

=

(
x

v1
+ 1

)(
y

v2
+ 1

)(
z

v3
+ 1

)
. (241)

Also,

E(N2
p ) =

(
1− x

v1

)(
1− y

v2

)(
1− z

v3

)
+ 4 ·

((
1− x

v1

)(
1− y

v2

)
z

v3
+

(
1− x

v1

)
y

v2

(
1− z

v3

)
+
x

v1

(
1− y

v2

)(
1− z

v3

))
+ 16 ·

((
1− x

v1

)
y

v2

z

v3
+
x

v1

(
1− y

v2

)
z

v3
+
x

v1

y

v2

(
1− z

v3

))
+ 64 · x

v1

y

v2

z

v3

=

(
3x

v1
+ 1

)(
3y

v2
+ 1

)(
3z

v3
+ 1

)
, (242)

so the variance of Np is given by

V ar(Np) = E(N2
p )− (E(Np))

2

=

(
3x

v1
+ 1

)(
3y

v2
+ 1

)(
3z

v3
+ 1

)
−
(
x

v1
+ 1

)2(
y

v2
+ 1

)2(
z

v3
+ 1

)2

.

(243)

The standard deviation is the square root of the expression in (243).
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Appendix E Distributions of X − bXc and dXe −X for

a Continuous Random Variable X

E.1 General Case

We will first obtain the general formulas for the distributions of the random variables Y =
X − bXc and Z = dXe −X, where X is an arbitrary continuous random variable, and dXe
and bXc are the ceiling and the floor of X, respectively. Clearly, both Y and Z can only
take on values between 0 and 1.

Let C denote the set of all possible values of bXc. Then for 0 ≤ k ≤ 1, the distribution
function (df) of Y , denoted by FY , is given by

FY (k) = P (Y ≤ k) = P (X − bXc ≤ k) =
∑
c∈C

P (X − bXc ≤ k ∩ bXc = c)

=
∑
c∈C

P (X ≤ k + c ∩ bXc = c) =
∑
c∈C

P (X ≤ k + c ∩ c ≤ X < c+ 1)

=
∑
c∈C

P (c ≤ X ≤ k + c) =
∑
c∈C

(FX(k + c)− FX(c)) , (244)

where FX denotes the df of X. Thus, for 0 ≤ k ≤ 1, the probability density function (pdf)
of Y = X − bXc, denoted by fY , is equal to

fY (k) =
d

dk
FY (k) =

∑
c∈C

fX(k + c), (245)

where fX denotes the pdf of X (i.e., fX(k) = d
dk
FX(k)). For other values of k, the value of

the pdf of Y is 0.
Now, let D denote the set of all possible values of dXe. Then for 0 ≤ k ≤ 1, the

distribution function of Z, denoted by FZ , is given by

FZ(k) = P (Z ≤ k) = P (dXe −X ≤ k) =
∑
d∈D

P (dXe −X ≤ k ∩ dXe = d)

=
∑
d∈D

P (X ≥ d− k ∩ dXe = d) =
∑
d∈D

P (X ≥ d− k ∩ d− 1 < X ≤ d)

=
∑
d∈D

P (d− k ≤ X ≤ d) =
∑
d∈D

(FX(d)− FX(d− k)) . (246)

Thus, for 0 ≤ k ≤ 1, the pdf of Z = dXe −X, denoted by fZ , is equal to

fZ(k) =
d

dk
FZ(k) =

∑
d∈D

fX(d− k), (247)

where, as before, fX denotes the pdf of X (for other values of k, the pdf of Z is 0).
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E.2 Uniform Case

E.2.1 Y = X − bXc

Suppose X ∼ Uniform(a, b) with a and b any real numbers so that a < b. That is,

fX(x) =
1

b− a
for a ≤ x ≤ b (248)

and 0 otherwise. The set C, as defined in Appendix E.1, is given by C = (bac, bac+1, ..., bbc−
1, bbc). From (245), we have

fY (k) =

bbc∑
c=bac

fX(k + c). (249)

According to (248),

fX(k + c) =
1

b− a
for a ≤ k + c ≤ b (250)

and 0 otherwise, or

fX(k + c) =
1

b− a
for a− k ≤ c ≤ b− k (251)

and 0 otherwise.
Now, bac+1 ≥ a−k since 1+k ≥ a−bac as 1+k ≥ 1 ≥ a−bac. So, for any c ≥ bac+1, we
always have that c ≥ a−k. Also, bbc−1 ≤ b−k since k−1 ≤ b−bbc as k−1 ≤ 0 ≤ b−bbc.
So, for any c ≤ bbc− 1, we always have that c ≤ b− k. Therefore, for c = bac+ 1, ..., bbc− 1,

fX(k + c) =
1

b− a
. (252)

Thus, from (249),

fY (k) = fX (bac+ k) +

bbc−1∑
c=bac+1

(
1

b− a

)
+ fX(bbc+ k)

= fX (bac+ k) + fX(bbc+ k) +
1

b− a
(bbc − 1− bac) (253)

Now,

fX(bac+ k) =

{
0 bac+ k < a ⇔ k < a− bac
1

b−a bac+ k ≥ a ⇔ k ≥ a− bac (254)

and

fX(bbc+ k) =

{
0 bbc+ k > b ⇔ k > b− bbc
1

b−a bbc+ k ≤ b ⇔ k ≤ b− bbc (255)

Therefore, from (253), (254) and (255), we have the following 4 cases:

if k < a− bac and k < b− bbc,
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fY (k) = 0 +
1

b− a
+

1

b− a
(bbc − 1− bac)

=
1

b− a
(bbc − bac) (256)

if k < a− bac and k > b− bbc,

fX−bXc(k) = 0 + 0 +
1

b− a
(bbc − 1− bac)

=
1

b− a
(bbc − bac − 1) (257)

if k ≥ a− bac and k < b− bbc,

fY (k) =
1

b− a
+

1

b− a
+

1

b− a
(bbc − 1− bac)

=
1

b− a
(bbc − bac+ 1) (258)

if k ≥ a− bac and k ≥ b− bbc,

fY (k) =
1

b− a
+ 0 +

1

b− a
+

1

b− a
(bbc − 1− bac)

=
1

b− a
(bbc − bae) (259)

Hence, putting the 4 cases together, we have

fY (k) =


1

b−a (bbc − bac) 0 ≤ k ≤ min (a− bac, b− bbc)
1

b−a (bbc − bac+ 1) a− bac ≤ k ≤ b− bbc
1

b−a (bbc − bac − 1) b− bbc ≤ k ≤ a− bac
1

b−a (bbc − bac) max (a− bac, b− bbc) ≤ k ≤ 1

(260)

Thus, if a− bac ≤ b− bbc,

fY (k) =


1

b−a (bbc − bac) 0 ≤ k ≤ a− bac
1

b−a (bbc − bac+ 1) a− bac ≤ k ≤ b− bbc
1

b−a (bbc − bac) b− bbc ≤ k ≤ 1
(261)

while if b− bbc ≤ a− bac,

fY (k) =


1

b−a (bbc − bac) 0 ≤ k ≤ b− bbc
1

b−a (bbc − bac − 1) b− bbc ≤ k ≤ a− bac
1

b−a (bbc − bac) a− bac ≤ k ≤ 1
(262)
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E.2.2 Z = dXe −X

Suppose X ∼ Uniform(a, b) with a and b any real numbers so that a < b. The set D, as
defined in Appendix E.1, is given by D = (dae, dae+ 1, ..., dbe− 1, dbe). From (247), we have

fZ(k) =

dbe∑
d=dae

fX(d− k). (263)

According to (248),

fX(d− k) =
1

b− a
for a ≤ d− k ≤ b (264)

and 0 otherwise, or

fX(d− k) =
1

b− a
for a+ k ≤ d ≤ b+ k (265)

and 0 otherwise.
Now, dae+1 ≥ a+k since 1−k ≥ a−dae as 1−k ≥ 0 ≥ a−dae. So, for any d ≥ dae+1, we
always have that d ≥ a+k. Also, dbe−1 ≤ b+k since k+1 ≥ dbe− b as k+1 ≥ 1 ≥ dbe− b.
So, for any d ≤ bbc−1, we always have that d ≤ b+k. Therefore, for d = dae+ 1, ..., dbe−1,

fX(d− k) =
1

b− a
. (266)

Thus, from (263),

fZ(k) = fX (dae − k) +

dbe−1∑
d=dae+1

(
1

b− a

)
+ fX(dbe − k)

= fX (dae − k) + fX(dbe − k) +
1

b− a
(dbe − 1− dae) (267)

Now,

fX(dae − k) =

{
0 dae − k < a ⇔ k > dae − a
1

b−a dae − k ≥ a ⇔ k ≤ dae − a (268)

and

fX(dbe − k) =

{
0 dbe − k > b ⇔ k < dbe − b
1

b−a dbe − k ≤ b ⇔ k ≥ dbe − b (269)

Therefore, from (267), (268) and (269), we have the following 4 cases:

if k < dae − a and k < dbe − b,

fZ(k) =
1

b− a
+ 0 +

1

b− a
(dbe − 1− dae)

=
1

b− a
(dbe − dae) (270)
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if k < dae − a and k > dbe − b,

fZ(k) =
1

b− a
+

1

b− a
+

1

b− a
(dbe − 1− dae)

=
1

b− a
(dbe − dae+ 1) (271)

if k ≥ dae − a and k < dbe − b,

fZ(k) = 0 + 0 +
1

b− a
(dbe − 1− dae)

=
1

b− a
(dbe − dae − 1) (272)

if k ≥ dae − a and k ≥ dbe − b,

fZ(k) = 0 +
1

b− a
+

1

b− a
(dbe − 1− dae)

=
1

b− a
(dbe − dae) (273)

Hence, putting the 4 cases together, we have

fZ(k) =


1

b−a (dbe − dae) 0 ≤ k ≤ min (dae − a, dbe − b)
1

b−a (dbe − dae − 1) dae − a ≤ k ≤ dbe − b
1

b−a (dbe − dae+ 1) dbe − b ≤ k ≤ dae − a
1

b−a (dbe − dae) max (dae − a, dbe − a) ≤ k ≤ 1

(274)

Thus, if dae − a ≤ dbe − b,

fZ(k) =


1

b−a (dbe − dae) 0 ≤ k ≤ dae − a
1

b−a (dbe − dae − 1) dae − a ≤ k ≤ dbe − b
1

b−a (dbe − dae) dbe − b ≤ k ≤ 1
(275)

while if dbe − b ≤ dae − a,

fZ(k) =


1

b−a (dbe − dae) 0 ≤ k ≤ dbe − b
1

b−a (dbe − dae+ 1) dbe − b ≤ k ≤ dae − a
1

b−a (dbe − dae) dae − a ≤ k ≤ 1
(276)
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E.2.3 Special Uniform Case

The special case of the result derived in Appendix E.2.1 is when a− bac = b− bbc, while a
special case of the result derived in Appendix E.2.2 is when dae− a = dbe− b. In the former
case, we have that bbc−bac = b− a, while in the latter case, we have that dbe−dae = b− a,
in other words, in both cases, the length of the interval over which the random variable X
is distributed is an integer.

In the case of the random variable Y = X − bXc, equations (261) and (262) combine to
yield

fY (k) = 1 0 ≤ k ≤ 1, (277)

that is, Y is Uniform(0,1). Analogously, in the case of the random variable Z = dXe −X,
equations (275) and (276) combine to yield

fZ(k) = 1 0 ≤ k ≤ 1, (278)

so, Z, too, is Uniform(0,1). (Note that the case when a and b are both integers is a special
case of the special case, so for X ∼ Uniform(a, b) with a and b both integers, Y and Z are
both Uniform(0,1).)

E.3 Distributions of p
(1)
x and p

(2)
x when x < v1

When x < v1, there are 2 partially filled voxels if and only if 0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1

(otherwise, there is only 1 partially filled voxel whose fraction covered is fixed at x/v1). The
fraction covered in the voxel on the left is given by

p(1)x =

⌈
qx −

x/2

v1

⌉
−
(
qx −

x/2

v1

)
(279)

while the fraction covered in the voxel on the right is given by

p(2)x =

(
qx +

x/2

v1

)
−
⌊
qx +

x/2

v1

⌋
(280)

for 0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1.

For ease of notation, let

R =

(
qx −

x/2

v1

)
(281)

and

S =

(
qx +

x/2

v1

)
, (282)

so p
(1)
x and p

(2)
x become

p(1)x = dRe −R ≡ Z (283)

and
p(2)x = S − bSc ≡ Y (284)
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in keeping with notation introduced in Appendix E.1. Since the distributions of p
(1)
x and p

(2)
x

are only relevant when 0 ≤ qx <
x/2
v1

or 1− x/2
v1

< qx ≤ 1, the goal is to obtain the conditional

distributions of Z = dRe −R and Y = S − bSc given 0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1.

E.3.1 Distribution of p
(1)
x

First, we will obtain the conditional distributions of R given 0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1

and use the results we obtained in Appendix E.1 to derive the conditional distribution of
Z = dRe−R. Recall that qx is Uniform(0,1), so the probability of qx being in any subinterval
of (0,1) is just the length of that subinterval. With that in mind, the conditional distribution
function of R is given by

P (R ≤ k | 0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1) =

P
(
qx − x/2

v1
≤ k | 0 ≤ qx ≤ x/2

v1
or 1− x/2

v1
≤ qx ≤ 1

)
=

P
(
qx ≤ k + x/2

v1
| 0 ≤ qx ≤ x/2

v1
or 1− x/2

v1
≤ qx ≤ 1

)
=

P
(
qx ≤ k + x/2

v1
∩
(

0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1

))
/P
(

0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1

)
=

P
(
qx ≤ k + x/2

v1
∩
(

0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1

))
/
(

x
v1

)
. (285)

The numerator P
(
qx ≤ k + x/2

v1
∩
(

0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1

))
evaluates to

P
(

0 ≤ qx ≤ k + x/2
v1

)
0 ≤ k + x/2

v1
< x/2

v1

P
(

0 ≤ qx ≤ x/2
v1

)
x/2
v1
≤ k + x/2

v1
< 1− x/2

v1

P
(

1− x/2
v1
≤ qx ≤ k + x/2

v1

)
1− x/2

v1
≤ k + x/2

v1
≤ 1

(286)

Thus, the conditional distribution function of R given 0 ≤ qx ≤ x/2
v1

or 1 − x/2
v1
≤ qx ≤ 1 is

equal to

P (R ≤ k | 0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1) =

=


(
k + x/2

v1

)
/
(

x
v1

)
−x/2

v1
≤ k < 0

1/2 0 ≤ k < 1− x/v1
(k − 1 + x/v1) /

(
x
v1

)
1− x/v1 ≤ k ≤ 1− x/2

v1

(287)

Taking a derivative of the conditional distribution function with respect to k, we have that
the conditional density of R is given by

fR(k) = v1/x, −x/2
v1
≤ k < 0 or 1− x

v1
≤ k ≤ 1− x/2

v1
(288)

and 0 otherwise.
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Now, using the notation introduced in Appendix E.1, according to (247), we have that

the density of p
(1)
x = Z = dRe −R is equal to

fZ(k) = fR(−k) + fR(1− k) (289)

for 0 ≤ k ≤ x/v1 (recall that the upper bound on Z is now x/v1 rather than 1, as the entire
area covered by the two partially covered voxels is equal to x/v1, so the area covered by
either of the two partially covered voxels cannot exceed this value).

Let A and B denote the sets of values k for which fR(−k) and fR(1 − k), respectively,
are nonzero, and let A and B denote the complements of A and B, respectively (these are
the sets of k for which the corresponding densities are 0). Then

fZ(k) =


2v1/x k ∈ A and k ∈ B
v1/x k ∈ A and k ∈ B
v1/x k ∈ A and k ∈ B
0 otherwise

(290)

Now, the set A is given by

A =

{
k : −x/2

v1
≤ −k ≤ 0 or 1− x

v1
≤ k ≤ 1− x/2

v1

}
=

{
k : 0 ≤ k ≤ x/2

v1
or

x/2

v1
− 1 ≤ k ≤ x

v1
− 1

}
(291)

The inequality x/2
v1
− 1 ≤ k ≤ x/v1 − 1 is irrelevant since x < v1, implying that x/v1 − 1 < 0

while k must be nonnegative, so

A =

{
k : 0 ≤ k ≤ x/2

v1

}
. (292)

Thus, the complement of A is given by

A =

{
k :

x/2

v1
≤ k ≤ 1

}
. (293)

The set B is given by

B =

{
k : −x/2

v1
≤ 1− k ≤ 0 or 1− x

v1
≤ 1− k ≤ 1− x/2

v1

}
=

{
k : 1 ≤ k ≤ 1 +

x/2

v1
or

x/2

v1
≤ k ≤ x

v1

}
(294)

The inequality 1 ≤ k ≤ 1 + x/2
v1

is irrelevant since k ≤ x/v1 < 1, so

B =

{
k :

x/2

v1
≤ k ≤ x

v1

}
. (295)

The complement of B is given by

B =

{
k : 0 ≤ k <

x/2

v1
or

x

v1
< k ≤ 1

}
. (296)
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Note that A and B are mutually exclusive. The intersection of A and B is equal to{
k : 0 ≤ k ≤ x/2

v1

}
. The intersection of A and B is equal to

{
k : x/2

v1
≤ k ≤ x

v1

}
. Thus,

from (290), we have that the density of Z = p
(1)
x is given by

fZ(k) = v1/x, 0 ≤ k ≤ x/v1, (297)

i.e., p
(1)
x is distributed Uniform(0, x/v1).

E.3.2 Distribution of p
(2)
x

We will follow analogous arguments to those used to derive the distribution of p
(1)
x in the

previous section. We first obtain the conditional distribution of S given 0 ≤ qx ≤ x/2
v1

or

1− x/2
v1
≤ qx ≤ 1 and use the results we obtained in Appendix E.1 to derive the conditional

distribution of Y = S − bSc. The conditional distribution of S is given by

P (S ≤ k | 0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1) =

P
(
qx + x/2

v1
≤ k | 0 ≤ qx ≤ x/2

v1
or 1− x/2

v1
≤ qx ≤ 1

)
=

P
(
qx ≤ k − x/2

v1
| 0 ≤ qx ≤ x/2

v1
or 1− x/2

v1
≤ qx ≤ 1

)
=

P
(
qx ≤ k − x/2

v1
∩
(

0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1

))
/
(

x
v1

)
. (298)

The numerator P
(
qx ≤ k − x/2

v1
∩
(

0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1

))
evaluates to

P
(

0 ≤ qx ≤ k − x/2
v1

)
0 ≤ k − x/2

v1
< x/2

v1

P
(

0 ≤ qx ≤ x/2
v1

)
x/2
v1
≤ k − x/2

v1
< 1− x/2

v1

P
(

1− x/2
v1
≤ qx ≤ k − x/2

v1

)
1− x/2

v1
≤ k − x/2

v1
≤ 1

(299)

Thus, the conditional distribution function of S given 0 ≤ qx ≤ x/2
v1

or 1 − x/2
v1
≤ qx ≤ 1 is

equal to

P (S ≤ k | 0 ≤ qx ≤ x/2
v1

or 1− x/2
v1
≤ qx ≤ 1) =

=


(
k − x/2

v1

)
/
(

x
v1

)
x/2
v1
≤ k ≤ x

v1

1/2 x
v1
≤ k < 1

(k − 1) /
(

x
v1

)
1 ≤ k ≤ 1 + x/2

v1

(300)

Taking the derivative with respect to k, we have that the density of S is given by

fS(k) = v1/x,
x/2

v1
≤ k ≤ x

v1
or 1 ≤ k ≤ 1 +

x/2

v1
(301)
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and 0 otherwise.
Now, using the notation introduced in Appendix E.1, according to (245), we have that

the density of p
(2)
x = Y = S − bSc is equal to

fY (k) = fS(k) + fS(1 + k) (302)

for 0 ≤ k ≤ x/v1 (recall that the upper bound on Y is now x/v1 rather than 1, as the entire
area covered by the two partially covered voxels is equal to x/v1, so the area covered by
either of the two partially covered voxels cannot exceed this value).

Let A and B denote the sets of values k for which fS(k) and fS(1 + k), respectively, are
nonzero, and let A and B denote the complements of A and B, respectively (these are the
sets of k for which the corresponding densities are 0). Then

fY (k) =


2v1/x k ∈ A and k ∈ B
v1/x k ∈ A and k ∈ B
v1/x k ∈ A and k ∈ B
0 otherwise

(303)

Now, the set A is given by

A =

{
k :

x/2

v1
≤ k ≤ x

v1
or 1 ≤ k ≤ 1 +

x/2

v1

}
(304)

The inequality 1 ≤ k ≤ 1 + x/2
v1

is irrelevant since k ≤ x/v1 < 1, so

A =

{
k :

x/2

v1
≤ k ≤ x

v1

}
. (305)

Thus, the complement of A is given by

A =

{
k : 0 ≤ k <

x/2

v1
or

x

v1
≤ k ≤ 1

}
. (306)

The set B is given by

B =

{
k :

x/2

v1
≤ 1 + k ≤ x

v1
or 1 ≤ 1 + k ≤ 1 +

x/2

v1

}
=

{
k :

x/2

v1
− 1 ≤ k ≤ x

v1
− 1 or 0 ≤ k ≤ x/2

v1

}
(307)

The inequality x/2
v1
− 1 ≤ k ≤ x

v1
− 1 is irrelevant since x < v1, implying that x/v1 − 1 < 0

while k must be nonnegative, so

B =

{
k : 0 ≤ k ≤ x/2

v1

}
. (308)

The complement of B is given by

B =

{
k :

x/2

v1
< k ≤ 1

}
. (309)
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Note that A and B are mutually exclusive. The intersection of A and B is equal to{
k : x/2

v1
≤ k ≤ x

v1

}
. The intersection of A and B is equal to

{
k : 0 ≤ k ≤ x/2

v1

}
. Thus,

from (303), we have that the density of Y = p
(2)
x is given by

fY (k) = v1/x, 0 ≤ k ≤ x/v1, (310)

i.e., p
(2)
x is also distributed Uniform(0, x/v1).
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Appendix F Distribution of the Product of n Indepen-

dent Uniform(0, bi) Random Variables

F.1 General case

Let Xi’s, i = 1, ..., n, be independently distributed, each with Uniform(0,bi) distribution,
where each bi is a known real value greater than 0. We want to obtain the distribution of
the product of Xi’s, i.e., the random variable

W =
n∏

i=1

Xi. (311)

Define Ti = Xi/bi for each i = 1, ..., n. Then Ti’s are independently and identically dis-
tributed as Uniform(0,1) random variables. Let

W ∗ =
n∏

i=1

Ti =

(
n∏

i=1

Xi

)
/

(
n∏

i=1

bi

)
= W/

(
n∏

i=1

bi

)
(312)

and V = −log W ∗. Then

V = −log W ∗ = −log

(
n∏

i=1

Ti

)
=

n∑
i=1

(−log Ti). (313)

Now, for Ti ∼ U(0, 1), it is a standard result that −log Ti has an Exponential(1) distribution
[3]. Note that the random variables −log Ti are independent from one another since Ti’s are
independent from one another. Furthermore, it is another standard result that the sum of n
independently distributed Exponential(1) random variables is distributed as Gamma(n, 1)
[3], so V ∼ Gamma(n, 1), that is, the probability density function (pdf) of V is given by

gV (v) =
1

(n− 1)!
e−vvn−1, v > 0 (314)

and 0 otherwise. Now, W ∗ = e−V , so its distribution function, denoted by GW , is given by

GW ∗(w
∗) = P (W ∗ ≤ w∗) = P (e−V ≤ w∗) = P (V ≥ −log w∗) = 1−GV (−log w∗), (315)

where GV denotes the distribution function of V . Thus, the probability density function of
W ∗ is equal to

gW ∗(w
∗) =

d

dw∗
GW ∗(w

∗) =
d

dw∗
(1−GV (−log w∗)) =

1

w∗
· gV (−log w∗)

=
1

w∗
· 1

(n− 1)!
w∗(−log w∗)n−1 =

(−log w∗)n−1

(n− 1)!
(316)

for 0 ≤ w∗ ≤ 1 and 0 otherwise.
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Now, since our variable of interest, W , is related to W ∗ via

W =

(
n∏

i=1

bi

)
·W ∗, (317)

the distribution function of W can be obtained as follows:

GW (w) = P (W ≤ w) = P

((
n∏

i=1

bi

)
·W ∗ ≤ w

)
= P

(
W ∗ ≤ w/

(
n∏

i=1

bi

))
= GW ∗

(
w/

(
n∏

i=1

bi

))
.

(318)
Taking a derivative of GW (w) with respect to w gives the pdf of W :

gW (w) =
d

dw
GW (w) =

(
n∏

i=1

bi

)−1
gW ∗

(
w/

(
n∏

i=1

bi

))

=

(
n∏

i=1

bi

)−1
(−log (w/

∏n
i=1 bi))

n−1

(n− 1)!

=

(
n∏

i=1

bi

)−1
(log (

∏n
i=1 bi)− log w)

n−1

(n− 1)!
(319)

for 0 ≤ w ≤
∏n

i=1 bi and 0 otherwise.
While we can obtain the expectation E(W ) directly from the density of W by computing

the integral

E(W ) =

∫ ∏n
i=1 bi

0

w · gW (w) dw, (320)

(this can be done by establishing a recursive relationship in terms of n), it is much easier to
use the fact that Xi’s are independent and therefore

E(W ) = E

(
n∏

i=1

Xi

)
=

n∏
i=1

E(Xi) =
n∏

i=1

(
bi
2

)
=

(
n∏

i=1

bi

)
/2n. (321)

Similarly, while the variance can be computed directly from the density of W by first obtain-
ing E(W 2) (also using recursion to obtain the integral for arbitrary n) and then calculating
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V ar(W ) = E(W 2)− [E(W )]2, it is easier to again use the independence of Xi’s and X2
i ’s:

V ar(W ) = V ar

(
n∏

i=1

Xi

)
= E

( n∏
i=1

Xi

)2
− [E( n∏

i=1

Xi

)]2
= E

(
n∏

i=1

X2
i

)
−

(
n∏

i=1

E(Xi)

)2

=
n∏

i=1

E(X2
i )−

(
n∏

i=1

E(Xi)

)2

=
n∏

i=1

(
V ar(Xi) + (E(Xi))

2)− n∏
i=1

(E(Xi))
2

=
n∏

i=1

(
b2i
12

+
b2i
4

)
−

n∏
i=1

b2i
4

=
n∏

i=1

b2i
3
−

n∏
i=1

b2i
4

=

∏n
i=1 b

2
i

3n
−
∏n

i=1 b
2
i

4n

=
4n − 3n

12n
·

n∏
i=1

b2i . (322)

The standard deviation is therefore equal to

σW =
√
V ar(W ) =

√
4n − 3n

2n3n/2
·

n∏
i=1

bi. (323)

Finally, the 100×pth percentile of W is the value k such that

p = P (W ≤ k) =

∫ k

0

gW (w) dw =

∫ k

0

(
n∏

i=1

bi

)−1
(log (

∏n
i=1 bi)− log w)n−1

(n− 1)!
dw (324)

with 0 ≤ p ≤ 1. In particular, the median, or the 50th percentile of W , is the value k so
that the integral in (324) evaluates to 0.5. This is easiest to compute numerically.

F.2 Special case: n = 2

For n = 2, the density of W in (316) becomes

gW (w) =
1

b1b2
· (log(b1b2)− log w) , 0 ≤ w ≤ b1b2 (325)

and 0 otherwise. The probability that W is in the interval (A,B) with 0 ≤ A < B ≤ b1b2 is
therefore equal to

P (A ≤ W ≤ B) =

∫ B

A

(b1b2)
−1(log(b1b2)− log w) dw

=
1

b1b2

[
(log(b1b2)(B − A) + w(1− log w) |BA

]
=

1

b1b2
· (log(b1b2) + 1) · (B − A) +

1

b1b2
· (A log A−B log B).

(326)
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with 0 · log 0 ≡ 0.

When b1 = b2 = 1, the density of W is then equal to

gW (w) = −log w, 0 ≤ w ≤ 1 (327)

and 0 otherwise. In this special case, the probability that W is in the interval (A,B) with
0 ≤ A < B ≤ 1 is hence equal to

P (A ≤ W ≤ B) = B(1− log B)− A(1− log A) (328)

with 0 · log 0 ≡ 0.

Also, according to (321) and (323), the expectation E(W ) = (b1b2)/4 and the standard

deviation σW =
√
16−9
(4·3 · (b1b2) =

√
7

12
· (b1b2) = 0.2205 · (b1b2). In the special case when

b1 = b2 = 1, the expectation and standard deviation are then equal to 1/4 and 0.2205,
respectively.

The median of W is the value k that solves the equation

0.5 = P (W ≤ k) = k(log(b1b2) + 1− log k)/(b1b2). (329)

When b1 = b2 = 1, the solution is k = 0.1867. Thus, the solution for arbitrary values of b1
and b2 is k · (b1b2) = 0.1867 · (b1b2).

F.3 Special case: n = 3

For n = 3, the density of W in (316) becomes

gW (w) =
(log(b1b2b3)− log w)2

2(b1b2b3)
, 0 ≤ w ≤ b1b2b3 (330)

and 0 otherwise. When b1 = b2 = b3 = 1, the density of W is given by

gW (w) =
(log w)2

2
, 0 ≤ w ≤ 1 (331)

and 0 otherwise. In this special case, the probability that W is in the interval (A,B) with
with 0 ≤ A < B ≤ 1 is then equal to

P (A ≤ W ≤ B) =

∫ B

A

(log w)2

2
dw =

w

2

(
(log w − 1)2 + 1

)
|BA

=
B ((log B − 1)2 + 1)− A ((log A− 1)2 + 1)

2
(332)

Note that the expression in (332) is equal to the probability P (A ≤ W ∗ ≤ B), with W ∗

defined in (312), since W ∗ is the product of Uniform(0,1) random variables. Moreover, from
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(312), we also have that W = (b1b2b3)W
∗. Therefore, using the expression in (332), we can

get the probability P (A ≤ W ≤ B) for arbitrary b1, b2 and b3, with 0 ≤ A < B ≤ b1b2b3, as
follows:

P (A ≤ W ≤ B) = P (A ≤ (b1b2b3)W
∗ ≤ B) = P

(
A

b1b2b3
≤ W ∗ ≤ B

b1b2b3

)
=

B
b1b2b3

((log(B/b1b2b3)− 1)2 + 1)− A
b1b2b3

((log(A/b1b2b3 − 1)2 + 1)

2

=
B ((log B − log(b1b2b3)− 1)2 + 1)− A ((log A− log(b1b2b3)− 1)2 + 1)

2(b1b2b3)

(333)

Also, according to (321) and (323), the expectation E(W ) = (b1b2b3)/8 and the standard

deviation σW =

√
(64−27

(23
√
27
· (b1b2b3) = 0.1463 · (b1b2b3). The median of W is the value k that

solves the equation

0.5 = P (W ≤ k) =
k

2(b1b2b3)

(
(log k − log(b1b2b3)− 1)2 + 1

)
, (334)

For b1 = b2 = b3 = 1, the solution is k = 0.069. The solution for arbitrary values of b1, b2
and b3 is therefore k · (b1b2b3) = 0.069 · (b1b2b3).

F.4 Distribution of a Positive Constant Times the Product of Two
Independent Uniform(0, bi) Random Variables

In this section, we derive the distribution of the random variable Y = cX1X2 where c
is a positive constant and X1 and X2 are independently distributed Uniform(0, b1) and
Uniform(0, b2), respectively. In Appendix F.2, we obtained the distribution of W = X1X2,
given in (325). Now, to obtain the distribution of Y = cW , we note that the distribution
function of Y is given by

GY (y) = P (Y ≤ y) = P (cW ≤ y) = P (W ≤ y/c) = GW (y/c), (335)

so the pdf of Y is given by

gY (y) =
d

dy
GY (y) =

1

c
· gW (y/c). (336)

Putting together (336) and (325), we have that the pdf of Y is given by

gY (y) =
1

cb1b2
· (log(cb1b2)− log y) , 0 ≤ y ≤ cb1b2 (337)
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and 0 otherwise. We can also use the result in (326) to get the expression for P (A ≤ Y ≤ B)
with 0 ≤ A < B ≤ cb1b2:

P (A ≤ Y ≤ B) = P (A ≤ cW ≤ B) = P (A/c ≤ W ≤ B/c)

=
1

cb1b2
· (log(cb1b2) + 1) · (B − A) +

1

cb1b2
· (A log A−B log B)

(338)

with 0 · log 0 ≡ 0, as before.

From the results for E(W ) and σW in Appendix F.2, we have that the expected value of
Y is equal to

E(Y ) = E(cW ) = cE(W ) = (cb1b2)/4, (339)

the median is equal to 0.1867 · (cb1b2), and the standard deviation of Y is equal to

σY = σcW = cσW = 0.2205 · (cb1b2). (340)
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Appendix G Variance of Np in 3-Dimensional Setting

(No Small Dimensions)

In 3-dimensional setting, when x ≥ v1, y ≥ v2 and z ≥ v3 (i.e., no small dimensions), the
number of partially covered voxels Np is given by

Np = 8 + 4(fx + fy + fz) + 2(fxfy + fxfz + fyfz). (341)

Therefore, the variance of Np is equal to

V ar(Np) = 16 [V ar(fx) + V ar(fy) + V ar(fz)] + 4 [V ar(fxfy) + V ar(fxfy) + V ar(fyfz)] (342)

+ 16 [C(fx, fxfy) + C(fx, fxfz) + C(fy, fxfy) + C(fy, fyfz) + C(fz, fxfz) + C(fz, fyfz)]

+ 8 [C(fxfy, fxfz) + C(fxfy, fyfz) + C(fxfz, fyfz)] , (343)

where C(A,B) denotes the covariance of the random variables A and B (we have to account
for several covariances because several of the summands in (341) are not independent).

The variances of fx, fy and fz were derived in (25), (39) and (89), respectively. The
variance of the product fxfy was derived in (46) in Section 2.2.1. The expressions for the
variances of fxfz and fyfz are exactly analogous. Using the independence of fx and fy, we
have the covariance C(fx, fxfy) given by

C(fx, fxfy) = E(f 2
xfy)− E(fx)E(fxfy) = E(f 2

x)E(fy)− E(fx)E(fx)E(fy)

=
(
E(f 2

x)− (E(fx))2
)
E(fy) = V ar(fx)E(fy). (344)

The expressions for the other 5 covariances of one of fx, fy or fz with a pair of these are
analogous. The covariance of fxfy and fxfz is given by

C(fxfy, fxfz) = E(f 2
xfyfz)− E(fxfy)E(fxfz) = E(f 2

x)E(fy)E(fz)− E(fx)E(fy)E(fx)E(fz)

=
(
E(f 2

x)− (E(fx))2
)
E(fy)E(fz) = V ar(fx)E(fy)E(fz). (345)

The covariances of the other two sets of pairs are analogous. Putting together everything
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together, we have that the variance of Np is given by

V ar(Np) = 16 (V ar(fx) + V ar(fy) + V ar(fz))

+ 4 (V ar(fxfy) + V ar(fxfz) + V ar(fyfz))

+ 8 (V ar(fx)E(fy)E(fz) + V ar(fy)E(fx)E(fz) + V ar(fz)E(fx)E(fy))

+ 16 (V ar(fx)(E(fy) + E(fz)) + V ar(fy)(E(fx) + E(fz)) + V ar(fz)(E(fx) + E(fy)))

= 4 (V ar(fxfy) + V ar(fxfz) + V ar(fyfz))

+ 8 [V ar(fx)(2E(fy) + 2E(fz) + E(fy)E(fz) + 2)

+ V ar(fy)(2E(fx) + 2E(fz) + E(fx)E(fz) + 2)

+ V ar(fz)(2E(fx) + 2E(fy) + E(fx)E(fz) + 2)]

= 4 (V ar(fxfy) + V ar(fxfz) + V ar(fyfz))

+ 8

[
V ar(fx)

(
y

v2

z

v3
+
y

v2
+
z

v3
− 1

)
+ V ar(fy)

(
x

v1

z

v3
+
x

v1
+
z

v3
− 1

)
(346)

+ V ar(fz)

(
x

v1

y

v2
+
x

v1
+
y

v2
− 1

)]
.
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