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1 Introduction

In imaging, a partial volume effect refers to the problem that arises when the system res-
olution is low relative to the size of the object being imaged [1, 2]. In this setting, it is
likely that most voxels occupied by the object are only partially covered, and that the frac-
tion covered in each voxel is low. This makes the problem of object detection and image
segmentation very difficult because the algorithms designed for these purposes rely on pixel
summary statistics. If the area covered by the object is very low in relatively many of the
total number of the voxels the object occupies, these summary statistics may not reach the
thresholds required to detect this object. It is thus important to understand the extent of
partial volume effect for a given object size and resolution. This technical report focuses
on rectangular objects and derives the probability distributions for three quantities for such
objects: 1) the number of fully covered voxels, 2) the number of partially covered voxels, and
3) the fractions of the total volume covered in the partially covered voxels. The derivations
are first shown for 2-D settings and are then extended to 3-D settings.

2 Two-Dimensional Setting

Assume a rectangular object, such as a sheet, with edge length x along the first dimension
and edge length y along the second dimension, randomly centered at location (¢, c,) in a
voxel. Assume rectangular voxels, each with edge length v; along the first dimension and
edge length v, along the second dimension.

The quantities x,y,v; and vy are assumed to be known. On the other hand, randomly
placing the center of the object in a voxel means that the location (¢, ¢,) is a random vari-
able with the Uniform distribution on a rectangular region (0,v;) x (0, vy). This is equivalent
to sampling ¢, ~ Uniform(0, v;) and ¢, ~ Uniform(0, vs) independently from each other
(for details on the Uniform distribution, as well as other basic probability concepts discussed
throughout this report, see [3]). The object is assumed to fit completely in the field of view,



so the total number of voxels covered by the object is given by xy/(vivy), with the non-
integer part reflecting the fact that some voxels are only partially covered.

We are interested in the following quantities:

1. The number of fully covered voxels, denoted by N; from here on,

2. The number of partially covered voxels, denoted by NV, from here on,
3. The fractions that are covered in the partially covered voxels.

Randomness in the center location (c,,c,) induces randomness in all three of the above
quantities of interest. We will obtain the distributions of these random variables.

2.1 1-D Preliminaries

We first obtain the expressions for the variables of interest outlined above in terms of
T, Y, V1, V2, gy and ¢,

2.1.1 Number of Fully Covered Voxels

Consider first the number of fully and partially covered voxels in a 1-dimensional setting
where a strip of length = along the first dimension is centered at location ¢, inside a 1-
dimensional interval of length vy, with 0 < ¢, < v;. This is illustrated in Figure 1. Note that
if the object length is smaller than the voxel size, i.e., < vy, the number of fully covered
voxels is identically 0, and there is nothing further to consider in that case in terms of the
number of fully covered voxels.

Therefore, from here on, we assume that x > v;. The number of fully covered voxels in

this case is given by / /
[ 2 Cpx — T 2
= (=) .

where |n| and [n] denote the floor and the ceiling of a real number n, respectively. Note that
fz is guaranteed to be non-negative when x > vy (this is shown in Appendix D.1), which is
our standing assumption in this document, unless noted otherwise. The fully covered voxels
are shown in orange in Figure 1.

Let us examine the possible values that f, can take on. Letting ¢, = c¢,/v1, we can

rewrite (1) as
fo = {qmtx—/QJ—[qx—x—/ﬂ = a; — by, (2)

(%1 (%1

ay = {qz + x—/ZJ (3)

(%1

with
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Figure 1: One-dimensional setting. A strip of length x is centered at c,. The orange part
of the strip shows the fully covered voxels, while the blue parts show the partially covered
voxels.



and
by = [qx - x—/ﬂ | ()

Since ¢, ~ Uniform(0,v;), we have 0 < ¢, < vy, so 0 < ¢, < 1. This means that a, and
b, can each take on two consecutive integer values. At ¢, = 0, a, will take on the smaller
integer value, which we will denote by k,, so

x/2

B )

U1

ko

At g, = 1, on the other hand, a, will take on the larger value of k, + 1.

Now, a, = k, as long as

2
qw+%<k:p+1 (6)

(there is no need for the lower bound because ¢, + % > k, by the definition of k, ), implying

that
0o < ks +1—£”U/12 - kz+1—(v/ J—I—fmc(x/ )) (7)
= k1l k, —frac(x/Q) —1—f7“ac($/2), 8)

U1 (%1
where frac(n) is the fractional part of a real number n, that is,

n—|n| n>0
[n]—n n<0

frac(n) = {
To simplify the notation, we will define

o= frac (2) =22, (10)

(%1

Clearly, 0 < m, < 1. Thus, we have that

] kg ifg, <1—m,
“l“_{kxﬂ ifg,>1—m (11)

Now, at ¢, = 0,

-1 12

(%1 U1

so b, is equal to either —k, or —k, + 1. An analogous calculation to that for a, shows that

] ks if g, < m,
bx_{ —ke +1 i g >my (13)
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Putting (11) and (13) together, we have that

ke — (—ky) = 2k, if ¢ < min(1 —mg, m,)
B ) ke — (ke +1) =2k, — 1 ifm, <g, <1—m,
Jo= s = by = ke +1—(—ky) =2k, +1 if1—my, <q, <mg (14)

ky+1—(=k,+1)=2k, if ¢z > max(1l —m,,m,)

Now,
my < 1—m, (15)
when
m, < 0.5, (16)
so (14) translates to the following:
if m, <0.5,
R A )
and
if m, > 0.5,
(B, e e

Now, since ¢, ~ Uniform(0,v;) and ¢, = ¢, /vy, it follows that ¢, ~ Uniform(0,1). The
probability of ¢, being in any subinterval of (0,1) is therefore equal to the length of that
subinterval. This means that f, has the following distribution:

if m, <0.5,
£o= 2k, with probability 2m,, (19)
T | 2k, —1  with probability 1 — 2m,,
while
if m, > 0.5,
£ 2k, with probability 2(1 — m,,) (20)
T 2k, +1 with probability 2m, — 1

Thus, f, always has a two-point distribution that depends on the values of = and v; (as these
determine whether m, is below or above 0.5). Note also that the probabilities associated
with each of the two points depend only on the absolute distance that m, is from 0.5, so for
example, the probabilities are the same when m, = 0.3 and when m, = 0.7 since these two
values are the same distance from 0.5.

It will become convenient in later sections to express (19) and (20) as follows:

. £ with probability p(fcgl)) (21)
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where

1Y =
2k, — 1 ifm, < 0.5
@ _ x
£ = {Qk 1 ifm, >05 (22)
(1) . 2my lfm$<05
P(f7) = { 201 —m,)  ifm, > 0.5
p(fP) = 1-p(f"). (23)

It can be easily shown (see Appendix A for derivation) that for both ranges of m,, the
expected (mean) value of f, is given by

B(f) =~ —1. (24)
U1
Thus, the mean number of fully covered voxels is the total number of covered voxels (with
the decimal part reflecting the voxels that are partially covered) minus 1. As derived in
Appendix A, the variance of f, depends on the distance that the value of m, is from 0.5.
Specifically, the variance of f, is given by

Var(f,) =4-|m; —0.5]-(0.5— |m, — 0.5]) (25)

for 0 <m, < 1.

Figure 2 shows the variance as a function of the distance that the value of m, is from
0.5. At m, = 0 and m, = 0.5, the variance of the number of fully covered voxels is 0 since in
those cases the number of fully covered voxels takes on the same value regardless of where
the object is centered. On the other hand, the variance is at its maximum value of 0.25
for m, = 0.25 and m, = 0.75 since in those cases, the two values for each of the two-point
distributions are equally likely, making the number of fully covered voxels most variable.

The standard deviation of f, is simply the square root of the variance of f,, i.e., it is
given by

or, = 2+/|my — 0.5 - (0.5 — |m, — 0.5]). (26)

2.1.2 Partially Covered Voxels: Number and Fractions Covered

We can now turn our attention to the partially covered voxels. We still assume that = > vy,
with a brief discussion devoted to the case when x < v; at the end of the section. In the
1-dimensional setting, there are 2 partially covered voxels (shown in blue in Figure 1), one
on the left of the interval of fully covered voxels, with the fraction of the voxel that is covered

equal to
Pl = P — x/ﬂ B i/ {qu — IU—/QW — (Qx — x—/2> (27)

U1 U1 1 (%1
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Figure 2: Variance of f, as a function of |m, — 0.5, or the distance between m, and 0.5

and one on the right of the interval of fully covered voxels, with the fraction of the voxel
that is covered equal to

N na rm +x/2J - (qx + xv—/12> - \f]m + a:_/2J : (28)

U1 U1 U1

(As a check, the sum f, + p;” + pg) is equal to x /vy, the total number of voxels of length
v covered by a 1-d strip of length z, with the non-integer part reflecting the fact that some
voxels are only partially covered. Note that this implies that once f, and pg}) are known,

pg) can be obtained as

PP =afvi — fo— i (29)
rather than using the expression in (28)).

Now, since ¢, ~ Uniform(0,1), (qm — zv—/f) is a Uniform random variable on the interval

(—wv—/f, 1— a:v_/12)’ while (q373 + xv—/12> is a Uniform random variable on the interval (mv—/lz, 1+ xv—/f)
Thus, the length of the interval (the distance between the endpoints) for both random
variables is 1. In Appendix E.2.3, it is shown that for for any Uniform random variable
R with an integer-valued interval length, the distribution of both [R] — R and R — | R] is
Uniform(0,1). Thus, both P and p) have a Uniform(0,1) distribution.

Let us briefly examine the number of partially covered voxels in the case when = < v;.
In that situation, there are two cases to consider. The first is when the entire object fits
into one partially filled voxel. In this case, the fraction covered in the partially filled voxel
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is equal to the length of the object scaled to the voxel size, i.e., x/vy. This happens if two
conditions are satisﬁed ¢e —x/2 >0 and ¢, + x/2 < vy, which translates to the condition
that x/2 < ¢, < 1—=£. Since ¢, ~ U(0, 1), this occurs with probability 1 —z /vy, or 1 —2m,,

because in this case m, = mv/ 2

The other subcase of the Case when x < vy is that the object partially covers 2 voxels.
Since this occurs if 0 < ¢, < v1 orif 1 — x/ 2 < ¢, < 1, the probability of this occurring is
x /vy, or 2m,. The fractions covered in the two partially covered voxels are still defined as
n (27) and (28). However, their distributions are no longer Uniform(0,1) since the fraction
covered in either voxel is now at most z/v; < 1 rather than 1. As shown in Appendix
E.3, p,&” and pf) is each distributed Uniform(0, x/v1). The expected value for the fraction
covered in each of the 2 voxels is therefore xy—/f = my, so together they are expected to cover

x/v1, as required. The standard deviation for the fraction covered in each of the 2 voxels is
x/v1
12 : . o1 . . .
Thus, when x < vy, with probability 1 — 2m,., there is one partially covered voxel with

the fraction covered fixed at x /vy, and with probability 2m,, there are two partially covered
voxels with the fractions covered as given in (27) and (28) and distributions, expected values
and standard deviations as described in the previous paragraph.

2.1.3 Remaining 1-D Preliminaries

If we consider the analogous 1-dimensional setting along the second dimension with the strip
of length y centered at ¢, inside a 1-dimensional interval of length v,, the relevant quantities
and results are analogous to those obtained earlier. In particular, if y < vy, f, = 0. Thus,

assuming y > vs,
cy +y/2 cy —Yy/2
fy —_ \‘ Y / J o ’V Y / ’ (30)
V2 )

with the following two-point distribution:

if m, <0.5,
! 2k, with probability 2m,, (31)
Y 2k —1 with probability 1 — 2m,,
while
it m, > 0.5,
f 2k, with probability 2(1 — m,) (32)
Y 2k: +1 with probability 2m, — 1
where /2
)
ko= |22 33
=22 (33)
and 5 5
my = frac <%> = vz _ Y- (34)
(%) V2
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The distributions in (31) and (32) can be alternatively expressed as follows:

. D with probability p(fM) (35)
y y(z) with probability p(ff))

where
=
k; -1 if m, <0.5
2 _— Y
Ty { oy 1 ifmy > 05 (36)
(1) _ My if my < 0.5
pfy7) { 2(1—m,) ifm,>05
p(f?) = 1=p(fiM). (37)
Analogously to those of f;, the expected value and the variance of f, are given as follows:
B(f) =L -1 (39)
and
Var(f,) =4-|my, —0.5]- (0.5 —|m, — 0.5]) (39)

for 0 < m, < 1. The standard deviation of f, is simply the square root of the variance of
fy, i.e., it is given by

o, = 2y/my — 0.5] - (0.5 — [m, — 0.5). (40)
In addition, still assuming y > v,
cy —Y/2 Cy —Y/2
p;l) _ [ v — Y/ -‘ Y y/ ’ (41)
(%) (%)

and 12 12
@ _G@ty/2 |GFy/a| (1) 49
e | VR (42)

with each following a Uniform(0,1) distribution, analogously to p ) and pz .

If y < vy, analogously to the derivations in the x dimension, with probability 1 — 2m,,
there is one partially covered voxel with the fraction covered fixed at y/vy, and with proba-
bility 2m,,, there are two partially covered voxels with the fractions covered as given in (41)
and (42). Each of the two fractions is distributed Uniform(0, y/v2) and has expected value

and standard deviation equal to y/ = m, and %, respectively.

2.2 Back to 2-D

We can now derive the number of fully covered voxels Ny, the number of partially covered
voxels N, and the fractions covered in the partially covered voxels in the 2-dimensional
setting.



2.2.1 Number of Fully Covered Voxels N,

In the 2-dimensional setting, the number of fully covered voxels, denoted by Ny, is equal
to the product of the numbers of the fully covered voxels for each of the two dimensions.
Thus, if £ < vy or y < vy, the number of fully covered voxels is identically equal to 0, leaving
nothing further to consider. We will, therefore, assume that both x > v, and y > vy for the
remainder of this section, which yields

N (e e

(fr and f, are defined in (1) and (30), respectively). These N; voxels are shown in orange
in Figure 3. Since for given values of z,v;,y, and vy, f; and f, each takes on two possible
values, and Ny is the product of f, and f,, it follows that /N, takes on 4 possible values that
are all possible combinations of f, and f, values.

Moreover, f, and f, are independent due to the independence of ¢, and ¢,, so the prob-
abilities associated with each of the 4 possible values of Ny are simply the products of the
corresponding probabilities in the 1-dimensional setting. Specifically, the distribution of N
is given as follows:

WD with probability p(f£) - p(£{")
(1), £2) with probabilit My (s

v ( { p ility p(fa ) - p(fy”) (44)
s @ ¢ with probabilit Ay pfY
&g probability p(fz") - p(fy")
) 152) with probability p( 552)) -p(f: y(z))

with £ and f{¥ as defined in (22), M and f{? as defined in (36), p(fél)) and p(ff)) as
defined in (23), and p( 351)) and p( 152)) as defined in (37).

Since Ny = f,f, and f, and f, are independent, the expected value of Ny in the 2-
dimensional setting is given by

B(Ny) = B(fafy) = BB = (£ - 1) - (£ 1)) (45)

The independence of f, and f, also implies the independence of f2 and fy2 This, put together
with (24), (25), (38), and (39), gives that the variance of Ny is equal to

Var(Ny) = E(N}) = (E(Ny)* = E(ff2) — (E(f.f,)" = E(fHE(f2) — (E(f:)E(f,))?
= [Var(f.) + (E(f.))?] - [Var(fy) + (E(f,))’] = (E(f.))* (E(f,))?

2
= |4 m, — 0.5 (0.5 my — 0.5]) + (vf - 1)
1

2
x |4 |my —0.5]- (0.5 — |m, — 0.5]) + (%—1) (46)

GO CED)
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f

X

Figure 3: Two-dimensional setting. A rectangular region with side lengths x and y is centered
at (¢, cy). The voxel horizontal and vertical dimensions are v; and vq, respectively. The
orange part of the region consists of fully covered voxels, while the numbered regions consist
of partially covered voxels. Also shown are f, and f,, the number of voxel lengths fully
covered along the x and y dimensions, respectively.
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The standard deviation of the number of fully covered voxels is simply the square root of
the expression in (46).

2.2.2 Number of Partially Covered Voxels N,

The remainder of the 2-dimensional object consists of partially covered voxels. In this section,
we assume that both x > v; and y > vy (the case when this is not true is covered in detail
in Section 2.3). Then the number of partially filled voxels, denoted by N, is equal to

Np =4+2(f: + fy) (47)

as there is one partially filled voxel in each of the 4 corners of the object (regions labeled 1,
2, 3 and 4, in Figure 3), as well as f, partially covered voxels along each of the 2 horizontal
edges of the fully-covered voxel area (regions labeled 5 and 6 in Figure 3), and f, partially
covered voxels along each of the 2 vertical edges of the fully-covered voxel area (regions
labeled 7 and 8 in Figure 3).

Since N, is only a function of f, and f,, which are independent of one another, its
distribution is given as follows:
1)

442 (f+ ) with probability p(£") - p(£{")
N 442 (fY 4 £ with probability p(f) - p(£$?) (48)
P a2 (574 fY) with probability p(fs”) - p(f;")
442 (12 + ff)) with probability p(ft”) - p(f5”)
with £ and f{? as defined in (22), y ) and fy as defined in (36), p(f 2 ) and p(féz)) as

defined in (23), and p(fz,(,l)) and p(fz,(, ) as defined in (37).

Note that the 4 values of N, in (48) are not distinct. For any set of values of m, and m,,
two of the four values of N, above are always identical (which two depends on whether m,
and m,, are below 0.5 or not), so the distribution of N, reduces to a three-point distribution,
with the probabilities for the identical values just adding together.

The expected value of the number of partially filled voxels is given by

E(N,) - E(4+2(fx+fy)):4+2(E(fx)+E(fy))_4+2<——1+__1)

— 9 (vfl + U%) (49)

Using the independence of f, and f,, we have that the variance of the number of partially
filled voxels is given by

Var(N,) = Var(4d+2(fo + fy) =4Var(f) + Var(fy))
= 16 (Jmy — 0.5] - (0.5 — |my — 0.5])) + 16 - (|m, — 0.5] - (0.5 — |m, — 0.5))
(50)

The standard deviation of N, is simply the square root of the expression in (50).
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2.2.3 Fractions Covered in Partially Covered Voxels

The fraction in each of the N, partially covered voxels can be summarized by Table 1, which
lists the value of the fraction covered, its mean and standard deviation, and the number of
voxels with that fraction covered, with its mean and standard deviation, for each region in
Figure 3 for reference.

(As a check, note that the sum of the fractions covered listed in Table 1 plus the number
of fully covered voxels (given by f,f,) is equal to

1 2 1 1 2 1 1 2
pIpd + pPp + pp + pPpP + fupl + fepl +fyp( " 10 ks =
(pi) +p§f)> (pé) +py )+fr (py +pi >+fy (pa: +pf >+fxfy (51)

(57 422+ 1) (7 + 937 + ) = /o) (w/e) = 2,

which is the total number of voxels covered by the object, as required.)

Now, as for the distributions of the fractions covered in the partially covered voxels in

Table 1 (bottom 4 values in the 2nd column) we have already derived the distributions

of four of these, namely, pg(g ), pg(g ), py ) and py , and showed them to be Uniform(0,1). The

expected (mean) value, the median and the standard deviation of each of these four fractions
are therefore 1/2, 1/2, and 1/4/12 = 0.2887, respectively. The probability that any of the
four of these fractions is between values a and b (with 0 < a < b < 1) is simply the length
of that interval, b — a. For example, the probability that the fraction of the voxel covered
in Region 1 in Figure 3 is between 0.2 and 0.5 is equal to 0.3. The number of voxels at
each of these fractions covered is random, equal to either f, or f,, as listed in Table 1. The
distributions of these two random variables are given in (19)—(20) and (31)—(32).

The remaining four values of the fractions covered that appear in Table 1 (top 4 values in
the 2nd column) are two-way products of the first four fractions covered, so they are products

of two independent Uniform(0,1) random Variables As shown in Appendix F.2, each of the

random variables pg; )pé ), pg(g )pz(}), p; )py and pgC ) has the following probability density

function (pdf), denoted by gy :
gw(w) = —logw, 0<w<1 (52)

and 0 otherwise, with w denoting the particular value of each of the 4 fractions. Thus, to
obtain the probability that any of the 4 of these fractions is in a certain interval, one needs to
integrate the function in (52) over that interval. Specifically, as shown in Appendix F.2, the
probability that any of these four fractions is between values a and b (with 0 < a < b < 1)

is equal to
Pla <W <b) =0b(1 —log b) —a(l —log a), (53)
with 0 -log 0 = 0.
As shown in Appendix F.2, the expectation, the median, and the standard deviation of
each of the four fractions pg; )pgl), pg(f’pgl), pQ)p;) and p(f)pg(f) are 1/4, 0.1867, and 0.2205,
respectively. Each of these four fractions covered occurs in exactly 1 voxel.
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Table 1 gives the expressions for the fractions covered in partially covered voxels within
each of the 8 regions. However, for a given set of values x, y, v; and v, one may be more
interested in the entire distribution of fractions covered in all partially covered voxels without
fixing the region. That is, the question of interest may be about the fraction covered by a
randomly picked partially covered voxel whatever region it may be in.

As can be surmised from the discussion so far, this distribution is a random mizture of
the distributions within each of the 8 regions in Table 1, with the mixing fractions equal to
the relative frequencies of each of the 8 regions. Note that the relative frequency of each
region is the number in the 6th column of Table 1 (i.e., 1 for regions 1 through 4, f, for
regions 5 and 6, and f, for regions 7 and 8) divided by the total number of partially covered
voxels N, = 4+ 2(f, + f,). Thus, the mixing fractions are themselves random, as they are
functions of the random variables f, and f,. Thus, the probability density function of the
fraction covered in any randomly picked partially covered voxel (across all 8 regions) is given
by

gF)=DI"3"S"g(F | R for f,) D(R| fur £y) D(fur ), (54)

R fu fy

where
I denotes the fraction covered,
R denotes the region (1 through 8),

g(F' | R, fu, f,) denotes the conditional density of the fraction covered in a randomly picked
voxel in a given region R and given values of f, and f,,

p(R | fu, fy) is the relative frequency of the region R for given values of f, and f,, and

p(fz, fy) is the relative frequency of a given pair of f, and f,, which is equal to p(f,)-p(f,),
as f, and f, are independent.

Thus, the pdf of the fraction covered in a randomly picked partially covered voxel is given
by
g(F)=3"S"S"g(F | R for fy) - p(R | fur £y) - 0(f2) - D(fy) (55)
R fo [y
where p(f;) and p(f,) are given in (19)-(20) and (31)-(32), respectively, while the ex-
pressions for g(F | R, fs, f,) and p(R | f., f,) for each region are given in Table 2. The
conditional distributions g(F' | R, f., f,) given in Table 2 are derived in Appendix B. In
particular, for ¢« = 1,2, when m, < 0.5,

pgi) | fo = 2k, ~ Uniform(0,2m,), (56)
and A
pgj) | fz = 2k, — 1 ~ Uniform(2m,, 1). (57)
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Relevant

Fraction Covered

# Voxels at the Fraction Covered

Region in | Expres- | Distri- | Exp. | Std. | Expres- Distri- Exp. Std.
Figure 3 sion bution | Value | Dev. sion bution Value Dev.
1 PPV T Bq. (52) | 174 | 0.22 1 n/a 1 0
2 DoV | Eq. 52) | 1/4 | 0.22 1 n/a 1 0
3 PP T Eq. (52) | 1/4 | 0.22 1 n/a 1 0
4 PP 1 Bq. (52) | 1/4 | 0.22 1 n/a 1 0
5 PV u,1) | 1/2 | 029 fo | Ea (19)-(20) | /vy —1 | Eq. (26)
6 PP U(,1) | 1/2 | 0.29 fo | Eq. (199-(20) | z/o1 — 1 | Eq. (26)
7 Y u,1) | 1/2 | 0.29 f, | Ba. 31)-(32) | y/va—1 | Eq. (40)
8 P U,1) | 1/2 | 0.29 £, | Ba (31)-(32) | y/va — 1 | Eq. (40)

Table 1: The fraction of the voxel covered for each of the partially covered voxels, its distri-
bution, expected value and standard deviation, along with the number of voxels with that
fraction covered, its distribution, expected value and standard deviation, for each region of
Figure 3, for the case when > v; and y > wv., i.e., each of the object dimensions is greater
or equal to the corresponding voxel dimension.

Region R | ¢(F | R, fa, fy) p(R | fu fy)
1 g | fo £ | 1A+ 2(fe + £)))
2 g(pg(f)pgl) ‘ f:mfy 1/(4+2(fx+fy)>
3 g0 | fofy) | /(A2 + 1)
4 | g2 | forfy) | V@A +2(fa+ £,))
5 g 1 f) | f /A 2(f + £y)
6 g | f) | f/ A2+ )
7 g(p:(vl) f:c) fy/(4+2(fa:+fy))
8 g | f) | /A +2(fe+ )

Table 2: The general expressions for g(F' | R, fs, f,) and p(R | fs, f,) for each of the 8 regions
in the right-hand side of (55). In regions 5 and 6, g(pl(,l) | fu. fy) and g(pg(f) | fz, fy) become
g(pél) |f,) and g(pég) |fy), respectively, since pél) and pf) do not depend on f,. Similarly,

in regions 7 and 8, g(pgcl) | fac>fy) and 9(]79(1:2) | fxafy) become g(pg) | fz) and Q(Pa(vz) | f2),
respectively, since pg(gl) and p;(f) do not depend on f,.
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Independently generate f, according to (19)-(20) and f, according to (31)-(32) (using Uniform(0,1) random
variables, as discussed in Appendix C.2).

Given f, and f, generated in step 1, generate a value from the distribution of pfcl) given f, and

independently a value of pg(ll) given f, according to (56)—(59).

2 1 2 1
Set pt?) =z /vy — fo — i and pi) = y/vs — f, — p}.
Set F' to be a sequence of the following 4 + 2(f; + fy) values:
1 1 1 2 2 1 2 2
fa times fy times

Repeat steps 1-4 K times for a large value K (e.g., 100000).

The resulting set of K sequences F' will be a sample from the density in (55). This set can
then be queried for any summary quantity of interest, such as quantiles, percentiles, means,
medians and variances of the fractions covered in all the partially covered voxels.

Table 3: Algorithm for generating values of the fraction covered, F', from the distribution in
(55) in the 2-dimensional setting when x > vy and y > v,.

When m, > 0.5,

pgj) | fo = 2k, ~ Uniform(2m, — 1, 1) (58)

and

for 7,5 = 1,2. That is, the products pgf pyj

p@ | fo = 2k, + 1 ~ Uniform(0, 2m, — 1), (59)

The distributions of pg ) given f, for j = 1,2 are equivalent to those of pff) given f, (with x
quantities replaced by the equivalent y quantities). Since pS) and pg) given f, are indepen-
dent of pz(,l) and p?(f) given f,,

PIPD | for fy = 0| ) - (09 | £,) (60)

)pid) given f, and f,, can be obtained by independently

(@)

sampling pg’ given f, and pg/j ) given f, and then multiplying them together.

While the exact expression in for the density of F' in (55) can be written down in analytical

form, it is quite complex and moreover, it is not very useful in itself. Rather, one needs to
know how to sample from this density. Putting together the preceding discussion results in
an algorithm for sampling from the density of F' in (55), which is summarized in Table 3.

2.3 Object Dimensions Smaller Than Voxel Dimensions

In this section, we consider the situation when at least one of the two object dimensions
is smaller than its corresponding voxel dimension, i.e., either x < v; or y < w9, or both
conditions are true. For the remainder of this section, we will refer to any object dimension
that is smaller than its corresponding voxel dimension as a “small dimension”.
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When there is at least one small dimension, all the voxels covered by the object are
partially covered. That is, the number of fully covered voxels Ny is identically 0. As for the
number of partially covered voxels and their fractions covered, as discussed in Section 2.1,
there are two subcases to consider in each dimension: the object could partially cover 1 or
2 voxel lengths in each dimension. Consequently, there are 2 main cases to consider, each
with its own set of subcases:

1. 1 small dimension, i.e., one of the following is true:

T > v, Y < Uy
r <, Y 2> Uy
with each of the two possibilities having
(a) 1 voxel length is partially covered along the small dimension (illustrated in the
left-hand plot of Figure 4) or
(b) 2 voxel lengths are partially covered along the small dimension (illustrated in the
right-hand plot of Figure 4)

2. 2 small dimensions, i.e., x < vy, y < vy

(a) 1 voxel length is partially covered along the x dimension and 1 voxel length is
partially covered along the y dimension (illustrated in the left-hand plot of Figure
5)

(b) 1 voxel length is partially covered along the x dimension and 2 voxel lengths are
partially covered along the y dimension (illustrated in the center plot of Figure 5)

(c) 2 voxel lengths are partially covered along the x dimension and 1 voxel length is
partially covered along the y dimension (illustrated in the center plot of Figure 5)

(d) 2 voxel lengths are partially covered along the x dimension and 2 voxel lengths
are partially covered along the y dimension (illustrated in the right-hand plot of
Figure 5)

While there is no randomness associated with which of the 2 groups of cases (or which
specific case within a group) will apply (as the cases are defined entirely by the voxel and
object dimensions, which are assumed to be known), within each case, there is randomness
associated with which of the subcases will occur (note that the probabilities of all the subcases
within each case must add up to 1).

2.3.1 Number of Partially Filled Voxels N,

1. 1 small dimension, i.e., one of the following is true:

xr>wv and y < vy
r<wvyand y > vy
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e

Figure 4: Left-hand plot: The object (shaded blue) on a grid of voxels in the case of 1 small
dimension with the object fitting entirely within one voxel length along the small dimension
(cases 1(a) and 2(a) of Section 2.3). Right-hand plot: The object (shaded blue) on a grid of
voxels in the case of 1 small dimension with the object covering parts of two voxel lengths
along the small dimension (cases 1(b) and 2(b) of Section 2.3). Note that, as pictured, the
y dimension is assumed to be the small dimension.

O | -

Figure 5: Left-hand plot: The object (shaded blue) on a grid of voxels in the case of 2 small
dimensions, with the object fitting entirely within one voxel length along each of the two
dimensions (case 3(a) of Section 2.3). Center plot: The object (shaded blue) on a grid of
voxels in the case of 2 small dimensions, with the object fitting entirely within one voxel
length along one of the dimensions, but covering parts of two voxel lengths along the other
small dimension (cases 3(b) and 3(c) of Section 2.3). Right-hand plot: The object (shaded
blue) on a grid of voxels in the case of 2 small dimensions, with the object covering parts of
two voxel lengths along each of the two dimensions (case 3(d) of Section 2.3).

18



Since the two dimensions are interchangeable, let us denote the small dimension with
y and the other dimension with x (i.e., z and y need not correspond to horizontal and
vertical dimensions, respectively). The voxel dimensions corresponding to x and y will
be denoted as v; and vy, respectively, as before. Thus, x > v; and y < vy. As shown
in Appendix D.2, the number of partially covered voxels in this case is given by

- fz+2 ifmy,<gq, <1-m,
Ny = { 2(f: +2) otherwise (61)

The distribution of N, (also derived in Appendix D.2) is given by

3) (1—y/vs)
N (y

with probability p

N, =
p O 2)  with probability p

(£ ~(y/va)
2( £ (2) +2) with probability p f

[v2)

with £ and £1? as defined in (22), and p(fél)) and p(ngQ)) as defined in (23).
As shown in Appendix D.2, the expected value of N, is given by

E(N,) = (v% + 1) (U% + 1) . (63)

The variance of N, is given by

Var(N,) = 4-|my —0.5] (0.5— [m, —0.5])- <1 3y> + 2 (1 - ﬁ) (Ufl + 1)2 (64)

(% V2 U2

42 (f

240 with probability p(f

2 <f£
(

The standard deviation of N, is the square root of the expression in (64).

. 2 small dimensions: x < vy and y < vy
As shown in Appendix D.2, the number of partially covered voxels is given by

1 ifm, <g<1-—myandm, <gq, <1-—-my
N o— 2 ifm, <¢g,<1l—myand (0< g, <myorl—m,<gqg, <1)
P 2 ifmy<g,<1-—myand (0< g <mgzorl—m, <gqg, <1)
4 if(0<qg <myorl—m,;<g <1)and (0<¢g, <myorl—m,<g,, <1)

(65)
The distribution of N, is thus given by

<
=

1 with probability (1 - 1) ( z
No = 2 with probability £ (1— )+ £ (1-2) (66)
4 with probability - - %

1

—
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As shown in Appendix D.2, the expected value of N, is given by

E(N,) = (v% + 1) (U% + 1) (67)

and the variance of NV, is given by

2 2
Var(N,) = (3—”“" + 1) (3—y + 1) - (3 + 1) (3 + 1) . (68)
U1 ) U1 VU2
Note that the the expected number of partially filled voxels is the same in all three cases.

2.3.2 Fractions Covered in Partially Covered Voxels

1. 1 small dimension, i.e, one of the following is true:

x> v and y < vy
r <wv and y > vy

Again, we will denote the small dimension with y and the other dimension with z since
the two dimensions are interchangeable. Thus, x > v; and y < vy. As discussed in
Section 2.3.1, in this case there are either f, 4+ 2 or 2(f, + 2) partially covered voxels.
The former subcase, referred to as 1(a) at the beginning of Section 2.3, corresponds to
just 1 partially covered voxel length along the y dimension (shown in the left-hand plot
of Figure 4). In this case, which occurs with probability 1—y /v, (as shown in Appendix
D.2), the fraction covered in the f, voxels is y/vy each, while the fraction covered in the
2 remaining voxels is pg(gl)(y/ v9) and pgf)(y/ v) (this is easiest to obtain by examining
Figure 4). Since x > vy, each of p§}) and pg(f) has a Uniform(0,1) distribution. Thus,
pg(cl)(y/vg) and p? (y/v2) each has a Uniform(0, y/vy) distribution, so the probability
that any one of these two fractions is between two values a and b with 0 < a < b < y /v,
is equal to (b — a)vy/y. The expected value, median, and standard deviation of each
of these two fractions are y/(2v2), y/(2v2), and y/(v/12v5), respectively.

The latter subcase, 1(b), corresponds to 2 partially covered voxel lengths along the y
dimension (as shown in the right-hand plot of Figure 4), one pg(/l) and the other p§/2)
long. In this case, which occurs with probability y/vs (as shown in Appendix D.2),

there are f, voxels with the fraction covered equal to pz(,l), fz voxels with the fraction

covered equal to p£,2) voxels, 1 voxel with the fraction covered equal to p&l)pg), 1 voxel

with the fraction covered equal to p:(rl)py(f), 1 voxel with the fraction covered equal to

pg)pg), and 1 voxel with the fraction covered equal to pf)pg). As discussed at the
end of Section 2.1.3, pl(,l) and pg) each has a Uniform(0, y/ve) distribution, so the
probability that any one of these two fractions is between two values a and b with
0 <a<b<y/vgis equal to (b — a)ve/y. Each fraction’s expected value, median and

standard deviation are y/(2vs), y/(2v2), and y/(v/12vy), respectively.
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Since p,(,;l) and pﬁf) each has a Uniform(0,1) distribution, and they are independent from

pz(,l) and pz(f), according to the results obtained in Appendix F.2, the product of any

one of pg(cl) or pg) with any one of pz(/l) or pl(f) has a probability density function given
by

gw(w) = % (log(y/vg) —log w), 0<w<y/vy (69)

and 0 otherwise. The probability that any one of these products is in the interval
(A, B) with 0 < A < B < y/v, is therefore equal to

P(AgWgB):%-(zog(y/w)ﬂ)-(B—A) + %-(AlogA—BlogB) (70)

with 0-log 0 = 0. According to the results obtained in Appendix F.2, the expected
value, the median, and standard deviation of each of these 4 products is y/(4vs),
(0.19y) /vq, and (0.22y) /v, respectively. Table 4 summarizes the fractions covered and
the corresponding number of voxels at that fraction for each of the two subcases of the
case of 1 small dimension in the 2-dimensional setting. The small dimension is denoted
with y (i.e., z > v; and y < v9).

As discussed in Section 2.2.3, for a given set of values x, y, v; and v, one may be more
interested in the entire distribution of fractions covered in all partially covered voxels
without fixing the region. To obtain this distribution, we follow the steps equivalent
to those outlined in Section 2.2.3 and adapt them to the case of 1 small dimension.

As Table 4 shows, there are 2 subcases, one with 3 and the other with 6 regions. In
the first subcase (labeled (a) in the table), the relative frequency of each region is the
number in the 8th column of Table 4, (i.e., f, for region 1 and 1 for regions 2 and 3)
divided by the total number of partially covered voxels N, = f, + 2. In the second
subcase (labeled (b) in the table), the relative frequency of each region is the number
in the 8th column of Table 1, (i.e., f, for regions 1 and 2 and 1 for regions 4 through
6) divided by the total number of partially covered voxels N, = 2(f, + 2).

These relative frequencies, or mixing fractions, are themselves random, as was the case
in Section 2.2.3, as they are functions of f,. Thus, the probability density function
of the fraction covered F' in any randomly picked partially covered voxel (across both
subcases and all regions within each subcase) is given by

g(F) =3 > D a(F | RS f) p(R|S.f) - p(S | fo) - p(fe).  (71)
RS fa
where
R denotes the region (1 through 3 for S = (a) and 1 through 6 for S = (b)),

S denotes the subcase (a) or (b) in Table 4,

g(F | R, S, f.) denotes the conditional density of the fraction covered in a randomly
picked voxel in a given region R within the given subcase S and the value of f,,
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p(R | S, f.) is the relative frequency of the region R for a given subcase S and value
of fa,

p(S | f:) denotes the conditional probability (relative frequency) of each subcase
given the value of f, and is equal to the unconditional probability p(S) as the
probability of either subcase does not depend on f,, as can be seen from Table 4,

p(fz) is the probability (relative frequency) of the value of f,.

Thus, the pdf of the fraction covered in a randomly picked partially covered voxel is
given by

R S f.

where p(f,) is as given in (19)—(20), p(S) is given by

p(S) = { y " S = (b) (73)

and the expressions for g(F' | R, S, f;) and p(R | S, f.) for each subcase and region are
given in Table 5.

The conditional distributions g(F' | R, S, f,) given in Table 5 can be easily obtained
from the results derived in Appendix B. Since, as shown in Appendix B, p,(f) | fe
i = 1,2 are all Uniform random variables, as specified in (56)—(59), and y/vy is a
constant, pt” - (y/vy) can be obtained by first generating a random variable from the
appropriate distribution in (56)—(59) and multiplying it by y/vs. As discussed at the
end of Section 2.1.3, the distribution of each of pél) and pf) is Uniform(0, y/vs). Since

pél) and pf) are independent of pg(gl) and p;(f) given f,,

PP | fo =0 | f2) - Y (74)

for ¢, 5 = 1,2. That is, the products pggi)pg(,j ) given f, can be obtained by independently

)

sampling pgf given f, and p?(f ) and then multiplying them together.

Putting together the preceding discussion results in an algorithm for sampling from
the density of F in (72), which is summarized in Table 6.

. 2 small dimensions, i.e., z < vy, y < vy

As discussed in Section 2.3.1, in this case there are either 1, 2, or 4 partially covered
voxels. These subcases are illustrated in the left-hand, middle, and right-hand plots
of Figure 5. By referring to these plots, it is easily seen that when there is 1 partially
covered voxel, the fraction covered by it is the entire object area scaled to the voxel
area, i.e., xy/(vive). As shown in Appendix D.2, this occurs with probability (1 —

z/v1)(1 —y/va).
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Sub- | Proba- || Reg- Fraction Covered # Voxels at the Fraction Covered
case | bility ion || Expres- | Distri- | Exp. Std. Expres- Distri- Exp. Std.
sion bution | Value | Dev. sion bution Value Dev.
1 % n/a % 0 fz Eqgs.(19)—(20) o Eq.(26)
(1)
(a) | 1-2 2 (3% U0,5) | % \/%Uz 1 n/a 1 0
eSS n/a L |0
1 U)o Y fo | Eas.(19)-(20) [ £ —1 [ Eq.(26)
2 T
2 | a7 Jue) | & [ A | e [ Eas(19)(20) | 2 -1 Eq.(26)
(b) o 3 pgcl)pél) Eq.(69) 4%2 —0'5223’ 1 n/a 1 0
4 | PP [ Bae9) | £ | 22 1 n/a 1 0
5 pgf)pg(,l) Eq.(69) | - 0.322;/ 1 n/a 1 0
6 pgf)p?(f) Eq.(69) e —O'ij 1 n/a 1 0

Table 4: The fraction of the voxel covered for each of the partially covered voxels, its distri-
bution, expected value and standard deviation, along with the number of voxels with that
fraction covered, its distribution, expected value and standard deviation, for the case of 1
small dimension in the two-dimensional setting. The y quantities correspond to the small
dimension, so x > vy and y < vs.

Subcase S | Region R | g(F | R,S, f.) | p(R| S, fz)
1 constant at L | f./(2+ fi)
(a) 2 gL ) | 12+ f)
3 gL | f) | 12+ fo)
1 (") fal (4+2f2)
2 g fal (4 +2£2)
(b) 3 g P | £ | 1A+ 2f)
4 g p | £2) | 1/(4+2f,)
5 g@Pp) | £) | 1A+ 2f)
6 g | fa) | 1/(4+2f.)

Table 5: The general expressions for g(F' | R, S, f,) and p(R | S, f.) in the right-hand side

of (72). In regions 1 and 2 of subcase (b), g(pg,l) | £.) and g(p | f.) become g(p

g(py”

), respectively, since p§}) and p;(f) do not depend on f,.
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1)  Generate f; according to (19)—(20) (using Uniform(0,1) random variables, as discussed in Appendix C.2).

2)  Given f, generated in step 1, generate p&l) from the appropriate distribution specified in (56)—(59).

3) Set piP = x/vi — f, — pi”

4)  Generate the subcase S = (a) or (b) according to their probabilities in Table 4
(using Uniform (0,1) random variables, as discussed in Appendix C.2).

5) If S = (a) in step 4,
—set F' to be a sequence of the following f, + 2 values:

y/”?? -~-7y/'U2, (y/?}g) 'p(ml)a (y/’UQ) pi(Ez)
—_——
fo times

If S = (b) in step 4,

— generate pz(,l) ~U(0,y/ve),
— set pl(lz) =y/vy — pél)7 and
—set F' to be a sequence of the following 2f, + 4 values:

1 1 1 2 2 1 2 2
p®, p, e @ Pl e p® e pl Pl

fa times fa times
6) Repeat steps 1-5 K times for a large value K (e.g., 100000).

The resulting set of K sequences F' will be a sample from the density in (72). This set can then
be queried for any summary quantity of interest, such as quantiles, percentiles, means, medians
and variances of the fractions covered in all the partially covered voxels.

Table 6: Algorithm for generating values of the fraction covered, F', from the distribution
in (72) in the 2-dimensional setting with 1 small dimension (y is assumed to be the small
dimension, so x > vy and y < vy).
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Two partially covered voxels occur when there is 1 partially covered voxel length cov-
ered along one dimension and 2 partially covered voxel lenghts along the other. When
the former is along the x dimension and the latter is along the y dimension (this occurs
with probability (1 — x/v;)y/ve, as shown in Appendix D.2), the fractions covered in
the two voxels are pél)(x /v1) and Py (x/v1), respectively. Since p) and p{? are each
Uniform(0, y/v2), each of the two fractions covered each has Uniform(0, ;7L distri-
bution, and expected value and standard deviation of 21‘;’“"1312 and \/ggm, respectively.
The probability of any one of the two fractions being between two values a and b with

0<a<b<ay/(vvy) is (b— a)22.

Ty

On the other hand, when there are 2 partially covered voxel lengths along = dimension
and 1 partially covered voxel length along y dimension (this occurs with probability

x/v1(1 — y/vy), as shown in Appendix D.2), the fractions covered are p(ml)(y/vg) and
P (y/v.), respectively. Since Pt and p® are each Uniform(0, x/v;), each of the
two fractions covered each has Uniform(0, ;*2-) distribution, and expected value and

standard deviation of 5%~ and \/ggm, respectively. The probability of any one of
the two fractions being between two values a and b with 0 < a < b < zy/(vive) is

(b— a)¥i2,

ay
Finally, four partially covered voxels occur when there are 2 partially covered voxel

lenghts covered along both dimensions. This occurs with probability xy/(v;ve. In that

Wpt, pPp? pPpl), and pPpl?.

Since each of pg}) and p§;2) has a Uniform(0, z/v;) distribution and each of pg(,l) and
pi?) has a Uniform(0, y/v,) distribution (and the first two are independent of the other
two), according to the results derived in Appendix F.2, the probability density function

for each of the four products is given by
gw(w) = vz (log (ﬂ) —log w) , 0<w< Ll (75)
xy V1V

and 0 otherwise. The probability that any one of these products is in the interval
(A, B) with 0 < A < B < zy/(v1v2) is therefore equal to

case, the fractions covered in the four voxels are p

P(A<W < B) = 12 (log (ﬂ> + 1) (B—A) + 22 .(Alog A~ B log B). (76)
xy V1 Vg xy

with 0 -log 0 = 0. The expected value, median, and the standard deviation of each of

the fractions is equal to zy/(4v,v2), (0.192y)/(v1v2), and (0.22zy)/(v1v2), respectively.

Accordingly, Table 7 summarizes the fractions covered and the corresponding number
of voxels at that fraction for each of the four subcases of the case of 2 small dimensions
in the 2-dimensional setting. To obtain the distribution of the fraction covered across
all subcases and regions, we follow the steps equivalent to those outlined in Section
2.2.3 and adapt them to the case of 2 small dimensions.

As Table 7 shows, there are 4 subcases. In the first subcase (labeled (a) in the table),
there is only 1 region, so it has the the relative frequency of of 1. In the second and
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third subcases (labeled (b) and (c) in the table), there are 2 equally likely regions, so
each one has a relative frequency of 1/2 within each subcase. In the fourth subcase
(labeled (d) in the table), there are 4 equally likely regions, so each region has a relative
frequency of 1/4. Note that the relative frequency of the region is fixed in all 4 subcases.

Thus, the probability density function of the fraction covered F' in any randomly picked
partially covered voxel (across the four subcases and all regions within each subcase)
is given by

g(F)=) > 9(F|R.S)-p(R|S) p(S). (77)
R S
where, as before,

R denotes the region (1 for S = (a), 1 or 2 for S = (b) or (¢) and and 1 through 4
for S = (d)),

S denotes the subcase (a), (b), (c) or (d) in Table 7,

g(F | R,S) denotes the conditional density of the fraction covered in a randomly
picked voxel in a given region R within the given subcase S,

p(R | S) is the relative frequency of the region R for a given subcase S

p(S) denotes the probability (relative frequency) of each subcase and is given in Table
7.

and the expressions for g(F | R, S) and p(R | S) for each subcase and region are given
in Table 8. The distributions g(F | R, S) given in Table 8 can be easily obtained from
the results derived earlier in this section and in Section 2.1. Recall in particular that

P ~ U0, 2/v;) (78)
for i = 1,2 and '
Py ~ U(0,y/vs) (79)

for = 1,2. Furthermore, pg) and p?gj ) are independent from each other for 7,7 = 1,2,
implying that the distributions of the products can be generated by independently
sampling p;(,f) and pl(f ) and then multiplying them together.

Putting together the preceding discussion results in an algorithm for sampling from
the density of F in (77), which is summarized in Table 9.

2.4 Summary

Table 10 contains the summary of the resulting variables of interest when a rectangular 2-
dimensional object with edge lengths x and y is placed inside a rectangular grid of voxels,
each with edge lengths v; and vy, with x > vy and y > vy and with the center of the object
randomly located inside a voxel at a point (¢, ¢,) (with 0 < ¢, < vy and 0 < ¢, < vs).
Tables 11 and 12 contain the summaries equivalent to that in Table 10 for the cases of 1
small dimension (either z < v; or y < v, but not both) and 2 small dimensions (z < v; and
y < vy), respectively.
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Sub- Proba- Reg- Fraction Covered # Voxels at
case bility ion Expres- Distri- Exp. Std. the Fraction
sion bution Value | Dev. Covered
(a) (1 — ﬁ) (1 — %) 1 e n/a oo 1
T y (1) Ty Yy Ty
(b) (1 - H) E 1 (l’/Ul) U<O7 1;11;2) 2v1v2 \/ﬁvlvg 1
(2) Ty Ty Ty
2 (.I‘/Ul) U<0’ vlvz) 2v1v2 V12v1v2 1
x (1) T T T
(C) o <1 - %) 1 (y/UQ) U<O7 vle) 2v1y112 \/ﬁgwg 1
(2) Ty Ty Ty
2 (y/'U ) U <O7 1}11)2) 2v1v2 V12v1v0 1
T 1 T 22z
(d) ] 1 [ #t )p%; Ea. (15) | ny | %t L
2 pé)p?(ﬁ) Eq. (75) 45:1%;2 lemzy 1
T 0.22x
’ p(2)p(2) Ha. (75) 4”11{02 ’Ulvzy 1
0.22x
4 Pz Dy Eq. (75) 451%;2 vwzy 1

Table 7: The fraction of the voxel covered for each of the partially covered voxels, its distri-
bution, expected value and standard deviation, along with the number of voxels with that
fraction covered, for the case of 2 small dimensions in the 2-dimensional setting (i.e., x < vy
and y < vs).

Subcase S | Region R g(F | R,S) p(R|S)
(a) 1 constant at = 1
(b) 1 9(py &) 1/2

2 gy 2) 1/2
(c) 1 g(pi L) 1/2
2 g(ps L) 1/2
(d) 1 90 py) 1/4
2 g ) 1/4
3 ap})) 1/4
4 g ) 1/4

Table 8: The general expressions for g(F' | R,S) and p(R | S) in the right-hand side of (77).
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1) Generate the subcase S (a), (b), (c), or (d) according to their probabilities in Table 7 (using
Uniform (0,1) random variables, as discussed in Appendix C.2).

2) IfS = (a)in step 1,
—set F equal to (z/v1) - (y/v2).

If S = (b) in step 1,

~ generate py) ~ U(0,y/va) ,

— set pég) =y/vo —p?gl), and

— set F' to be the sequence of the following 2 values:

zfor-py), xfor-py.

If S = (c) in step 1,
— generate ) ~ U,z/v1) ,
— set pf) =1x/v —pg), and
— set F' to be the sequence of the following 2 values:

y/vg 'pgcl)7 y/UQ 'pg?)-

If S = (d) in step 1,
— generate pgl) ~ U(0,z/v1) and pz(,l) ~ U(0,y/va),
7 @) _ _ M (2) _ _ M
set py’ =x/v1 —px , and p;’ = y/va —py’, and

—set F' to be the sequence of the following 4 values:

P, e e, Pl

3) Repeat steps 1-2 K times for a large value K (e.g., 100000).

The resulting set of K sequences F' will be a sample from the density in (77). This set can then
be queried for any summary quantity of interest, such as quantiles, percentiles, means, medians
and variances of the fractions covered in all the partially covered voxels.

Table 9: Algorithm for generating values of the fraction covered, F', from the distribution in
(77) in the 2-dimensional setting with 2 small dimensions (z < v; and y < vy).
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Variable Notation | Expression | Distribution | Expected Standard
Value Deviation

# Fully Covered Voxels Ny Eq. (43) Eq. (44) Eq. (45) | Sq. root of (46)

# Partially Covered Voxels N, Eq. (47) Eq. (48) Eq. (49) | Sq. root of (50)

Fractions Covered
In Partially Covered
Voxels

see Tables 1 and 3

Table 10: Summary of the variables of interest in the 2-dimensional setting for the case when
the sheet dimensions are both greater than the corresponding voxel dimensions (i.e., € > v

and y > va).
Variable Notation | Expres- | Distribu- Expected Standard
sion tion Value Deviation
# Fully Covered Voxels Ny 0 fixed at 0 0 0
# Partially Covered Voxels N, Eq. (61) | Eq. (62) (1 + %) <1 + %) Sq. root of (64)

Fractions Covered
In Partially Covered
Voxels

see Tables 4 and 6

Table 11: Summary of the variables of interest in the 2-dimensional setting for the case of 1
small dimension. The small dimension is denoted with ¥, so when x > v; and y < v,.

Variable Notation | Expres- | Distribu- Expected Standard
sion tion Value Deviation

# Fully Covered Voxels Ny 0 fixed at 0 0 0

# Partially Covered Voxels N, Eq. (65) | Eq. (66) (1 + %) <1 + %) Sq. root of (68)

Fractions Covered
In Partially Covered
Voxels

see Tables 7 and 9

Table 12: Summary of the variables of interest in the 2-dimensional setting for the case of 2
small dimensions, i.e., z < vy and y < vs.
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3 Three-Dimensional Setting

All the results developed in for the 2-dimensional setting in Section 2 can now be easily
extended to the 3-dimensional setting. Assume a rectangular object with edge length z
along the first dimension, edge length y along the second dimension, and edge length z along
the third dimension, randomly centered at location (c,, ¢, ¢,) in a voxel. Assume rectangular
voxels, each with edge length v; along the first dimension, edge length v, along the second
dimension and edge length v3 along the third dimension.

The quantities x,y, z,v, v and vs are assumed to be known. Analogously to the 2-
dimensional setting, randomly placing the center of the object in a voxel means that the
location (¢, ¢y, c,) is a random variable with the Uniform distribution on a rectangular
region (0,v1) x (0,v9) x (0,v3). This is equivalent to sampling ¢, ~ Uniform(0, vy), ¢, ~
Uniform(0, v9) and ¢, ~ Uniform(0,1) independently from each other. The object is assumed
to fit completely in the field of view, so the total number of voxels covered by the object
is given by xyz/(vivav3), with the non-integer part reflecting the fact that some voxels are
only partially covered.

As in Section 2, we will first assume that x > vy, y > vy and z > v3. Section 3.5 covers
the special cases when at least one of the object dimensions is smaller than the corresponding
voxel dimension.

3.1 Notation and Remaining Preliminaries

The variables f, and f, are defined in (1) and (30), and their distributions are given in
(19)—(20) and (31)—(32), respectively. An analogous random variable in the third dimension,

f., is given by
f - {cz+z/2 B {cz —z/Q-‘ ' (80)

U3 U3

Letting k, and m, be defined as

U3

ko= ﬂJ (s1)

and

m, = frac (Z—/2> = 22 _ k., (82)

U3 U3

following analogous steps to those for deriving the distribution of f,, the distribution of f,
is then obtained as follows:

if m, <0.5,
£ 2k, with probability 2m., (83)
| 2k.—1  with probability 1 — 2m,

30



while

if m, > 0.5,
. 2k, with probability 2(1 — m,) (84)
] 2k, +1 with probability 2m, — 1
The distributions in (83) and (84) can be alternatively expressed as follows:
£ = fz with probability p(fzgl)) (85)
: 2 with probability p(f{?)
where
£ =
—1 ifm, <0.5
2 _— z
)= { 2k +1 ifm,>05 (86)
(1) _ m, if m, < 0.5
p(f:7) { 2(1—m,)  ifm.>0.5
p(fP) = 1-p(fV). (87)
Analogously to f, and f,, the expected value of f, is given by
z
E(f)=—-1, (88)
U3
while the variance of f, is given by
Var(f,)=4-|m,—0.5|-(0.5 —|m, — 0.5]) (89)

for 0 < m, < 1. The standard deviation of f, is the square root of the variance of f., i.e., it
is given by

or. =2y/|Im. —0.5]- (0.5 — |m, —0.5]). (90)
Also, define
C, — 2/2 Cc, — 2/2
R e (o1
V3 U3
and 12 /2
C, + 2 C, + 2
pl? = - L J . (92)
U3 V3

Since these are exactly equivalent to their counterparts pg) and pg) (as well as pél) and pg)),

they each follow the Uniform(0,1) distribution.
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3.2 Number of Fully Covered Voxels Ny

Analogously to the 2-dimensional setting, the number of fully covered voxels in the 3-
dimensional setting, still denoted by Ny, is just the product of the number of fully covered
voxels in each dimension. That is, Ny = f, f, f. with f,, f,, and f, defined in (1), (30) and
(80), or

Nf = fxfyfz
_ < Ce + /2 B _cx—x/Q_D
% ( Cy‘zy/2 _ _Cy:}y/2—‘) (93)
" <_cz+z/2_ B _cz—z/ﬂ)
L Vs ] U3

Since each of f,, f,, and f, takes on 2 possible values for a given set of z,y, 2, v1,v2 and v3
values, Ny takes on 8 possible values.

Since f,, f,, and f, are independent of each other due to the independence of ¢, ¢,, and
¢, the probabilities associated with each of the 8 possible values are just the products of the
probabilities of each possible value in the 1-dimensional setting. Thus, we have the following
8-point distribution for Ny:

(VR AV with probability p(f£”) - p(£3") - p(£")
SO 12 with probability p(f£) - p(fy) - p(f£)
£V 12 1Y with probability p(f2) - p(£7) - p(f£))
N, = fg Ej;fg with probability p(f%)-p(féi)m(f%) (04)
s fy Sz with probability p(fa~) - p(fy') - p(f=")
2V 1 with probability p(f£) - p(fy”) - p(f7)
D7 1 with probability p(f££) - p(£y”) - p(£Y)
| A7 AP P with probability p(£”) - p(f3”) - p(£7)

with fa(}) and ff) as defined in (22), fgsl) and ff) as defined in (36), M and fZ(Q) as defined
n (86), p(fél)) and p(ff)) as defined in (23), p( 351)) and p(ff)) as defined in (37), and
p(fz(l)) and p(fZ(Q)) as defined in (87).

Since Ny = f.f,f. and f;, f, and f, are independent, the expected value of N; in the
3-dimensional setting is given by

1 V2 U3

BNy = BULAyf) = BUIBU)EG) = (2 -1) (L-1) (2-1). o9

The independence of f,, f, and f. also implies the independence of f7, f; and fZ. This, put
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together with (24), (25), (38), (39), (88), and (89), gives that the variance of N; is equal to

Var(Ny) = BE(N?) = (BE(Ny))® = E(f212f2) = (B(fofy )
E(f)E(f2) — (E(f.)E(f,) B(f.))"
Va?"(fx)+ E(f )?] - [Var f) + (B - [Var(f) + (E(f.))]

- 1) (96)

The standard deviation of the number of fully covered voxels is the square root of the ex-
pression in (96).

3.3 Number of Partially Covered Voxels N,

In the 2-dimensional setting, the following contributed to the total number of partially
covered voxels:

1. 1 voxel in each of the 4 corners of the object,

2. f, voxels along each of the 2 horizontal edges (top and bottom) excluding the corners
of item 1,

3. f, voxels along each of the 2 vertical edges (left and right) excluding the corners of
item 1.

In the 3-dimensional setting, the partially covered voxels are found in equivalent locations,
plus in some new ones that did not exist in the 2-dimensional setting. Specifically, there are
26 regions of partially covered voxels, comprising of the following;:

1. Regions 1-8: 1 voxel in each of the 8 corners of the object,

2. Regions 9-12: f, voxels along each of the 4 horizontal edges (top and bottom, front
and back) excluding the voxels of item 1,

3. Regions 13-16: f, voxels along each of the 4 vertical edges (left and right, front and
back) excluding the voxels of item 1,
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4. Regions 17-20: f, voxels along each of the 4 front-back edges (left and right, top and
bottom) excluding the voxels of item 1,

5. Regions 21, 22: f, f, voxels on each of the front and back faces excluding the voxels of
items 1, 2, 3,

6. Regions 23, 24: f, f, voxels on each of the top and bottom faces excluding the voxels
of items 1, 2, 4,

7. Regions 25, 26: f, f. voxels on each of the left and right faces excluding the voxels of
items 1, 3, 4,

(Note that regions 1-4 above are the 3-dimensional equivalents of regions 1-4 in Figure 3,

regions 9 and 10 above are the 3-dimensional equivalents of regions 5 and 6 in Figure 3, while

regions 13 and 14 above are the 3-dimensional equivalents of regions 7 and 8 in Figure 3.)
Thus, the number of partially covered voxels is equal to

Ny =8+ 4(fa+ fy+ f2) + 2(fufy + fofe + [y f2)- (97)

Since IV, is only a function of f,, f, and f., each of which can take on 2 possible values, N,
takes on 8 possible values. Moreover, since f,, f, and f, are independent, the probability
of any given value resulting from a specific combination of these three variables is just
the product of their individual probabilities in the one-dimensional setting. Therefore, the
distribution of NN, is given as follows:

(844 (f 4 10+ ) w2 (P AD + S D 4 D ED) with prop(fP) - p(fsY)
8+4-(f0+ 10+ f) 42 (FORD + £+ 1Y with pr. p(f7) - p(f7)

S+ d-(f+ £+ ) w2 (VD + VD 1+ £8P EDY with pr. p(f2)) - p(fsD)

N, = 4 8 B 2 2 (BORY 4+ LU 4 1) it prp(f) (1)
8+4-(f + £+ 1Oy w2 (P £V 4 fP Y 1 f D EDY with pr. p(£7) - p(£M)
8+4-(fP+ 10+ ) 42 (PP + £+ 1Y with pr. p(f7) - p(f57)
8+4-(fP+ 12+ f) +2- (fP 8D + £ + 1P ) with pr. p(f2) - p(£57)

(844 (f7 + £+ ) w2 (P8P + (21D 1+ 12 1) with pr. p(f27) - p(f7)

(98)

Using the independence of f, f,, and f, again, we have that the expected value of N, is
equal to

E(Ny) = 8+4-[E(f.) + E(fy) + E(f)] +2- [E(f) E(fy) + E(f2) E(f.) + E(f,) E(f>)]

- 8+4(£—1+3—1+3—1)
U1 Vo V3
SlE) G GE ) ) )
(0 Vg U1 U3 V2 U3
T T z z
- 2<—£+——+3—+1) (99)
V1 V2 U1 U3 V2 U3
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As shown in Appendix G, the variance of N, is equal to
Var(N,) = 4(Var(fofy) +Var(fof.) +Var(fyf.))
+ {Va'r(fx) <——+£+——1) + Var(f,) <£i+£+i—1> (100)

U2 U3 V2 U3 U1 U3 U1 U3

+ Var(f,) (££+3+£—1>} :

U1 V2 (%1 (%

The standard deviation of N, is just the square root of the expression in (100).

3.4 Fractions Covered in Partially Covered Voxels

As described in Section 3.3, there are 26 distinct regions of partially covered voxels in a 3-
dimensional rectangular object. Table 13 lists each of these regions, its location in the object,
each region’s value of the fraction covered, its distribution, expected value and standard
deviation, as well as the number of partially covered voxels in that region, its distribution,
expected value and standard deviation.

(As a check, note that the sum of the fractions covered in regions 1-8 is equal to

(Y +02) () +p2) (0 + %) (101)
the sum of the fractions covered in regions 9-12 is equal to
fo (0 +07) (0 + 1), (102)
the sum of the fractions covered in regions 1316 is equal to
Py (8 +217) (0 +p2) (103)
the sum of the fractions covered in regions 17-20 is equal to
£ (08 + ) (Y +p{) (104)
while the sum of the fractions covered in regions 21-26 is equal to
fofy P +02) + fof. B0 +0P) + fof: (0 + pP)) . (105)

Adding (101)-(105) and the number of fully covered voxels Ny = f, f, f. gives the sum

(B0 + 02+ £2) (50 + 2 + £,) (0 + 2 + 1) = <£> <£> (3) = = (100)

U1 V2 (%] V1U2V3

the total number of voxels covered by the object, as required.)
Now, as for the distributions of the fractions covered in the partially covered voxels in
the 3rd column of Table 13, we have already derived the distributions of all but those in

regions 1-8. The distributions of fractions in regions 21-26, pg(cl), p(x2), p?(fl)7 pg), pg )a pg),
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Reg-

Region Description

Fraction covered

# Voxels at That Fraction Covered

ion Expression Distri- Exp. Std. Expres- Distri- Exp. Std.
bution Value Dev. sion bution Value Dev.
1 Lt btm corner of frt face p(rl)p(l)pu) Eq. (108) 1/8 0.15 1 n/a 1 0
2 Rt btm corner of frt face p&z)pgl)pgl) Eq. (108) 1/8 0.15 1 n/a 1 0
3 Lt top corner of frt face pgsl)p@)pil) Eq. (108) 1/8 0.15 1 n/a 1 0
4 Rt top corner of frt face pf)p?(f)pgl) Eq. (108) 1/8 0.15 1 n/a 1 0
5 Lt btm corner of back face pgl)pg(!l)pgm Eq. (108) 1/8 0.15 1 n/a 1 0
6 Rt btm corner of back face p,(z)p,(l)p&) Eq. (108) 1/8 0.15 1 n/a 1 0
7 Lt top corner of back face ppPpP | Bq. (108) | 178 | 0.5 1 n/a 1 0
8 Rt top corner of back face pf)p(j)pg) Eq. (108) 1/8 0.15 1 n/a 1 0
9 Btm horiz. edge of frt face pDp Eq. (52) 1/4 | 022 fo Eq. (19)-(20) | =/vy —1 Eq. (26)
excl. regions 1, 2
10 Top horiz. edge of frt face p?sz)pgl) Eq. (52) 1/4 0.22 fa Eq. (19)-(20) z/vg — 1 Eq. (26)
excl. regions 3, 4
11 Btm horiz. edge of back face P ptD Eq. (52) 1/4 | 0.22 fa Eq. (19)-(20) | z/vi — 1 Eq. (26)
excl. regions 5, 6
12 Top horiz. edge of back face PP pl> Eq. (52) 1/4 | o0.22 fa Eq. (19)-(20) | z/vi — 1 Eq. (26)
excl. regions 7, 8
13 Lt vert. edge of frt face p&l)pgl) Eq. (52) 1/4 0.22 fy Eq. (31)-(32) y/vg — 1 Eq. (40)
excl. regions 1, 3
14 Rt vert. edge of frt face psf)p(zl) Eq. (52) 1/4 0.22 fy Eq. (31)-(32) y/vg — 1 Eq. (40)
excl. regions 2, 4
15 Lt vert. edge of back face pDp2) Eq. (52) 1/4 | o0.22 fy Eq. (31)-(32) | y/ve — 1 Eq. (40)
excl. regions 5, 7
16 Rt vert. edge of back face PP 2 Eq. (52) 1/4 | 0.22 fy Eq. (31)-(32) | y/ve —1 Eq. (40)
excl. regions 6, 8
17 Btm frt-back edge of 1t face D pD Eq. (52) 1/4 | 022 I3 Eq. (83)-(84) | z/vs —1 Eq. (90)
excl. regions 1, 5
18 Btm frt-back edge of rt face PP plD Eq. (52) 1/4 | 0.22 s Eq. (83)-(84) | z/vs —1 Eq. (90)
excl. regions 2, 6
19 | Top frt-back edge of 1t face D pP Eq. (52) 1/4 | o0.22 s Eq. (83)-(84) | z/vs —1 Eq. (90)
excl. regions 3, 7
20 Top frt-back edge of rt face pgf)p,ff) Eq. (52) 1/4 0.22 fz Eq. (83)-(84) z/vz — 1 Eq. (90)
excl. regions 4, 8
21 Frt face excl. regions pin U(0,1) 1/2 0.29 fafy Eq. (110) Eq. (113) Sq. root of (114)
1-4,9, 10, 13, 14
22 Back face excl. regions pg) U(0,1) 1/2 0.29 fz fy Eq. (110) Eq. (113) Sq. root of (114)
5-8, 11, 12, 15, 16
23 Btm face excl. regions pgn U(0,1) 1/2 0.29 fefz Eq. (111) Eq. (115) Sq. root of (116)
1,2,5,6,09, 11, 17, 18
24 Top face excl. regions pglz) u(0,1) 1/2 0.29 fafz Eq. (111) Eq. (115) Sq. root of (116)
3,4, 7,8, 10, 12, 19, 20
25 Lt face excl. regions (D U(0,1) 1/2 | 0.29 fufs Eq. (112) Eq. (117) | Sq. root of (118)
1,3,5,7, 13, 15, 17, 19
26 Rt face excl. regions pgf) u(o0,1) 1/2 0.29 fyfz Eq. (112) Eq. (117 Sq. root of (118)
2, 4, 6, 8, 14, 16, 18, 20

Table 13: The location of each of the 26 regions of partially covered voxels in a 3-dimensional
rectangular object (1t = left, rt = right, btm = bottom, frt = front, excl. = excluding, horiz.
= horizontal, vert. = vertical), the fraction of the voxel covered in each region of the partially
covered voxels, its distribution, expected value and standard deviation, and the number of
voxels with that fraction covered, its distribution, expected value and standard deviation.
Note that regions 1-4 above are the 3-dimensional equivalents of regions 1-4 in Figure 3,
regions 9 and 10 above are the 3-dimensional equivalents of regions 5 and 6 in Figure 3, and
regions 13 and 14 above are the 3-dimensional equivalents of regions 7 and 8 in Figure 3.
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have been shown to be Uniform(0,1) in Sections 2.1 and 3.1. The expected (mean) value,
the median and the standard deviation of each of these 6 fractions are therefore 1/2, 1/2,
and 1/4/12 = 0.2887, respectively. The probability that any of the six of these fractions is
between values a and b (with 0 < a < b < 1) is simply the length of that interval, b — a. For
example, the probability that the fraction of the voxel covered in Region 26 is between 0.2
and 0.5 is equal to 0.3.

The distributions of the fractions covered in regions 9-20 in Table 13 have also been
previously discussed in Section 2.2.3 and have each been shown (Appendix F.2) to have the
the probability density function given by

gw(w) =—logw, 0<w<1 (107)

and 0 otherwise, where w is the particular value of each of the 12 fractions.

The fractions covered in regions 1-8 in Table 13 are products of three Uniform(0,1)
random variables. As shown in Section F.3, each of these has the following probability
density function (pdf), denoted by Ay :

hw(w)=-————, 0<w<1 (108)

and 0 otherwise, where w denotes the particular value of each of the 8 fractions. Thus, to
obtain the probability that any of the 8 of these fractions is in a certain interval, one needs to
integrate the function in (108) over that interval. Specifically, as shown in Section F.3, the
probability that any of these four fractions is between values @ and b (with 0 < a < b < 1)
is equal to
b((logb—1)2+1)—a((loga—1)*>+1)
2

with 0 (log 0 — 1)> = 0. As shown in Section F.3, the expectation, the median, and the
standard deviation of each of the 8 fractions in regions 1-8 of Table 13 are 0.125, 0.069, and
0.1463, respectively.

As for the number of voxels at each fraction covered, as shown in Table 13, it is fixed at
1 in regions 1-8 and is equal to f, in regions 9-12, f, in regions 13-16, f, in regions 17-20,
fzfy in regions 21 and 22, f,f. in regions 23 and 24 and f, f. in regions 25 and 26. The
distributions, the means and the standard deviations of f,, f, and f. have been previously
derived and are shown in Table 13. The distribution, the mean and standard deviation of
[z fy was derived, as well, as it is exactly the expression for the number of fully covered voxels
Ny in the 2-dimensional setting. Specifically, as shown in (44), the distribution of f,f, is
given as follows:

Pla<W <b) = (109)

a(cl) . ?51) with probability p(fggl)) 'p(fygl))
VP with probability p(f£V) - p(f7) 110
faly = (2) (1) ith probabilit D) p(fs) o)

A with probability p(fz") - p(fy )

AP with probability p(£7) - p(fi?)
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Similarly, the distributions of f, f. and f, f. are given by

RSN with probability p(ng )) P
fof. = L. @ with probability p(fél)) P
v 2. D with probability p( féz’) P
(2)  £(2) : Iy (2)
[ fa - f2 with probability p(fz™) - p
( 351) Y with probability p(flsl)) P
5= DL with probability p(f5) - p
vz 3(,2) - f" with probability p(ff)) P
L A2 with probability p(£5?) - p
In (45), the mean of f, f, was shown to be equal to
T Y
E(ff) =2 1) (£ 1),
() (o)
while the variance of f, f, was shown in (46) to be equal to
Var(fof,) = |4-|my—0.5]-(0.5—|m,; —0.5]) + <

x |4-|my, —0.5]-(0.5—|m, —0.5])

, . 2 2
e
(%1 V2
Analogously, the mean of f, f, is given by
x z
U1 U3

while the variance of f,f. is equal to

Var(f.f.) = |[4-|ms—0.5]-(0.5—|m, —0.5]|) + (

(

x |4-|m,—0.5]-(0.5—|m, —0.5]) +

GG

The mean of f, f. is given by

= (2 ()
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while the variance of f, f, is equal to

2
Var(f,f.) = |4-|m, —0.5]-(0.5—|m, —0.5])+ (UE — 1)
2
- . 2:
X |4-|m,—0.5]-(0.5—|m,—0.5|) + (v__l) (118)
3

G RCED]

As discussed in Section 2.2.3, one may be more interested in the entire distribution
of fractions covered in all partially covered voxels without fixing the region. That is, the
question of interest may be about the fraction covered by a randomly picked partially covered
voxel whatever region it may be in. This distribution is a random mixture of the distributions
within each of the 26 regions in Table 13, with the mixing fractions equal to the relative
frequencies of each of the 26 regions. Note that the relative frequency of each region is
the number in the 7th column of Table 13 (i.e., 1 for regions 1-8, f, for regions 9-12, f,
for regions 13-16, f, for regions 17-20, f,f, for regions 21 and 22, f,f. for regions 23 and
24, and f, f, for regions 25 and 26) divided by the total number of partially covered voxels
N, =8+4(fs + fy + f) +2(fufy + fuf: + [, f:). Thus, the mixing fractions are themselves
random, as they are functions of the random variables f,, f, and f,. Extending the equation
in (55) to the 3-dimensional setting, we have that the density for the fraction covered F is
given by

9F)Y =YD D GF | R fofys £2) - 0(R | fus fy f2) - (fe) - 0(fy) - p(f2)  (119)

R fa fy [2
where
R denotes the region (1 through 26),

g(F | R, fu, fy, f.) denotes the conditional density of the fraction covered in a randomly
picked voxel in a given region R and given values of f,, f, and f.,

p(R | fu, fy, f-) is the relative frequency of the region R for given values of f,, f, and f.,
and

p(fs) is given in (19)—(20), p(f,) is given in (31)-(32), and p(f.) is given in (83)—(84),

Extending the procedure outlined in Table 3 to the 3-dimensional setting and following Table
13, the procedure for generating from the density in (119) is given in Table 14.
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1) Independently generate f, according to (19)-(20), f, according to (31)—(32) and f, according
to (83)—(84) (using Uniform(0,1) random variables, as discussed in Appendix C.2).

2) Given f;, f, and f, generated in step 1, independently generate a value from the distribution
of pg) given f,, a value from the distribution of pg(}) given f,, and a value from the distribution

of pgl) given f, according to (56)—(59).

3) Set pt?) = x/vy — f, — pV, pg(f) =y/va— fy — pg(,l), and pt?) = z/vg — £, — pV.

4) Set F' to be a sequence of the following 8 + 4(f, + fy) + 2(fofy + fof: + fyf2) values:

P py Pt P pl pt Pl el
1 1) (2 2) (1) (2 1) (2) (2 2) (2) (2
i py ), i, o pP e,

P, pPp, pPp?, pPp?, .,

repeat fyx times
pIp, pPp), pMp®, pPp®),

repeat fy times

pIpl, pPpN, pMpP, PP ..,

repeat f, times

pgl)7 p,(22)7 9 pél)a pg(f)7 9 p;(pl)a p:(pQ)J .
S——— N——

repeat fify times  repeat fif, times  repeat fyf, times
5) Repeat steps 1-4 K times for a large value K (e.g., 100000).

The resulting set of K sequences F' will be a sample from the density in (119). This set can
then be queried for any summary quantity of interest, such as quantiles, percentiles, means,
medians and variances of the fractions covered in all the partially covered voxels.

Table 14: Algorithm for generating values of the fraction covered, F', from the distribution
in (119) in the 3-dimensional setting when = > vy, y > vy and z > vs.
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3.5 Object Dimensions Smaller Than Voxel Dimensions

In this section, we consider the situation when at least one of the object dimensions is smaller
than the corresponding voxel dimension, i.e., at least one of the following is true: x < vy,
Yy < vg, 2 < v3. The results here are an extension of the results obtained in the 2-dimensional
setting in Section 2.3.

As in the 2-dimensional setting, all the voxels covered by the object are partially covered.
That is, the number of fully covered voxels N is identically 0. As for the number of partially
covered voxels and their fractions covered, as discussed in Section 2.1, there are two subcases
to consider in each dimension: the object could partially cover 1 or 2 voxel lengths in each
dimension. As in Section 2.3, we will use the term “small dimension” to refer to an object
dimension that is smaller than its corresponding voxel dimension. There are 3 groups of
cases to consider, each with its own set of subcases:

1. 1 small dimension, i.e., one of the following is true:

T >0,y 2>V, 2 < U3
T >, Y < Uy, 22> Us

rT <,y >V, Z2>03

(a) 1 voxel length is partially covered along the small dimension

(b) 2 voxel lengths are partially covered along the small dimension

2. 2 small dimensions, i.e., one of the following is true:

3?2017y<U2>Z<U3
r <, Y =g, 2 < U3

r <wp, Yy <vz, 22> U3

(a) 1 voxel length is partially covered along the 1st small dimension and 1 voxel length
is partially covered along the 2nd small dimension

(b) 1 voxel length is partially covered along the 1st small dimension and 2 voxel
lengths are partially covered along the 2nd small dimension

(c) 2 voxel lengths are partially covered along the 1st small dimension and 1 voxel
length is partially covered along the 2nd small dimension

(d) 2 voxel lengths are partially covered along the 1st small dimension and 2 voxel
lengths are partially covered along the 2nd small dimension

3. 3 small dimensions, i.e., x < vy, y < V9, 2 < V3

(a) 1 voxel length is partially covered along the x dimension, 1 voxel length is partially
covered along the y dimension, 1 voxel length is partially covered along the z
dimension
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(b)

()

1 voxel length is partially covered along the x dimension, 1 voxel length is partially
covered along the y dimension, 2 voxel lengths are partially covered along the z
dimension

1 voxel length is partially covered along the x dimension, 2 voxel lengths are
partially covered along the y dimension, 1 voxel length is partially covered along
the z dimension

2 voxel lengths are partially covered along the x dimension, 1 voxel length is
partially covered along the y dimension, 1 voxel length is partially covered along
the z dimension

1 voxel length is partially covered along the x dimension, 2 voxel lengths are
partially covered along the y dimension, 2 voxel lengths are partially covered
along the z dimension

2 voxel lengths are partially covered along the x dimension, 1 voxel length is
partially covered along the y dimension, 2 voxel lengths are partially covered
along the z dimension

2 voxel lengths are partially covered along the x dimension, 2 voxel lengths are
partially covered along the y dimension, 1 voxel length is partially covered along
the z dimension

2 voxel lengths are partially covered along the x dimension, 2 voxel lengths are
partially covered along the y dimension, 2 voxel lengths are partially covered along
the z dimension

While there is no randomness associated with which of the 3 groups of cases (or which
specific case within a group) will apply (since the cases are defined entirely by the voxel and
object dimensions, which are assumed to be known), within each case, there is randomness
associated with which of the subcases will occur (note that the probabilities of all the subcases
within each case must add up to 1).

3.5.1 Number of Partially Filled Voxels N,

1. 1 small dimension, i.e., one of the following is true:

T >, Y > U, 2 < Us

$2U17y<7}273203

T <V, Y >V, 2> U3

Since all the dimensions are interchangeable, we will denote the small dimension with
z and the other two dimensions with x and y. The voxel dimensions corresponding
to x, y, and z are still denoted as vy, v9, and vs, respectively. Thus, x > vy, y > o,
z < v3. As shown in Appendix D.3,the number of partially covered voxels in this case
is given by

 (fat2)(fy+2) ifm.<g <1-m,
Ny = { 2(fs +2)(fy +2) otherwise (120)
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with ¢, = ¢, /vs, as before. The distribution of N, (also derived in Appendix D.3) is

given by
((fV+2)(f) +2)  with probability p(fi") - p(fs") - (1 — 2/vs)
(FV+2)(f2 +2)  with probability p(f{") - p(f5”) - (1 — 2/vs)
(fP +2)(fY +2)  with probability p(f) - p(fs") - (1 — z/vs)
N, = B (A7 +2)  with probability p(f2”) - p(£)7) - (1= 2/v5) o)
P 20 +2)(f +2)  with probability p(f7) - p(fi) - (2/vs)
2(f +2)(fi? +2)  with probability p(f") - p(f§”) - (z/vs)
2(f +2)(f" +2)  with probability p(f27) - p(f") - (2/vs)
L 202 +2) (£ +2)  with probability p(£) - p(f$) - (z/vs)

with £ and f{? as defined in (22), fy(l) and f;z) as defined in (36), p(f»

as defined in (23) and p(fél)) and p(ff)) as defined in (37).
The expected value of N, is given by

(122)

E(Np):<§1+1) (%H) <§3+1).

The variance of N, is given by

Var(N,)

2
<4 - |my — 0.5 - (0.5 — |m, — 0.5]) + (E n 1) >
U1

<4 - |my, — 0.5 - (0.5 — |m, — 0.5) + (

" 2 2 p 2
(—+1) (1+£) (1+—)
U1 (%3 U3

The standard deviation of N, is the square root of the expression in (123).

. 2 small dimensions, i.e., one of the following is true:

$2U17y<v272<v3

T <v, Y =g, 2 < U3

r<v,Yy <V Z2>U3

Since the three dimensions are interchangeable, we will denote the 2 small dimensions
with y and z and the third dimension with x. Thus, x > vy, y < v9, 2 < v3. As shown
in Appendix D.3, the number of partially covered voxels in this case is given by

Ny =

fo+2
2(fz +2)
2(fz +2)
4(fz+2)

ifmy <g,<1-myandm, <qg. <1-m,

if my <qgy<1—myand (0<g, <m,orl—m, <gq, <1)

ifm, <qg.<1—-m;and (0<qg, <myorl—my,<g, <1)

if (0<gy<myorl—my<gqg,<1l)and (0<¢g <m,orl—m,<gq, <1)
(124)
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with g, = ¢, /vs and ¢, = ¢, /vs, as before. The distribution of N, is thus given by

( M 42 with probability p(fgg1 ) (1 - % (1= %
? 42 with probability p(f” )-(1-2%)-(1-2
N, = J 2087+ 2) with probability p(f) - (£ (1= 2) + 5 (1-2)) (195
2(f% +2) with probability p(f?)- (£ (1-2)+ = (1-2
4(f0 +2) with probability p(f{") - £ - =
| 4(£? +2) with probability p(fi?) - £ - 2

with £ and £ as defined in (22) and p(f;ﬁl)) and p( f)) as defined in (23).
As shown in Appendix D.3, the expected value of N, is given by

E(Np):(vflﬂ) (U%H) <U33+1).

Note that it is exactly the same as the expected value of the number of partially covered
voxels in all cases of 1 small dimension. The variance of N, is given by

Var(N,) = [(4 g — 0.5] - (0.5 — [my — 0.5]) + (Uf + 1)2)

(126)
The standard deviation is the square root of the expression in (126).

3. 3 small dimensions: x < vy, ¥y < v9 and z < v3
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As shown in Appendix D.3, the number of partially covered voxels is given by

( ifm, <¢g<1-mpandmy <g,<1—-—myandm, <¢qg, <1-—m,

ifmy <gp <1—mpandmy < g, <1-—myand (0< g, <mzorl—m, <gqg, <1)

ifmy <gp <1l—mgpand (0< g, <myorl—my<g,<1l)andm, <gq.<1—m;

if (0<gs<mgorl—my<gy,<1l)andm, <gqg,<1—myand m, <gq, <1-—m,

if my <gp <1—my and (0 < gy <myorl—my <gq,<1)and

0<g.<myorl—m,<gq,<1)

4 if (0< g, <mgyorl—my<gqg,<1)and my <gq, <1-—m, and
0<g.<myorl—m,<gq,<1)

4 if (0< g, <mgorl—my<gqg,<1)and (0<¢g, <myorl—my,<g, <1)and
szngl_mz

8 (0<g<mgyorl—my<gqg,<1)and (0< g, <myorl—my<gqg, <1)and

0<g.<myorl—m,<gq,<1)

=N NN =

(127)
where ¢, = ¢;/v1, ¢ = ¢y/v2 and ¢, = c,/vs, as before. Therefore, as also shown in
Appendix D.3, the distribution of the number of partially covered voxels in this case
is given by

Vo v3
with probability (1—2) (1 -2 E+<1—%>%( —£)+%( —%)(1-&)
_I_

1 with probability (1-2£)(1- £ (1 _ i)

2 z

4 with probability (1—%)%2 2 (1 — l) i (1 - %)
8

N, =

v1 ) vauz g v2
T Y z

with probability % -+

v1 v2 v3 "

The expected value of N, is given by

E(Np)z(%ﬂ) (%H) (Uigﬂ).

Note that the expected value is the same as that in the cases of 1 and 2 small dimen-
sions. The variance of N, is given by

3T 3y 3z x 2 Y 2/ 2
Var(Ny) = | —+1) | —=+1)(—+1) - —+1 —+1 —+1]) .
U1 V2 U3 0 Vg VU3
(129)
The standard deviation is the square root of the expression in (129).

3.5.2 Fractions Covered in Partially Covered Voxels

1. 1 small dimension, i.e., one of the following is true:

T2,y >, 2 < U3
T > v,y < Uy 22> Us

T <V, Y =V, 22 U3
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Still denoting the small dimension with z, as before, we have x > vy, y > v9, 2 < v3. As
discussed in Section 3.5.1, in this case there are either (f,+2)(f,+2) or 2(f.+2)(f,+2)
partially covered voxels. The former subcase, referred to as 1(a) at the beginning of
Section 3.5, corresponds to just 1 partially covered voxel length along the z dimension.
In this case, which occurs with probability 1 — z/v3 (as shown in Appendix D.2), the
fractions covered in the partially covered voxels are as follows:

o f.f, voxels are each covered z/vs of the volume,

e f, voxels are each covered pg)(z /vs) of the volume,
e f, voxels are each covered pg)(z /vs) of the volume,
e f. voxels are each covered pél)(z /v3) of the volume,
e f. voxels are each covered pz(f)(z /v3) of the volume,
e 1 voxel covered px py (z /vs) of the volume,

e 1 voxel covered px py /vs) of the volume,

(2
e 1 voxel covered px py (z /vs) of the volume,
(

o 1 voxel covered pZp{ (2 /v3) of the volume.

Since x > wvq, each of pxl and p(f) has a Uniform(0,1) distribution. Likewise, since

Yy > v, each of pél)

and py2 has a Uniform((] 1) distribution, as well. Thus, each of the
fractions covered pt" (z /vs), e )(2/v3), py (z/vg) and pi} (z/v3) has a Uniform(0, z/vs)
distribution, and expected value, median, and standard deviation of z/(2v3), z/(2v3),
and z/(v/12v3), respectively. The probability of any one of these four fractions covered
being between two values a and b with 0 < a < b < z/v3 is equal to (b —a)vs/z.

(), (

According to the results in Appendix F.4, each of the products px py (z /v3), pa py (z Jv3),

pgj )py (z/v3) and pa; (2)(,2 /vs) has the probability density function given by

gw(w) = ;3 ~(log(z/v3) —log w), 0<w<z/vs (130)

and 0 otherwise. As also shown in that section, the probability that any of these four
fractions is between two values A and B with 0 < A < B < z/vs:

P(A<W <B)= % (log(z/v3) +1)- (B—A) + 5 (Alog A— Blog B) (131)
z z

with 0-log 0 = 0. The expected value, median and standard deviation of each of these
four fractions covered are z/(4vs), (0.19z)/vs, and (0.22z)/vs, respectively.

The subcase of 2(f, + 2)(f, + 2) partially covered voxels (referred to as 1(b) at the
beginning of Section 3. 5)corresponds to 2 partially covered voxel lengths along the z

dimension, one pZ ) and the other pz long. In this case, which occurs with probability
z/vs (as shown in Appendix D.2), the fractions covered in the partially covered voxels
are as follows:
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o f.f, voxels at p,(zl) each,

o f.f, voxels at p£2) each,

o f, voxels at pgg )p( ) each,

o f, voxels at pé )p( ) each,

e f, voxels at pé )pi ) each,

e f, voxels at p?(f)pg) each,

e f, voxels at pg(cl)pgl) each,

o f, voxels at p&”pf) each,

e f, voxels at pg(f)pgl) each,

fy voxels at pg(g) @) each,

1 voxel at px )p( )p(l)

1 voxel at pé )pél)pf),

1 voxel at p;(,; )pg, )p,(zl),

1 voxel at pé )pz(, )pg),

e 1 voxel at p(z )pg(; )pgl)a

1 voxel at p; )pl(, )pg),

o 1 voxel at pgc )pg(; )pg )7

e 1 voxel at pé )pé )pg).

By analogy to the results obtained in Appendix E.3, each of the fractions pg) and

P has a Uniform(0, z/v3) distribution, so their expected value, median and standard
deviation are z/(2v3), z/(2v3), and z/ (\/ 2v3), respectively. Each fraction’s probability
of being between values a and b with 0 < a < b < z/v5 is equal to (b — a)vs/z.

Since x > vy, pg) and pg(f) each has a Uniform(0, 1) distribution. Also, y > vy, so

each of p?(f) and p?(f) has a Uniform(0, 1) distribution. Finally, as each of pgl) and

) has a Uniform(0, z/v3) distribution, and these fractions are independent from

their counterparts in the z and y dimensions, according to the results obtained in

Appendix F.2, each of the products pg)pgl), pg; )p( ), p( )p(l), pg; )pg), as well as pg, )pg ),

) )p§2), Y )pi , and p{p?

p )py (z/v3), P )py (z/v3), and P py (z /v3), considered earlier. Thus, each of these
fractions has the probability density function given in (130). The probability that any
one of these fractions is in the interval (A, B) with 0 < A < B < z/u3 is therefore the
same as that given in (131). The expected value, median and standard deviation of

each of these products is z/(4vs), (0.192)/vs and (0.22z) /vs, respectively.

has the same distribution as the quantities pg(c )py (z/v3),
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According to the results in Section F.3, each of the 8 triple products pél)pz(,l)pgl),

PP P PP P e pP e pP P and pPp pt?

has the probability density function given by
v

hy (w) = 2i(log(z/vg) —log w)?, 0<w< z/us (132)

and 0 otherwise. The probability that any one of these fractions is in the interval
(A, B) with 0 < A < B < z/v3 is therefore equal to

P(A<W <B)= ;)—z [B ((log B —log(z/vs) — 1)2 + 1) —A ((log A —log(z/vs) — 1)2 + 1)]

(133)
with 0 - log 0 = 0. According to the results obtained in Section F.3, the expected
value, median and standard deviation of each of these products is z/(8vs), (0.072)/vs
and (0.152)/vs, respectively. Table 15 summarizes the fractions covered and the cor-
responding number of voxels at that fraction for each of the two subcases of 1 small
dimension in the 3-dimensional setting. The small dimension is denoted with z, so the
case when x > vy, y > vy and z < vs.

To obtain the entire distribution of fractions covered in all partially covered voxels
without fixing the region, we extend the steps outlined in Section 2.3.2 to the three-
dimensional setting. Extending equation (72) to the 3-dimensional setting, we have
that the probability density function of the fraction covered F' in any randomly picked
partially covered voxel (across both subcases and all regions within each subcase) is
given by

GE) =D 33" g(F | RS, fur f,) - P(R | S, fo, f,) - p(S) - p(f2) - p(f,), (134)
R S fo fy

where

R denotes the region (1 through 9 for S = (a) and 1 through 18 for S = (b)),
S denotes the subcase (a) or (b) in Table 15,

g(F'| R, S, fz, f;) denotes the conditional density of the fraction covered in a randomly
picked voxel in a given region R within the given subcase S and the values of f,
and f,,

p(R | S, fu, fy) is the relative frequency of the region R for a given subcase S and the
values of f, and f,,

p(S) denotes the probability of each subcase and is given in Table 15,
p(fy) is given in (19)—(20), and p(f,) is given in (31)-(32).

Extending the procedure outlined in Table 6 to the 3-dimensional setting and following
Table 15, the procedure for generating from the density in (134) is given in Table 16.

2. 2 small dimensions, i.e., one of the following is true:
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Sub- | Proba- Reg- Fraction Covered # Voxels at the Fraction Covered
case bility ion Expres- Distri- Exp. Std. Exp. Distri- Exp. Std.
sion bution Value Dev. bution Value Dev.
1 i n/a % 0 fafy Eq.(110) Eq.(113) | Sq. root of Eq.(114)
1
2 s 1= z U0.2) | o | B || & [ BesBD)62) | Z-1 Eq.(40)
2
3 p%lz z U02) | & | 7B | v | BasBD-62) | L -1 Eq.(40)
4 pé) UZJ U(O’vza) zia \/évg fu Egs.(19)-(20) % -1 Eq.(26)
(@) | 1-2= 5 11>y fzi” U0.3) | 555 | 7om fo | Eqs.(19)-(20) | & — Eq.(26)
6 (l)p(; Z | Ba(0) | £ | 02 1 n/a 1 0
7 | P72 | Ba(uao) | A | 022 1 n/a 1 0
8 <2)p(1) : | Bq.(130) | g2 | 2= 1 n/a 1 0
o || 2Ppy? jj Eq.(130) | G2 | %2 1 n/a 1 0
(1) 2 z z
1 pz2 U(O’E) Tog N fafy Eq.(110) Eq.(113) | Sq. root of Eq. (114)
2 e U0.5) | 5 | 7B || foh Eq.(110) Eq.(113) | Sq. root of Eq. (114)
1 I
3 p< P [ Ba(80) [ 27 [ 2 || 5y [BesB)(32) | £ -1 Eq.(40)
4 P pl? Eq.(130) | & Lt fy | Bas3D)-(32) [ L -1 Eq.(40)
2 T
5 p M Eq.(130) | = n fy | Bas(31)-(32) [ L -1 Eq.(40)
6 pp? | Ba.(130) [ i 0.22: fy | Bas.(31)-(32) | L -1 Eq.(40)
T T
- p<1)p<2) Eq.(130) | 2 | %2= fo | Eas.(19)-(20) | Z -1 Eq.(26)
8 py)pY) [ Ba.(130) [ £ | %2 fo | Bas.(19-(20) | Z -1 Eq.(26)
® | £ 9 pp [ Ba(130) [ & [ 22 [ f [ Ees(19-(20) [ £ -1 Eq.(26)
2 2
10 1< >1< >1 Eq.(130) | = 0.2% fo | Eas.(19)-(20) | £ —1 Eq.(26)
i | 0y 0pY | Ba.(132) | | Lo 1 n/a 1 0
12 p(l)p(l)p(2) Eq.(132) 853 0-1)1352 1 n/a 1 0
13 p(l)p(Q)p(l) Eq.(132) 81213 0~1}1352 1 n/a 1 0
14 p(l)p(Q)p(Q) Eq.(132) ﬁ 0~v135z 1 n/a 1 0
15 || e 0P | Ba(132) | & | %= 1 n/a 1 0
16 p(2)p(1)p(2) Eq.(132) e 0'552 1 n/a 1 0
17 p(2)p(2)p(1) Eq.(132) 8i3 0'1)1352 1 n/a 1 0
2 2 2 B
18 || pPpPp? | Eq.(132) = 0.152 1 n/a 1 0
Table 15: The fraction of the voxel covered for each of the partially covered voxels, its
)

distribution, expected value and standard deviation, along with the number of voxels with
that fraction covered, its distribution, expected value and standard deviation, for the case
of 1 small dimension in the 3-dimensional setting. The small dimension is denoted with z,

SO x > vy, y > vy and z < vs.
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1) Independently generate f, according to (19)—(20) and f, according to (31)—(32)
(using Uniform(0,1) random variables, as discussed in Appendix C.2).

2) Given f, and f, generated in step 1, independently generate a value from the distribution

of pg}) given f, and a value from the distribution of pg(}) given f, according to (56)—(59).

3) Set PP = /v — fo — PV and p§2) =y/va — fy — pg(f)

4)  Generate the subcase S = (a) or (b) according to their probabilities in Table 15
(using Uniform (0,1) random variables, as discussed in Appendix C.2).

5) If S=(a) in step 4,
—set F' to be a sequence of the following f, f, + 2(fz + fy) + 4 values:

zfvs, .. (z/v3) - D, (z/v3)-p?, ..., (z/v3) -p?(f), (z/v3) -pg), s
~—— ~~
repeat fyfy times repeat fy times repeat fy times

(z/vs) - 0P, (z/ws) - 0P, (2/ws) - P, (2/ws) - p V)

If S = (b) in step 4,

— generate P ~ U(0, z/vs3),

— set pgz) = z/v3 —pgl), and

—set F' to be a sequence of the following 2f, f, + 4(fz + fy) + 8 values:

(1)

bz
e ~"~

2) (D)D) (1) (2)  p(1)(2) - 1)(2),)(2) (1) (1) (1) (2) (1) (2)  (2),)(2)

7pz AR pmpz)pxpzvprpz7pxpz AR p'y pZ7py pz?.py p2,’7py pZ PAR

repeat fxfy times repeat fy times repeat fy times
1) (1) (1 1) (1) (2 1) (2) (1 1) (2) (2
pg; )pg(/ )pg )7 ch )p?(J )Pg )7 p&; )pg(/ )pg )7 p(x )py(; )Pg )

pn(EQ)pz(;l)pg:l), pg)pz(/l)pg), p‘(r2)p:(l/2)pgl)a pg)pg(f)pg)

Y

6) Repeat steps 1-5 K times for a large value K (e.g., 100000).

The resulting set of K sequences F' will be a sample from the density in (134). This set can then

be queried for any summary quantity of interest, such as quantiles, percentiles, means, medians
and variances of the fractions covered in all the partially covered voxels.

9

Table 16: Algorithm for generating values of the fraction covered, F', from the distribution
in (134) in the 3-dimensional setting with 1 small dimension (z is assumed to be the small
dimension, so = > vy, y > vy and z < v3).
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$201,y<v272<v3
T <wy, Yy =, 2 <U3

r <,y <y Z >3

As before, we denote the small dimensions with y and z and the third dimension with
x. Thus, x > vy, y < vy and z < v3. As discussed in Section 3.5.1, in this case
there are either (f, + 2) (subcase (a), 2(f, + 2) (subcases (b) and (¢)) or 4(f, + 2)
(subcase (d)) partially covered voxels. The first subcase corresponds to 1 partially
covered voxel length along both the y and the z dimensions. In this case, which occurs
with probability (1—y/vs)(1—2z/v3) (as shown in Appendix D.2), the fractions covered
in the partially covered voxels are as follows:

e f. voxels at yz/(vyu3) each,

e 1 voxel at pgcl) -yz/(vavs)

o 1 voxel at pi? yz/(vaus)
Since pt” and p{? is each Uniform(0,1), pg(cl)(yz)/(vgvg) and pﬁf)(yz)/(vgvg) is each
Uniform(0, yz/(vavs)). Thus, each of these fractions has the expected value, median
and standard deviation of yz/(2v9v3), y2z/(2v9v3) and yz/(v/12v9v3), respectively.

There are 2(f, 4+ 2) partially covered voxels when 1 voxel length is covered along the
y dimension, and 2 voxel lengths are covered along the z dimension. This occurs with
probability (1 — y/v9)(z/vs). The fractions covered in the partially covered voxels in
this case are as follows:

e f, voxels at pz -y /vy each

f voxels at p? -y/ve each

1 voxel at p(x ! (y/v ) each

/v

(y/v2)
1 voxel at p2'pd! (y/vg) each
(y/v)

1 voxel at px pz

e 1 voxel at px pz

Since pz ) and pz is each Uniform(0,z/v3), each of the fractions pz -y /vy and pz

y /vy is Uniform(0, yz/(vqvs)) and thus has the expected value, median and standard
deviation of yz/(2uvav3), yz/(2vyv3), and yz/(v/12vv3), respectively According to the
results obtained in Appendlx F.4, each of the fractions pm pz ( Jva), px pz (y/v ),
pg(c D (y/ vg) , and p;,; pz (y /v2) has the probability density function given by

gw(w) = 22 (log (ﬂ) — log w) ;0 <w<yz/(vovs) (135)

Yyz U3
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and 0 otherwise. Hence, the probability that any of these four fractions is between two
values A and B with 0 < A < B < yz/(vqv3):

P(A<W < B) = %-(zog (ﬁ) + 1)-(B—A) Y2Y (Alog A~Blog B) (136)
Yz VU3 yz

with 0-log 0 = 0. The expected value, median, and standard deviation of each of these
four fractions are yz/(4vqvs), (0.19yz)/(vovs), and (0.22yz)/(vevs), respectively.

There are also 2(f, + 2) partially covered voxels when 1 voxel length is covered along
the z dimension, and 2 voxel lengths are covered along the y dimension. This occurs
with probability (1 — z/v3)(y/ve). The fractions covered in the partially covered voxels
in this case are as follows:

o f, voxels at p{) - 2 Jvs each

fz voxels at p§,2) - z/vs each

1 voxel at p )py (z/v3) each

/v

(2 3) each
1 voxel at pZ'p (Z/Ug) each
(2/vs)

1 voxel at px py

e 1 voxel at px py

By symmetry, the distributions, expected values, medians and standard deviations of
the above quantities are the same as the ones in the previous paragraph.

Finally, there are 4(f, + 2) voxels when 2 voxel lengths are covered along both the y
and the z dimensions. This occurs with probability yz/(vev3). The fractions covered
in the partially covered voxels are as follows:

o f, voxels at pgg )p( ) each

e f, voxels at pé )pi ) each

e f, voxels at péz)pgl) each

fz voxels at pg(, )p( ) each

(1),.(1), (1)

e 1 voxel at py'py 'p:’ each
e 1 voxel at p; )p@(, )pg) each
e 1 voxel at pé )pgg )p(l) each

e 1 voxel at p; )pz(, )pg) each

(2),.(1), (1)

e 1 voxel at py'py 'p:’ each
e 1 voxel at pé )pggl)p,(zg) each
e 1 voxel at pé )pz(, )pg) each
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e 1 voxel at p; )pé )pg) each

According to the results derived in Appendlx F 2, the robablhty density function for

each of the fractions pg(, )pgl) ) P?(; )pg) ) py pz ) and pr pz ) has the same distribution

as p; ! (y/vg) pg})pz (y/v2), pa )pz (y/vs), and p§;2)pz (y/va). Thus, each of these

fractions has the same probability density function as that given in (135). The prob-
ability that W is in the interval (A, B) with 0 < A < B < yz/(vyv3) is therefore the
same as that given in (136). The expected value, median and standard deviation of
each of these four fractions are thus yz/(4vyvs), (0.19y2)/(vevs), and (0.22yz)/(vevs),
respectively.

According to the results derived in Section F.3, the probablhty densfc function of each

1) (1 1 2 1) (2) (1 (2) (2 1 2) (1)
of the fractions p;(,; )pg, )p/(z ), p;(p )pg(, )pg ) ) p:(p )pg(, )p(z ) ) p:(c Dy )pg ), px Py p(z )7 p(z )py(, bz )7

P( )ng)]?( and pm pg(,,g)p,(z) is given by

2
gw(w) = %2l (log (£> —log w) , 0<w <+ Yz (137)

2yz V9Us VU3

The probability that W is in the interval (A4, B) with 0 < A < B < yz/(vqvs) is
therefore equal to

PA<W < B)=23p <(log B — log <yz> 12 1) A ((log A~ log (yz> 1)y 1)
2yz VU3 VU3

(138)
with 0 -log 0 = 0. The expected value, median and standard deviation of each of
these eight fractions are yz/(8vqvs), (0.07yz)/(vovs), and (0.15y2)/(vevs), respectively.
Table 17 summarizes the fractions covered and the corresponding number of voxels
at that fraction for each of the four subcases of the case of 2 small dimensions in the
3-dimensional setting. The small dimensions are denoted with y and z, so when > vy,
y < vg and 2z < vs.

To obtain the entire distribution of fractions covered in all partially covered voxels
without fixing the region, we extend the steps outlined for 1 small dimension in the
2-dimensional setting to 2 small dimensions in the 3-dimensional setting. As in (72),
we have that the probability density function of the fraction covered F' in any randomly
picked partially covered voxel (across both subcases and all regions within each subcase)
is given by

= > > 9(F [ RS, fa) p(R| S, f) - p(S) - plf), (139)
R S f

where

R denotes the region (1 through 3 for S = (a) and 1 through 6 for S = (b) or S = (¢)
and 1 through 12 for S = (d)),

S denotes the subcase (a), (b), (¢) or (d) in Table 17,
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Sub- Proba- Reg- Fraction Covered # Voxels at the Fraction Covered
case bility ion Expres- Distri- Exp. Std. Exp. Distri- Exp. Std.
sion bution Value Dev. bution Value Dev.
1 4= n/a 4= 0 fz Eqgs.(19)-(20) | = — Eq.(26)
VoV, Vo - >
@ | (1-2)(1-2) [ 2 [ 77 veltoamn) | 0.5 | 5 | A | 1 n/ E 0
a va v3 Pz~ - Yz/{v2U3 ’Uzvs 2vgv3 V12vpv3 @
p 2
3 pé ). yz/(va2vz) | U(O, v;’is ) 2Uy2zv3 \/JJijm 1 n/a 1 0
T
1 P -y va U022 | 22 rum fz | Egs.(19)-(20) | ;= —1 | Eq.(26)
2 p
2 22 -y /vg U0, %) | 5o | e || = | Bas19)-(20) | 2 —1 | Eq.(26)
® | (1-%)3 3 p%i”(y/m) Eq.(135) | oo | o2 |7 n/a 1 0
i | PP (wjve) | Ba(135) | g | o2 [ n/a L 0
5 p%i”(y/m) Ba.(135) | p2o- | S | 1 n/a 1 0
2) (2 .
6 || PP (y/vs) | Ba(135) | - [ 22 1 n/a 1 0
1 p:gzi -z/vs U0, £ | 72 ﬁfzvg fo | Eas.(19)-(20) | & —1 | Eq.(26)
2 Dy - 2/v3 uU(o, vgza ) 25};3 rvz’vg fe Egs.(19)-(20) | = — Eq.(26)
©) (1-2)% 3 || pp (/) | Ba(i3s) | g | 22 | n/a ! 0
(1) ( ) 0.221
4 Py (z/v3) Eq.(135) 41}-1/22“3 TUU; 1 n/a 1 0
5 p;(c )p(y )(Z/’Ug) Eq.(135) 4Uy2ZU3 % 1 n/a 1 0
6 | P77 G/vs) [ Ba(39) [ gy [ %R [ 1 n/a . :
1 (1) (1) E 135 yz 0.22yz E 19)—(20 T 1 Eq.(26
plp2 q. (135) Tvgus mYre fz qs.(19)—-(20) v q.(26)
22
2 p(;p(l) Bq. (135) | ;22— | 22 [ 7 | Bgs.(19)-(20) | = —1 | Eaq.(26)
p p 22
3 p(;p(; Eq. (135) | g5~ | %2 fo | Bas.(19)-(20) | & —1 | Eq.(26)
22 z
A R [ | O o @) | 1 | Bae)
5 Py Py ps Eq. (137) | & 0.15yz 1 n/a 1 0
23 V2v3
0 (1) (2 .
() = 6 ppy P | Ba. (137) | g2 [ 2 1 n/a 1 0
7 ppy pY | Eqo (137) [ g [ %= 1 n/a 1 0
8 P | Bg (187) | g | 2 T n/a ! 0
9 p(2)p(1)p(1) Eq. (137) Svy;vd 701')12‘2?32 1 n/a 1 0
10 ppy ) | Ba. (137) | ga- | RRE ! n/a ! 0
[ pTp7pl7 | Ba (137) | G- [ B T n/a ! 0
12 pp Y | Ba (137) | ga- | BB ! n/a ! 0

Table 17: The fraction of the voxel covered for each of the partially covered voxels,

distribution, expected value and standard deviation, along with the number of voxels with
that fraction covered, its distribution, expected value and standard deviation, for the case
of 2 small dimensions in the 3-dimensional setting. The small dimensions are denoted with

yand z, 80 x > vy, y < v9 and 2z < vs.
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g(F | R, S, f.) denotes the conditional density of the fraction covered in a randomly
picked voxel in a given region R within the given subcase S and the value of f,,

p(R | S, f.) is the relative frequency of the region R for a given subcase S and value
of fa,
p(S) denotes the probability of each subcase and is given in Table 17,

p(f:) is given in (19)—(20).

Following Table 17 and the steps equivalent to those of Table 6, we have the procedure
for generating from the density in (139) as outlined in Table 18.

. 3 small dimensions, i.e., x < vy, y < vy and z < vs.

As discussed in Section 3.5.1, in this case there are either 1 (subcase (a)), 2 (subcases
(b)—(d)), 4 (subcases (e)—(g)) or 8 (subcase (h)) partially covered voxels. The subcase
of 1 partially covered voxel corresponds to 1 partially covered voxel length along each of
3 dimensions. In this case, which occurs with probability (1 —z/v1)(1—y/ve)(1 —2/v3)
(as shown in Appendix D.2), the fraction covered in the 1 partially covered voxel is
the entire area of the object scaled to the voxel dimensions, i.e., zyz/(vi1v9v3).

The subcases of 2 partially covered voxels corresponds to 1 partially covered voxel
lengths along two of the dimensions and 2 partially covered voxel lengths along the
third dimension. Let us first consider subcase (b), in which the dimension with 2
partially covered voxel lengths is z. In this case, which occurs with probability (1 —
x/v1)(1—y/v2)(2/v3) (as shown in Appendix D.2), the fractions covered in the partially
covered voxels are as follows:

e 1 voxel at pgl) ~zy/(v1v9)
e 1 voxel at pg) -zy/(v1v2)

Since p and pt” is each Uniform(0, z/v3), each of the fractions covered P zy /(v102)

and p¥) - zy/(v1ve) has a Uniform(0, zyz/(viv9vs)) distribution. The expected value,
median and standard deviation of each is thus zyz/(2v1v9v3), 2/ (201v9v5) and zyz/ (v 12v,v503),
respectively. The subcase (c) is the same as (b), with the y and z quantities inter-
changed, while subcase (d) is the same as (b), with the z and 2z quantities interchanged.

The subcases of 4 partially covered voxels corresponds to 2 partially covered voxel
lengths along two of the dimensions and 1 partially covered voxel length along the
third dimension. Let us first consider subcase (e), in which the dimensions with 2
partially covered voxel lengths are y and z. In this case, which occurs with probability
(1—z/v1)(y/v2)(z/v3) (as shown in Appendix D.2), the fractions covered in the partially
covered voxels are as follows:

e 1 voxel at pggl)p,(zl)(x/vl)

e 1 voxel at pél)pgz) (x/vy)
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1)  Generate f, according to (19)—(20) (using Uniform(0,1) random variables, as discussed in Appendix C.2).

2) Given f, generated in step 1, generate pg;) from the appropriate distribution specified in (56)—(59).

3) Set pi) = /vy — fr —pi

4)  Generate the subcase S = (a), (b), (c) or (d) according to their probabilities in Table 17
(using Uniform (0,1) random variables, as discussed in Appendix C.2).

5) If S=(a) in step 4,
—set F' to be a sequence of the following f, + 2 values:

(n 2
/UZ:ZS ' 1> y Pz s Pz

repeat fy times

If S = (b) in step 4,
— generate p,(zl) ~ U(0,z/v3),
— set p( ) = =z/u3 fpgl), and
—set F' to be a sequence of the following 2f, + 4 values:
Lo, p® e pPp? | pP ) plP )

repeat fx times

If S = (c) in step 4,
— generate p?(jl) ~ U(0,y/v2),
— set p( ) = =y/vy —pél), and
—set F' to be a sequence of the following 2f, + 4 values:

2 e, @, e, P B, e
—_———

repeat fy times

If S = (d) in step 4,
— generate pél) ~ U(0,y/vy) and )~ U(0,y/vs),
—set pi = yfva —p) and p = 2 v — p,
—set F to be a sequence of the following 4f, + 8 values:

PP, pHp®, p@pd) pPp@),

~
repeat fyx times

Pa(x )p§ )Pg ), p:(z: )p(y )ng)a chl)Pé )Pg )7 p(x )pz(/ )pg )7

p2pi Y, ppl ), o piPpl), P pl pl?

6) Repeat steps 1-5 K times for a large value K (e.g., 100000).

The resulting set of K sequences F' will be a sample from the density in (139). This set can then
be queried for any summary quantity of interest, such as quantiles, percentiles, means, medians
and variances of the fractions covered in aPOthe partially covered voxels.

Table 18: Algorithm for generating values of the fraction covered, F', from the distribution
in (139) in the 3-dimensional setting with 2 small dimensions (y and z are assumed to be
the small dimensions, so = > vy, y < vy and z < v3).



e 1 voxel at pf)pgl)(x/vl)

o 1 voxel at p{pt? (x/v1)
According to the results derived in Appendix F.4, the probability density function for
each of the fractions is given by

V1V20V3

gw (w) (log E log w) , 0 <w < xyz/(vivgus) (140)

TYz V1U2V3

and 0 otherwise. Therefore, according to (338), the probability that any of these four
fractions is in the interval (A, B) with 0 < A < B < zyz/(v1v9v3) is equal to

V10203

P(A<W < B) =

(log ad 1> (B—A) + 2% (A log A— B log B)
V1U2V3 TYyz
(141)

with 0 -log 0 = 0, as before. From the results developed in Appendix F.4, we have
that the expected value, median and standard deviation of each of the four fractions is
equal to xyz/(4vivavs), (0.192yz)/(v1v9vs), and (0.22xyz)/(viv9v3), respectively. The
results for subcase (f) are the same with the x and y quantities interchanged, while
the results for subcase (g) are the same with the z and z quantities interchanged.

TYZ

The subcase of 8 partially covered voxels occurs when there are 2 voxel lenghts partially
covered along each of the 3 dimensions. In this case, which occurs with probability
xyz/(vivgus), the fractions covered in the partially covered voxels are as follows:

e 1 voxel at pél)pél)p(zl)

o 1 voxel at pél)pg(,l)pg)

e 1 voxel at pé”pé”pﬁ”

e 1 voxel at pi”pé”pf)

e 1 voxel at pgf)pél)p(zl)

e 1 voxel at péQ)pél)pg)

e 1 voxel at p§;2)p§2)p,(zl)

e 1 voxel at p§;2)p£,2)p,(22)
According to the results developed in Section F.3, each of these 8 fractions has the
probability density function given by

V10203

2
gw(w) = 20y (log Uﬁﬁ& — log w) , 0 <w < axyz/(vivavs) (142)

and 0 otherwise. Therefore, according to (333), the probability that any of these eight
fractions is in the interval (A, B) with 0 < A < B < zyz/(v1v9v3) is equal to

5 ((tog B~ tog 512 1) = 4 ((Gog A tog 22— 12 1))

V10203 U102lz3 )
143

P(ASWEB):%

2xyz
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with 0 -log 0 = 0. The expected value, median and standard deviation of each of
these eight fractions are xyz/(8vivuz), (0.07zyz)/(vivavs), and (0.15xyz)/(v1v9v3),
respectively.

Table 19 summarizes the fractions covered and the corresponding number of voxels
at that fraction for each of the 8 subcases of the case of 3 small dimensions in the
3-dimensional setting, i.e., x <, y < v9 and z < vs.

To obtain the entire distribution of fractions covered in all partially covered voxels
without fixing the region, we extend the steps outlined for 2 small dimensions in the
3-dimensional setting to 3 small dimensions in the 3-dimensional setting. As in (77),
we have that the probability density function of the fraction covered F' in any randomly
picked partially covered voxel (across both subcases and all regions within each subcase)
is given by

g(F)=>_> g(F | R,S)-p(R|S) p(S), (144)

where, as before,
R denotes the region (1 for S = (a), 1 or 2 for S = (b), (¢) and (d), 1 through 4 for
S = (e),(f), and (g), and 1 through 8 for S = (h)).
S denotes the subcase (a), (b), (c), (d), (e), (), (g) or (h) in Table 19,

g(F | R,S) denotes the conditional density of the fraction covered in a randomly
picked voxel in a given region R within the given subcase S,

p(R | S) is the relative frequency of the region R for a given subcase S,
p(S) denotes the probability (relative frequency) of each subcase and is given in Table
19.

Following Table 19 and the steps equivalent to those of Table 9, we have the procedure
for generating from the density in (144) as outlined in Table 20.

Generate the subcase S = (a), (b), (¢), (d), (e), (f), (g) or (h) according to their probabilities
in Table 19 (using Uniform (0,1) random variables, as discussed in Appendix C.2).

If S =(a)in step 1,

— set F equal to —=£—

v1v2v3 "
If S = (b) in step 1,
~ generate p) ~ U(0, z/vs) ,
— set pg) = z/vg — p,(zl), and
—set F' to be the sequence of the following 2 values:
(1) (2))

Ty
o (p2, pz

If S =(c)in step 1,

o8




— generate py(f) ~ U(0,y/v2) ,

—set piY) = y/vs — pi, and

— set F' to be the sequence of the following 2 values:
xz ( (1) (2))_

13 y 5 Py

If S = (d) in step 1,

— generate pi) ~ U(0,z/v1) ,

— set pg(f) =z/v; — pQ), and

—set F' to be the sequence of the following 2 values:
vz (1) 2
D903 (P2, pa’).

If S = (e) in step 1,

— independently generate pl’ ~ U(0,y/vq) and P~ U(0, z/vs),

—set pi) = y/vs — py, and p&) = z/v; — pt, and

—set F' to be the sequence of the following 4 values:

ﬁ(pél)pil), p ', o, o).

If S = (f) in step 1,

— independently generate pr1 ~ U(0,z/v,) and pz1 ~ U(0, z/v3),

setpgC =z/v —p andpz = z/v3 —p,(z), nd

—set I’ to be the sequence of the following 4 values:

L pPp, pp?, pPpl, pPp?).

If S = (g)in step 1,

— independently generate P ~ U(0,2/vy) and pg,l) ~ U(0,y/v2),

— set pg« =z/v pm , and py = 1y/vy —pél), and

— set F' to be the sequence of the following 4 values:

=y o e pe).

If S = (h) in step 1,

— independently generate pg}) ~ U0, :U/vl), )~ U(0,y/vy) and pH ~ U(0, z/vs),

—set pi = a/vr — pi), piP = y/vs — ), and p = 2/vs — ptY

— set F' to be the sequence of the followmg 8 values:

p( )p( )p(l), p(l)p( )p(2) p(l)p( )p(l)’ p(l)p( )p( ),

2 1 2 2 2 1 2 2
PP pPpp® | pP Pt p B3,

Repeat steps 1-2 K times for a large value K (e.g., 100000).

The resulting set of K sequences F' will be a sample from the density in (144). This set can then
be queried for any summary quantity of interest, such as quantiles, percentiles, means, medians
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‘ and variances of the fractions covered in all the partially covered voxels.

Table 20: Algorithm for generating values of the frac-
tion covered, F', from the distribution in (144) in the
3-dimensional setting with 3 small dimensions (x < vy,
y < vg and z < v3).

3.6 Summary

Table 21 contains the summary of the resulting variables of interest when a rectangular
3-dimensional object with edge lengths z, y, and z is placed inside a rectangular grid of
voxels, each with edge lengths vy, ve, and v, with & > vy, y > vy, and z > w3 (i.e., no small
dimensions) and with the center of the object randomly located inside a voxel at a point
(Cx,Cy ) (With 0 < ¢; <01, 0 < ¢y < vy, and 0 < ¢, < v3). Tables 22 — 24 contain the
summaries equivalent to that in Table 21 for the cases of 1 small dimension (exactly one of
the following is true: x < vy, y < vq, or 2z < w3), 2 small dimensions (exactly two of the
following is true: z < vy, y < vq, or z < v3), and 3 small dimensions (x < v, y < vy, and
z < vg).

References

[1] E. J. Hoffman, S.-C. Huang, and M.E. Phelps. Quantitation in positron emission com-
puted tomography: 1. effect of object size. Journal of Computer Assisted Tomography,
3:299-308, 1979.

2] R. M. Kessler, J. R. Ellis, and Eden M. Jr. Analysis of emission tomographic scan
data: limitations imposed by resolution and background. Journal of Computer Assisted
Tomography, 8:514-522, 1984.

[3] G. Casella and R. Berger. Statistical Inference. Duxbury Press, Belmont, California,
1990.

60



Sub- Reg- Fraction Covered # Voxels at
case ion Expres- Distri- Exp. Std. the Fraction
sion bution Value Dev. Covered
(a) 1 xyz/(v1v2v3) n/a TR 0 1
(1)
(b) 1 pz : xy/(vl'l]2> U(O“ulx’uygzvg) 21}‘?5;1}3 \/1721’)Uy1f)2v3 1
2 TYZ T T
2 p,(z ) : fL'y/(Ul’UQ) U(O’v:;ijjg) 21}?37,1’51)3 12:)7'11121)3 1
1
(c) Lo a2/ (vrvs) | U022 | mites | e !
©) - —
2 Py 'IZ/(vlvf')) U(O,,quj‘f“s) 21:%;13 \/17;:1?;2@3 1
1 x T
(d) 1 pg: ) . yz/((02v3) U(O’vf:vij\;) 21:3;13 \/ﬁLvyligv;«; 1
2
2 || % - yz/(vav3) U0, 5:5505) | Sorvsvs | Viov.vamn 1
(1), (1) : 0.22
(e) 1 Py "Dz (I/vl) Eq' (140) 4’1;7;%;;3 1)10:’3; 1
2 | pypP (/o) | Eq. (140) | gre | S 1
3 || w0 (@/vr) | Ea. (10) | ghes | O2nE L
4[| P /) | Ea (10) | grEl | GEes L
1) (1 0.22
(f) 1| ppP(y/ee) | Ba (140) | e | L2 1
1) (2 0.22
2 p%; ip%;(y/vz) Ba. (140) | gy | wyuet 1
3 pi(E2)p»(22)(y/1}2) Eq (140) 41}‘??}51}3 1;1vza:1)y3z 1
0.22
4 Pz "Dz (y/UQ) Eq (140) 41;:‘5221}3 Ul’UQIll)/gZ 1
1) (1 ]
() U | ppg"(z/vs) | Eqo (140) | g | G2 L
) (2 0.22
2 p%zipéli (z/vs) | Eq. (140) | 22 (;J%fff 1
3 pé)pgé)(z/vs) Eq. (140) 4ufzjv3 0“215:332 1
4 Pz Py (Z/U?)) Eq (140) 41)::5/)221)3 11.1v2a:1)y3z 1
) (1) (1
() 1 pipipt! Eq. (142) | gt | S 1
(1), (1), (2) x 0.15
= pa)pl(/z)pfn Fa. (142) | 55, o 117?;:3; :
3 Dx Dy Dz Eq. (142) 81}?3;}3 1;102963; 1
(1),(2), (2) 0.15
4 p:(EQ)pZ(Jl)pil) Eq. (142) Su‘fz;g Ovl'l;:'l’]y; 1
5 pi Py P2 Eq. (142) | groe- | S 1
2) (1) (2 0.15
. p%QipEy;p%l; Eq' (142) SUfgzz’Us 111;?;711}; 1
; 0.152
7 plz py2 pz2 Eq (]‘42) 81)fz;13 1)11)3332 1
8 Py pY Eq. (142) | ghe- | S0ne 1

Table 19: The fraction of the voxel covered for each of the partially covered voxels, its
distribution, expected value and standard deviation, along with the number of voxels with
that fraction covered, for the case of 3 small dimensions in the 3-dimensional setting, i.e.,
when x < vy, y < v9 and z < v3.
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Variable Notation | Expression | Distribution | Expected Standard
Value Deviation

# Fully Covered Voxels Ny Eq. (93) Eq. (94) Eq. (95) | Sq. root of (96)

# Partially Covered Voxels N, Eq. (97) Eq. (98) Eq. (99) | Sq. root of (100)

Fractions Covered
In Partially Covered
Voxels

see Tables 13 and 14

Table 21: Summary of the variables of interest in the 3-dimensional setting for the case when

T > v,y > V2,2 > V3.

Variable Notation | Expres- | Distribu- | Expected Standard
sion tion Value Deviation

# Fully Covered Voxels Ny 0 fixed at 0 0 0

# Partially Covered Voxels N, Eq. (120) | Eq. (121) | Eq. (122) | Sq. root of (123)

Fractions Covered
In Partially Covered
Voxels

see Tables 15 and 16

Table 22: Summary of the variables of interest in the 3-dimensional setting for the case of 1
small dimension. The small dimension is denoted with z, so when z > vy, y > vy and z < v3

Variable Notation | Expres- | Distribu- | Expected Standard
sion tion Value Deviation

# Fully Covered Voxels Ny 0 fixed at 0 0 0

# Partially Covered Voxels N, Eq. (124) | Eq. (125) | Eq. (122) | Sq. root of (126)

Fractions Covered
In Partially Covered
Voxels

see Tables 17 and 18

Table 23: Summary of the variables of interest in the 3-dimensional setting for the case of 2
small dimensions, with the small dimensions denoted with y and z, i.e., x > vy, y < vo and

z < V3.
Variable Notation | Expres- | Distribu- | Expected Standard
sion tion Value Deviation
# Fully Covered Voxels Ny 0 fixed at 0 0 0
# Partially Covered Voxels N, Eq. (127) | Eq. (128) | Eq. (122) | Sq. root of (129)

Fractions Covered
In Partially Covered
Voxels

see Tables 19 and 20

Table 24: Summary of the variables of interest in the 3-dimensional setting for the case of 3
small dimensions, i.e., r < vy, y < vy and z < v3 .
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Appendix A Expectation and Variance of f,

From (19) and (20), we have that

if m, <0.5,
= { 2k, with probability 2m,

2k, — 1 with probability 1 — 2m,, (145)

while

if m, > 0.5,
. { 2k, with probability 2(1 — m,,)

2k, +1 with probability 2m, — 1 (146)

Therefore, in the case when m, < 0.5, the expected value of f, is equal to

E(f:) = 2k2m,+ 2k, —1)(1 —2m,)
= 4dk,m, + 2k, — 1 — 4k, m, + 2m,
2
= b am)—1=2. 2
U1

- (147)

U1

(By definition of k, and m, in Section 2.1, k, + m, = z/2 )

In the case when m, > 0.5, the expected value of f: is equal to
E(f.) = 2k.2(1 —my)+ 2k, +1)(2m, — 1)
= 4k, — 4k,m, + 4k,m, + 2m, — 2k, — 1
2
o tmy) —1—9. %2

(%1

T
= ——1 148
. (143

Thus, for any value of m,, E(f,) = z/v; — 1.
For any value of m,, the distribution of f, is a two-point distribution. For any random
variable R that has a two-point distribution given by

n_ { a with probability p

b with probability 1 —p ’ (149)

the variance of R is given by
Var(R) = E(R?) — (E(R))*=a’p+b*(1—p) — (ap+b(1 - p))*
= a’p+b°(1—p) —a’p® —2abp(1 —p) — b*(1 — p)°
= a’p(1—p)+0°(1 —p)(1 = (1 = p)) — 2abp(1 - p)
= a’p(1—p) +0°p(1 —p) = 2abp(1 —p) = p(1 = p)(a—b)*  (150)
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That is, the variance of a random variable with a two-point distribution is equal to the
product of the probabilities of the two values times the square of the difference of the two
values that the variable takes on.

Therefore, when m, < 0.5, the variance of f, is equal to

Var(f.) = 2m.(1 — 2m,)(2k, — (2k, — 1))* = 2m,(1 — 2m,,) (151)
and when m, > 0.5, the variance of the number of fully covered voxels is given by
Var(f.) = 2(1 —mg)(2my — 1)(2k, + 1 — 2k,)?* = 2(1 — m,)(2m, — 1). (152)

An equivalent and more compact way to express the two cases above for any value of m,

between 0 and 1 is
Var(f,) =4-|mgy— 0.5 (0.5—|m, — 0.5]). (153)
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Appendix B Conditional Distributions of pg) given f,

and péj) given f,

We first obtain the conditional distribution of pg,;l) given f,. Recall from Section 2.1 that p;(rl)

is defined as

Cp — /2 Co — /2 x/2 x/2
pg(cl):’V / —‘_ / :’VQI_L—‘_(%C_L>7 (154>
U1 U1 U1 U1
which can be re-written as
P =b, — (g —h)=by—qu+h (155)
where 5
po 2 (156)
U1
c
T — _337 1
@ = (157)
and

Thus, k, = |h] and m, = h — k,. As before, let
ay = gz +h]. (159)

Consider first the case when m, < 0.5. Then f, can take on two values: 2k, — 1 and 2k,.
Consider first f, = 2k, — 1, which occurs with probability 1 —2m, (as shown in Section 2.1).
Thus, for a real number n, the conditional distribution function of pg) given f, = 2k, — 1 is
equal to

POV <n N f, =2k, —1)/P(f, =2k, — 1)
PP <n N fo =2k —1)/(1-2m,) (160)

P(pél)§n|fm:2kr—1)

Now, as discussed in Section 2.1, f, = 2k, — 1 when a, = k, and b, = —k, + 1. Putting
this together with the definitions of a, and b, in (159) and (158), the numerator in (160) is
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equal to

PV <nn f,=2k —1)=

Py —q+h<n nNa,=k, Nb,=—k,+1)=

= P(-ks+1—q+h<n Nk, <@+h<k,+1 N =k, <qo—h<—-k,+1)=

= P((h—k)+1—-n<gqg Nk,—h<q<k,—h+1Nh—k<q¢g<h—Fk+1)=
(

= Pm,+1-n<gqg, N mx<qx<1—mxﬂmx<qx§1+m$)—

~"

Mmgz>0 = —mgz<mg and 1—-my<l4+my

Mme<l—mg gnce mg<0.5
= P(max(1+m, —n,m;) < q. <1—my)
B {P(1+mw—n§qx<1—mx) ifl4+m,—n>m,=n<1

Pim, <q, <1—my) ifl4+m,—n<my,=n>1 (161)

As shown in Section 2.1, g, ~ U(0,1). Thus, for the case n > 1, since 0 <m, <1—-m, <1
(the 2nd inequality is true since m, < 0.5),

Pm,<q¢g.<1l—my)=1—my —m, =1—2m,. (162)
When n <1, 1+m, —n >0 (and 1 —m, < 1, as before), so

0 L+mg—n=>1-—m,
n—2m, n>2m,
- { 0 n < 2m, (163)
Thus, putting together (161)—(163),
0 n < 2my,
POV <nn fr=2k,—1)=< n—2m, 2m,<n<l1 (164)

1—2m, n>1
Hence,

P <n|fo=2k,—-1) = P <nn f,=2k —1)/P(f, =2k, — 1)
PV <n N f, =2k, —1)/(1 —2my,)
0 n < 2m,
= q == 9m, <n<1 (165)
1 n>1

The expression in (165) is the distribution function of a Uniform(2m,, 1) random variable,
so we have shown that when m, < 0.5,

pO| f, =2k, — 1 ~ Uniform(2m,, 1). (166)
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Now, we turn to the conditional distribution of p;” given f, = 2k, (m, < 0.5 still). As
shown in Section 2.1, P(f, = 2k,) = 2m,, so we have

PP <n | fo=2k)=PEY <n 0 fo=2k)/P(fo = 2k,)

T

= P <n 0 fo=2k)/2m,). (167)

We can derive P(p;(vl) <n N f, =2k,) using an argument equivalent to that used above to

derive P(p;(vl) <n N f, =2k, —1), but it is easier to note that when m, < 0.5, the event
that f, = 2k, is the complement of the event that f, = 2k, — 1, so

P <n n fo=2k)=Pp <n)—PEY <nn f,=2k—1)  (168)

Now, since, as shown in Section 2.1, p§3) ~ U(0,1), we have

0 n<0
PV <n)=q n 0<n<l1 (169)
1 n>1
so putting (169) together with (164), we have
0—-0 n <0
(1)< _ _ n—~0 0§n§2m$
Pl <n 0 fr = 2k;) n—(n—2mg) 2m,<n<1l (170)
1—(1-2m,) n>1
0 n<o0
= n 0<n<2m, (171)
2m, n > 2m,
Thus,
PP <n | fo=2k:)=PpL <n 0 fo=2k)/(2m,)
0 n<o0
= {5 0<n<2m, (172)
1 n>2m,

The above is the distribution function of a Uniform(0, 2m, ) random variable, so have shown
that when m, < 0.5,
pW| fo =2k, ~ Uniform(0,2m,). (173)

We derive the conditional distribution of pg) given f, for the case m, > 0.5 by repeating
the arguments used above for the case m, < 0.5. When m, > 0.5, f, can take on two values:
2k, + 1 and 2k,. Consider first f, = 2k, + 1, which occurs with probability 2m, — 1 (as
shown in Section 2.1). Thus, for a real number n, the conditional distribution function of

1 . - .
ps’ given f, = 2k, + 1 is equal to
PO <n | fo=2k+1) = PEY <n N fo=2k+1)/P(f; =2k, +1)

PV <n N f, =2k, +1)/(2m, — 1). (174)
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Now, as discussed in Section 2.1, f, = 2k, + 1 when a, = k, + 1 and b, = —k,. Putting
this together with the definitions of a, and b, in (159) and (158), the numerator in (174) is
equal to

Pl <n N fo=2k,+1)=
= Pb,—q¢+h<nnNa,=k+1nNb=—k)=
(ke —qe+h<n Nky+1<qe+h<hke+2 N —ky—1<qg —h<—k,)=
(
(

\
'TJ

= P((h—ky)—n<q¢g Nki—h+1<qg <k;—h+2N0h—k —-1<q¢<h—k,)=
my—n<qy N 1—my <qp<2-— me N my —1<q, <my) =

~
mz<l = mz—1<l—mgz and my<2—mgy

= Pmy—mn<gqg N 1—-m, <q,<my)=

e

1—-mgz<mgy ‘s?nce mg>0.5

= P(max(m; —n,1 —my) < ¢ < my)
B { P(m, —n < g, < my
1—m, < q, <m,

) my—n>1—m,
) my—n<l—m,
)
)

P(
(mm—nﬁ%<mx
P(

B n<2m,—1
- 1—m, <q,<mg) n>2m,—1
0 n <0
= n 0<n<2m,—1 (175)

2my,—1 n>2m, —1

since ¢, ~ U(0,1) (the top 0 is due to the fact that if n < 0, m, —n > m,, so P(m, —n <
gz < mg) =0). Hence,

PN <n|fo=2k+1)=Pp" <n N f, =2k +1)/P(fe =k, +1)

0 n <0

1 n>2m, —1

The expression in (176) is the distribution function of a Uniform(0, 2m, —1) random variable,
so we have shown that when m, > 0.5,

pWY| fo =2k, +1 ~ Uniform(0,2m, — 1). (177)

Now, we derive the distribution of pg) given f, = 2k, (for m, > 0.5). As shown in
Section 2.1, P(f, = 2k,) = 2(1 — m,), so we have

P<p:gcl) <n ’ fx = 2k1) = P(p(l) <n N fx = 2kz)/P(fx = 2km)

x

= P <n 0 fo=2k)/20 - my)). (178)

Furthermore, we note that when m, > 0.5, the event that f, = 2k, is the complement of
the event that f, = 2k, + 1, so
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so putting togehter (169) together and (175), we have

0-0 n <0
(1) < _ _ n—n 0<n<2m, —1
Plpz?sn 0 fo = 2k) n—(2m,—1) 2m, —1<n<1 (180)
1—2m,—1) n>1
0 n<2m,—1
= n—(2m;—1) 2m, —1<n<l1 (181)
20—m,) n>1

Thus,

P <n | fo=2k)=PEY <n 0 fo=2k)/2(1-m,))

0 n<2m,—1
n—(2mg—1
= { mlmel g, —1<n<1 (182)
1 n>1

The above is the distribution function of a Uniform(2m, — 1,1) random variable, so have
shown that when m, > 0.5,

pY| fo = 2k, ~ Uniform(2m, — 1,1). (183)

Now, we derive the conditional distributions of p§;2) given f,. We first note that since, as
shown in Section 2.1,

Xz
p? =——f.—pV, (184)
U1

the conditional distribution function of pgf) given f, (for either range of m, or value of f,)
is equal to

PP <n| f.) = Plafoo—fo—p) <n|f)
= P(pél) Zx/vl_fm_n | fac)
= 1-P@ <zfvi—fo—n| f). (185)
Therefore, in each case, the conditional distribution of pg}) given f, derived above can be

used to derive the conditional distribution of pgf) given f,. Recall also that by definition of
k, and m, in Section 2.1,

2
ket m, = 22, (186)
U1
SO .
2k, +2m, = —. (187)
U1
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Then when m, < 0.5, from (185), using the result in (165), we have

0 x/vy — 2k, +1—n < 2m,
x/v1—2ke+1—n—2my

2m, < z/vy — 2k, +1—-n <1

1—2my

1 x/vy — 2k, +1—n>1

{ 0 n>ax/vy — 2k, + 2m,) + 1
0

2/v1=(2ke+2my) +1-n x/vy — 2k, <n < x/vy — 2k, +2m,) + 1

1—2my

POP <n|fo=2k,—1)=1—PpWY <az/v,—2k,+1—n| f, =2k, — 1)
1_
1_
1—

1 n < x/vy — 2k,
0 n>1 (due
— li;;;x 2m, <n <1 to
1 n<2m, (187))
n < 2my,
= {2 o9, <n< (188)
1 n>1

The above is the distribution function of a Uniform(2m,, 1) random variable, so we have
shown that when m, < 0.5,

P2| fu =2k =1 ~ Uniform(2m,. 1), (189)

i.e., the conditional distribution of p§c2) given f, = 2k, — 1 is exactly the same as that of pg})
given f, = 2k, — 1.

Repeating the same argument for the case m, < 0.5 and f, = 2k,, we have from (185)
and (172)

0 1‘/1}1—2]{595—77/<0
% 0 <az/vy — 2k, —n < 2m,

1 x/vy — 2k, —n > 2m,

{ 0 n > x/vy — 2k,
0

PP <n | fo=2k) =1 P < afo, — 2k, —n | f, = 2k,)
1 —
1—q 2o gy — (2k, +2m,) < n < xfvy — 2k,

1 —

2Mmg
1 n < z/vy — 2k, + 2m,)

0 n>2m, (due
— 27;;; 0<n<2m, to

1 n<0 (187)

n <0
— {5~ 0<n<2m, (190)

1 n>2m,

The above is the expression for the distribution function of a Uniform(0, 2m,) random vari-

able, so we have shown that when m, < 0.5, the conditional distribution of p§;2) given

70



fe = 2k, is given by
pP| fo =2k, ~ Uniform(0,2m,), (191)

i.e., the same as that of p(ml) given f, = 2k,.
When m, > 0.5 and f, = 2k, + 1, from (185) and (176), we have

PP <n| fo=2k+1)=1-P@p <w/v; -2k, —1—n| f, = 2k, +1)
0 x/vy — 2k, —1—n <0
- 1_ % 0<az/v;—2k,—1—-n<2m, —1
1 x/vg — 2k, —1—n>2m, — 1
0 n>z/vy — 2k, — 1
- 1- % z/vy — 2k, +2m,) <n < z/v; — 2k, — 1
1 n < z/vy — 2k, + 2my)
0 n>2m, — 1 (due
- 1— %ﬁ}g 0<n<2m,—1 to
1 n<0 (187))
0 n <0
= { 5ty 0<n<2m, -1 (192)

1 n>2m, —1

The above expression is the distribution function of a Uniform(0, 2m, — 1) random variable,
so we have shown that when m, > 0.5, the conditional distribution of pg) given f, = 2k, +1
is given by
p?| f, =2k, +1 ~ Uniform(0,2m, — 1), (193)
i.e., the same as that of p;(rl) given f, = 2k, + 1.
Finally, when m, > 0.5 and f, = 2k,, from (185) and (182), we have

P(pgcg)én’foQkx):l_P<p§cl)Sx/vl_Qkfx_nlfx:2k:c)

0 x/vy — 2k, —n < 2m, — 1
= 1 HoHeonCmel) g1 <afuy— 2k, —n <1
1 x/vg — 2k, —n > 1
0 n>x/vy — (2k, + 2m,) + 1
- 1_ x/v1—(glzfjiTZ;)—n+1 .T/Ul . Qkx —1<n< 33/1)1 — (2kx + me) +1
1 n<z/vy—2k, — 1
0 n>1 (due
= 1-4 sy 2m.—1<n<1 to
1 n<2m,—1 (187)
0 n<2mg—1
o n—2mg—1)
1 n>1

(194)
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The above expression is the distribution function of a Uniform(2m, — 1, 1) random variable,

so we have shown that when m, > 0.5, the conditional distribution of pg) given f, = 2k, is
given by

pf)l fz =2k, ~ Uniform(2m, —1,1), (195)

i.e., the same as that of p;(,;l) given f, = 2k,.

The conditional distributions of pyl) and péz)

given f, will be exactly analogous to those

of p&l) and pf) given f, just derived, with the x quantities replaced by the y analogs.
Thus, in summary, we have the following results:

When m, < 0.5,
PO | fo= 2k, — 1~ U(2my, 1), i=1,2 (196)
and
PO | fo =2k, ~ U(0,2m,), i=1,2. (197)
When m, > 0.5,
P | fy =2k, +1~U(0,2m, — 1), i=1,2 (198)
and
PO | fo=2%ky ~ U2my —1,1), i=1,2. (199)
When m, < 0.5,
PO | fy =2k, —1~U(2m,,1), i=1,2 (200)
and
PO | fo =2k, ~ U(0,2m,), i=1,2. (201)
When m, > 0.5,
P | fy =2k, +1~U(0,2m, —1), i=12 (202)
and
P | fy =2k, ~U@2m, —1,1), i=12 (203)
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Appendix C Generating From Distributions of f,, f,
and f.

C.1 Generating from an Arbitrary Discrete Distribution
In general, a sample from a discrete distribution of a random variable X given by

x1 with probability p;
9 with probability py

X = (204)
azn with pro{o.élxbility DPn
can be done as follows:
1. Generate U ~ Uniform(0,1)
2. Find ¢ =1, ...,n such that . .
o <U <D p, (205)
=0 =0

with py = 0.
3. Take the sample equal to x;.

To generate a string of values from this distribution, one can repeat steps 1-3 a number of
times. '
This works because by construction, the event X = x; is equivalent to the event Z;;B pj <

U< ijo p;, and since U ~ Uniform(0,1),

i1 i i i—1
P(X:xi):P<ij§U<ij> =D pi— ) pi=n (206)
§=0 j=0 Jj=1 J=0

as required.

C.2 Generating From Distributions of f,, f, and f,

As shown in Section 2.1, the distribution of f, is given as follows:

9 with probability p(f{")
=9 "o : o @) (207)
fz with probability p(fz")
where
f;l(gl) = Qk:w
2k, — 1 if m, <0.5
2) _ T x
L= { D%y +1  ifmy > 05 (208)
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= 120 -my)  ifm, > 05

p(f?) = 1—p(fM). (209)

Thus, following Appendix C.1, a sample from the distribution of f, can be generated as
follows:

1. Generate U ~ Uniform(0,1)

2. fU < p( a(cl)), take the sample equal to fé”. Otherwise, take the sample equal to f;£2).

Sampling from the distributions of f, and f, can be done in an equivalent way with z
quantities replaced by the y and z quantities, respectively.
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Appendix D Object Dimension and Voxel Dimension

This section gives detailed arguments and calculations relevant to the situation when the
object dimension is smaller than the corresponding voxel dimension (in one-dimensional
setting this translates to = < vy). In addition, this section shows proof of the claim that f,,
as defined in (1), is guaranteed to be non-negative when x > v;.

D.1 Non-negativity of f, when = > v,

We show that as long as © > vy, i.e., as long as the object size in is no smaller than the voxel
size in one-dimensional setting, the expression for f, in (1) is guaranteed to be non-negative.
The number of fully covered voxels f, was defined there as

P Qc Y/QJ - P Zij | 210)

and was shown in Section 2.1 to take on the following 3 possible values:

2k, if ¢, < min(1 —my, m,) or ¢, > max(l —my, my)
fo=1< 2k, —1 ifm, <g, <1—my, (211)
2k, + 1 if1—my, <q, <my

Since k, > 0, the only one of these values that can be negative is 2k, — 1 in case k, = 0. This
happens if m, < ¢, < 1—m,. Now, m, < 1—m, if and only if m, < 1/2, or equivalently, if

IU_/f < 1/2 since k, = 0 implies that m, = 22 That in turn is true if and only if

and only if =
x < vy. Therefore, as long as = > vy, the expression in (1) is guaranteed to be non-negative

for x > 0.

D.2 Number of Partially Filled Voxels N, in 2-D
D.2.1 1 small dimension
In this case, one of the following is true:

x>wv and y < vy

r<wvyand y > vy

Since the two dimensions are interchangeable, we will denote the small dimension with y
and the other dimension with x. Thus, x > v; and y < vy. In this case, there are two
subcases: 1 or 2 partially filled voxel lengths along the y dimension. As discussed in Section
2.1.3, the former subcase is equivalent to the event that m, < ¢, <1 —m,, while the latter
is equivalent to its complement, i.e., the event that 0 < ¢, <m, or 1 —m, < ¢, < 1. By
referring to Figure 4, it is easily seen that

_ fx+2 ifmySngl_my

Ny = { 2(f: +2) otherwise (212)
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with g, = ¢, /v, as before. As discussed at the end of Section 2.1.3, the two events occur
with probability 1 — 2m, and 2m,, respectively. Moreover, when y < vo, m, = % < 0.5, so

my = frac <y/ 2) = %, leading to 2m, = y/vs. Therefore, conditional on the value of f,,

the distribution of IV, is given by

N fe +2  with probability 1 — y /v, (213)
P71 2(fe +2) with probability y/vy
This implies that the (unconditional) distribution of N, is given by
49 with probability p( ) (1 —1y/vg)
242 with probability p(f ) (1= y/v)
Ny = 1) . . 1) (214)
2(fz’+2)  with probability p(f ) (y/v2)
2(fz ) +2)  with probability p(f) - (y/vs)

with £ and £ as defined in (22), and p(f) and p(f?) as defined in (23).

Although the expected value of N, can be obtained directly from (214), it is easier to
obtain it from (212) using the formula for the iterated expectation (for any two random
variables A and B, E(A) = Eg(E(A|B)) = >, E(A|B = b)P(B = b); see [3] for more
detail):

E(N,) = E(N, given 1 partially filled voxel along y) - P(1 partially filled voxel along y)
+ E(N, given 2 partially filled voxels along y) - P(2 partially filled voxels along y)

= E(f.+2) (1—£>+E(2(fx+2))-£:E(fx+2) (1—E+2£)

V2 V2 V2 U2

= (E(f) +2) (H%) =(§1—1+2> <1+%) =
()

(recall that E(f,) = x/v; — 1, as shown in Appendix A). Using the iterated expectation
again, we can obtain E(N;), as follows:

E (N; ) = E (N; given 1 partially filled voxel along ) - P(1 partially filled voxel along y)
+ F (NI? given 2 partially filled voxels along y) - P(2 partially filled voxels along y)

= (BE(f. +2)) (1—%)+(E(2(fx+2))2)-v—y2=(E(fx+2)2) (1 =44 _)

V2 (%

= (B(f. +2)?) (1 + i—f) = (Var(fs +2) + (E(f: +2))%) (1 - 3—”)
= (Var(fo) + (E(fa) +2)%) (1 + i—y) = (Var(fx) + (3 + 1)2> (1 + %) (216)
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Thus, using (215) and (216), the variance of N, is equal to

Var(N,)

E(N;) = (E(N,))*

e+ () )2 (o 2
vy (1 8) + (501) (13- (1+2))
Var(f,) <1+i—z/> n (%H)z. (1_U_y2) v%

3 2
4-|my —0.5]- (0.5 — [me — 0.5]) <1+—y) + 2 (1—3) (£+1)
(%) (%) (%) (%1

since Var(f,) =4 -|m, — 0.5 - (0.5 — |m, — 0.5), as shown in Appendix A). The standard
deviation of N, is then simply the square root of the expression in (217).

D.2.2 2 small dimensions

In this case, we have * < vy and y < vy, and there are 4 subcases: there can be 1 or 2
partially voxel lengths along each of the two dimensions. Therefore, the number of partially

covered voxels is given by

1 ifm, <g<1-—mypandm, <gq, <1—my
N — 2 ifm, <¢g,<1—myand (0< g, <myorl—m,<g, <1)
P 2 ifmy <g,<1-—myand (0<¢g, <mgyorl—m,<gqg, <1)
4 if(0<qg <myorl—m,<g, <1)and (0<¢g, <myorl—m,<gqg, <1)

(218)

where ¢, = ¢;/v; and g, = ¢,/vs, as before. Since ¢, and ¢, are independent and Uni-
form(0,1), and = < vy implies that 2m, = z/v; and y < vy implies that 2m, = y/v,, the

distribution of IV, is given by

(

with probability (1 - —> (1 - i)
with probability Uil 1— X

v2

with probability % 1— %
with probability £ - £

v1 v2

N SR N

\
or

I with probability (1-£) (1~ %)

Np =19 2 with probability

4 with probability

z R

v1 v2 v2 v1
z .Y

v1
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Hence, the expected value of the number of partially covered voxels in this case is given

E(N,) = (1—3) (1—£)+2-2(1—£)+2-3(1—3)+4-£2
U1 V2 (%) U1 1 (%) V1 U2
= (£+1) <3+1>. (221)
(%1 Vo

E(N?) = (1—3> <1—£>+4~£<1—3)+4-£(1—£)+16-3ﬁ
(1 (%) (%) (% (%1 (%) V1 Uy

- (i—f + 1) <i—z + 1) : (222)

so the variance of N, is given by

Var(N,) = E(Ni)—(E(Np)f

EE)- Gy

The standard deviation is the square root of the expression in (223).

D.3 Number of Partially Filled Voxels N, in 3-D

D.3.1 1 small dimension

Since the three dimensions are interchangeable, we will denote the small dimension with z.
Thus, z > vy, y > vy and z < vz In this case, there are two subcases: 1 or 2 partially
filled voxel lengths along the z dimension. Following the results obtained in Section 2.1.3,
the former subcase is equivalent to the event that m., < ¢, < 1 — m,, while the latter is
equivalent to its complement, i.e., the event that 0 < ¢, < m, or 1 —m, < ¢, < 1. Extending
the results in Appendix D.2, we have that

(fm+2)(fy+2) ifszszl_mz

Np = { 2(fz +2)(f, +2) otherwise (224)

with ¢, = ¢,/vs, as before. As discussed at the end of Section 2.1.3, the two events occur

with probability 1 — 2m, and 2m,, respectively. Moreover, when z < vg, m, = %f < 0.5, so
m, = frac %? = %, leading to 2m, = z/vs. Therefore, conditional on the values of f,
and f,, the distribution of N, is given by
v (Fe+2)(f, +2) with probability 1 — z/vs (225)
P 2(fe +2)(f, +2) with probability z/vs
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This implies that the (unconditional) distribution of N, is given by

( 1

—

(fY+2)(f0 +2)  with probability p(f{”) - p(fs") - (1 — 2/vs)
(fV+2)(fP +2)  with probability p(f{”) - p(fs?) - (1 — z/vs)
(f&+2)(f7 +2)  with probability p(f*) - p(fs") - (1 — 2/vs)
N (f:z(:2) + 2)(f352) +2) with probability p(fgg)) ‘P(fzSQ)) (1= z/v3) (226)
P 20/ +2)(fsY) +2)  with probability p(f£”) - p(fi”) - (2/vs)
2(f" +2) (£ +2)  with probability p(f1") - p(£”) - (2/vs)
2/ +2)(fiY +2)  with probability p(f27) - p(f{") - (2/vs)
L 20/ +2) (£ +2)  with probability p(f”) - p(fs?) - (2/vs)

with f{" and f{¥ as defined in (22), M and f{? as defined in (36), p(fél)) and p(ff)) as
defined in (23) and p(fél)) and p(ff)) as defined in (37).

Although the expected value of N, can be obtained directly from (226), it is easier to
obtain it from (224) using the formula for the iterated expectation (for any two random
variables A and B, E(A) = Ep(E(A|B)) = Y, E(A|B = b)P(B = b); see [3] for more
detail):

E(N,) = E(N, given 1 partially filled voxel along z) - P(1 partially filled voxel along z)
+ E(N, given 2 partially filled voxels along z) - P(2 partially filled voxels along z)

Ellfe + 2y +2) <1 - U%) + ER2(f, +2)(f, +2)] - Uig

El(fo +2)(f, +2)] (1 Y i)

U3 U3

e S NI CRICER
)

(Recall that f, and f, are independent, so E[(f,+2)(f,+2)] = E(f:+2)E(f,+2). Moreover,
E(f:) = x/v; — 1, as shown in Appendix A and analogously, E(f,) = y/v2 — 1.)
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Using the iterated expectation again, we can obtain F (Ng), as follows:

E(N?) = E(N? given 1 partially filled voxel along z) - P(1 partially filled voxel along z)
+ F (Nﬁ given 2 partially filled voxels along z) - P(2 partially filled voxels along z)

= (B2 +2P) (1= 2) + B+ 20 +27) 2
— (B2 +2P) (1- 240 D)
= (B +2) (E(fy +2)?) (1 + %)

= (Var(fe +2)+ (B(fe +2))?) (Var(f, +2) + (E(f, +2))") (1 ' 3_)
= (Var(f) + (B() +2) (Var(hy) + (B0 +27) (142

= <Va7"(fx) + (v% + 1)2) (Vm“(fy) + (U% + 1>2> (1 + i—j) (228)

Thus, using (227) and (228), the variance of N, is equal to
VaT(Np) = E(N;?) - (E(Np))2

(Var(fz) + (vﬁl + 1) 2) : (Var(fy) + <U% 4 1) 2> . (1 X i_j)
< 2
_ (4 |y — 0.5] - (0.5 — |my — 0.5]) + (E N 1)2

U1

X

2
4-|m, — 0.5 (0.5 — m, — 0.5) + (U% + 1)

N—— 7
VR
—_
+
@lOJ
o R
N——

S ) 0 =

since Var(f,) =4-|m; —0.5] - (0.5 — |m, — 0.5]), as shown in Appendix A, and Var(f,) =
4-|m, —0.5] - (0.5 — |m, — 0.5]), by analogy. The standard deviation of N, is then simply
the square root of the expression in (229).

D.3.2 2 small dimensions

Since the three dimensions are interchangeable, we will denote the two small dimensions
with y and z. Thus, > v, y < v and z < v3. In this case, there are 4 subcases: there can
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be 1 or 2 partially voxel lengths along each of the two small dimensions. Since z > vy, there
are f, + 2 voxel lengths covered along the x dimension. Therefore, the number of partially
covered voxels is given by

fot+2 ifmy,<g <1-—myandm,<gqg <1-m,

2(fo+2) ifmy<g<l—-myand (0<g <m,orl—m,<gqg, <1)

2(fo+2) ifm,<¢g.<1l-—m,and (0<¢qg, <myorl—m,<gq, <1)

4(fr+2) f(0<g, <myorl—m,<gqg,<1)and (0<¢g <m,orl—m,<g, <1)
(230)

where ¢, = ¢,/vy and g, = c¢,/vs, as before. Since ¢, and ¢, are independent and Uni-

form(0,1), and y < v, implies that 2m, = y/v, and z < vz implies that 2m, = z/vs,

conditional on f,, the distribution of IV, is given by

N, =

(

fe +2  with probability < — Ui> (1 _ £>

N, — 2(fx +2) with probability 2 (1— = (231)

2(f. +2) with probability = (1= %
4(f, +2) with probability % L2

U3

or

f.+2  with probability (1 - i) (1 - 4)
Np =1 2(f,+2) with probability £ (1 . —) + 2 (1 . i) (232)
4(f. +2) with probability ;2 - =

Hence, the (unconditional) distribution of N, is given by

)
f:z(:l) +2  with probability p(fgg1 ) (1-2)-(1-2
P 42 with probability p( ff ) (1— L) (1 z
(1) . - (1) » Z
N, = 2(fs’ +2) with probability p(fa') - (Z-(1-Z2)+Z(1-2 (233)
2(f +2) with probability p(f?) - (£ (1-2)+ 2 (1- £
4(f +2) with probability p(f{") - £ - =
4(f:£2) +2) with probability p(ff ) - % -z

\

with £ and f* as defined in (22) and p(f{") and p(f\*) as defined in (23).
From (232), using the iterated expectation formula, we have that the expected value of
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the number of partially covered voxels in this case is given by

B0y) = B+ (1-2) (1-2)

)
- (%H) <U2+1 (U%H). (234)

Also,

= E((f: +2)) <i—?: + 1) (i_j 4 1)
= (Var(f:) + (E(fz +2))?) (i_?: + 1) (i_j i 1)

_ (Var(fm) + (% + 1>2> <i—§ + 1) <i_§ + 1) , (235)

so the variance of N, is given by

Var(N,) = E(N;) = (B(N,))*

Var(f.)+ (Uﬁl + 1)2> (i—g + 1) (i—j + 1) (236)

(
= (4~ |m, — 0.5] - (0.5 — |m, — 0.5]) + (vﬁl + 1>2> (i—?: + 1> <i—': + 1)
(%Jr 1)2 (U%Jr 1)2 (i+1>2

The standard deviation is the square root of the expression in (236).

(237)
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D.3.3 3 small dimensions

Here, we consider the case when x < vy, y < v and 2z < v3. There can be 1 or 2 partially
voxel lengths covered along each of the three small dimensions. Thus, there can be 1, 2, 4,
and 8 partially covered voxels. The number of partially covered voxels is given by

ifm, <g¢g<l—-—mypandmy, <gq,<1-—myandm, <gqg. <1-m,

ifm, <g¢,<1l—myandm, <g,<1—myand (0<gqg, <m,orl—m,<gq <1)

ifm, <g¢,<1l—myand (0<g,<myorl—my,<g <1l)andm, <gq, <1—m,

if(0<g, <myorl—m,; <gqg,<1l)andm, <g,<1l-—myandm, <qg <1-—m,

ifm, <¢, <1—my,and (0<¢g, <myorl—m,<gqg, <1)and

0<g.<m,orl—m, <q, <1)

P 4 if (0<q, <myorl—m,<gqg,<1)and m, <gq, <1—m, and
0<g.<m,orl—m,<gq,<1)

4 if(0<¢g<myorl—m,;<g <1)and (0<¢g, <myorl—m,<g, <1)and
m, <q.<1—m,

8 (0<g,<myorl—m,<gqg,<1)and (0<¢q, <m,orl—m,<gq, <1)and

0<qg<m,orl—m,<q, <1)

NN N

\

(238)
where ¢, = ¢, /v1, ¢, = ¢,/v2 and ¢, = ¢,/vs, as before. Since ¢, ¢, and ¢, are independent
and Uniform(0,1), and « < v; implies that 2m, = = /v, y < v, implies that 2m,, = y/v,, and
z < vy implies that 2m, = z/vs, the distribution of the number of partially covered voxels is
given by

(

1 with probability (1— — L (1 — i)

2 with probability (1 — > -2 =

2 with probability (1 — ﬁ

2 with probability o (1 — (239)
4 with probability (1 _ =
4
4
8

with probability -* (1
i

ﬁ

with probability -

with probability Ui%

or
(1 with probability (1—2)(1- <1 - —3)
N, = 2 with probability (1 S\l =-5) =+ ( v1> - (1 vs) + & (1 v2> (1 -
4 with probability (1— &)Lz 4 & (1 _ i) R (1 - %)
vy ) v2 v3 v1 vo | w3 V1 V2 v3
| 8 with probability %%%

(240)
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The expected value of N, is given by

o = (-2) (1-2)(1-3)

G EGE

U1 V2 U3

) )

so the variance of N, is given by

Var(N,) = E(N)) - (B(N,))

The standard deviation is the square root of the expression in (243).
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Appendix E Distributions of X — | X ]| and [X| — X for
a Continuous Random Variable X

E.1 General Case

We will first obtain the general formulas for the distributions of the random variables Y =
X —|X]| and Z = [X] — X, where X is an arbitrary continuous random variable, and [ X]
and | X | are the ceiling and the floor of X, respectively. Clearly, both Y and Z can only
take on values between 0 and 1.

Let C' denote the set of all possible values of | X |. Then for 0 < k < 1, the distribution
function (df) of Y, denoted by Fy, is given by

Fy(k) = P(Y<k)=P(X-|X]<k) =) P(X—|X|<kn |[X]=0)

ceC
= Y PX<kten [X|=0=) P(X<k+tcnec<X<ctl
ceC ceC
= Y Pe<X<k+e) =Y (Fx(k+c)— Fx(c), (244)
ceC ceC

where Fx denotes the df of X. Thus, for 0 < k < 1, the probability density function (pdf)
of Y = X — | X, denoted by fy, is equal to

fy (k) = —Fy => fx(k+c) (245)

ceC

where fy denotes the pdf of X (i.e., fx(k) = = Fx(k)). For other values of k, the value of
the pdf of Y is 0.

Now, let D denote the set of all possible values of [X]. Then for 0 < k < 1, the
distribution function of Z, denoted by F, is given by

Fz(k) = P(Z<k)=P(X]|-X<k) =Y P(X]-X<kn [X]=d)

= ) PX>d-kn [X]=d)=) PX>d-knd-1<X<d)
= Y Pd—k< X <d)=) (Fx(d)— Fx(d—k)). (246)

deD deD

Thus, for 0 < k < 1, the pdf of Z = [X]| — X, denoted by fz, is equal to

fz(k) = —FZ = fx(d—k), (247)

deD

where, as before, fx denotes the pdf of X (for other values of k, the pdf of Z is 0).
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E.2 Uniform Case
E21 Y=X-|X]

Suppose X ~ Uniform(a,b) with a and b any real numbers so that a < b. That is,

fx(z) = 5 for a <2 <D (248)
—a
and 0 otherwise. The set C, as defined in Appendix E.1, is given by C' = (|a|, |a|+1, ..., |b] —

1, |b]). From (245), we have
Lb]

fr(k) =" fx(k+o). (249)
c=|a)
According to (248),
fX(k:—l—c):b_a for a<k+c¢<b (250)
and 0 otherwise, or
fX(k_I_C):bia for a—k<c<b-—k (251)

and 0 otherwise.

Now, |a]+1>a—ksince 1+k >a—|a] asl+k>1>a—|a]. So, for any ¢ > |a]+1, we
always have that ¢ > a—k. Also, [b] —1 <b—Fksincek—1<b—|b]ask—1<0<b—[b].
So, for any ¢ < |b] — 1, we always have that ¢ < b— k. Therefore, for ¢ = |a] +1, ..., [b] — 1,

Pk +¢) = 7—. (252)
Thus, from (249),
1b]—1 |
) = Sl ek + 3 (25 + Sxl 0
c=|a]+1
= frllal+8) + fx(B)4R) + (b =1 la))  (253)
Now,
il ={ ¥ lTRS RSl (254)
and
itepen={ § O BTRZY ZRZ0 T (255)

b—
Therefore, from (253), (254) and (255), we have the following 4 cases:
if k<a—|a] and k<b— |b],
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fr(k) = 0+ ([b] =1—[a])

b—a+b—a

1
= (b - La)

if k<a-—|a] and k>b— |b],

FroxyB) = 040+ 2 (b ~1~ [a])
= (1)~ L] - )

if k>a—|a] and k<b— |b],

Felk) = ot (18]~ 1= La))
= (18]~ o) + )

if k>a—|a] and k>b— |b],

([b] =1 - la])

fY(kJ) = m+0+m+b_a

= (b~ La])

A (1b) = la))  0<k<min(a— |a],b—|b])
Fyr(k) = s ([0 = la] +1) a—la] <k<b—|b]
' (b —la) -1 b—[b] <k<a—|[d]
7o ([0 = la])  maz(a—la),b—[b]) <k <1

Aol =la))  0<k<a-la]
Fr() = 2 (1) = o] +1) a—la] <k <b—|b)
U R T

(256)

(257)

(258)

(259)

(260)

(261)

(262)



E22 Z=[X]-X

Suppose X ~ Uniform(a,b) with a and b any real numbers so that a < b. The set D, as
defined in Appendix E.1, is given by D = ([a], [a] +1,..., [b] — 1, [b]). From (247), we have

6]

fa(k) =) fx(d—Fk). (263)
d=[a]
According to (248),
fX(d—k:):b_a for a<d—k<D (264)
and 0 otherwise, or
fX(d—k:):bia for a+k<d<b+k (265)

and 0 otherwise.

Now, [a]+1>a+ksincel—k >a—[a]asl—k >0>a—[a]. So, for any d > [a]|+1, we
always have that d > a+k. Also, [b] =1 <b+ksince k+1> [b]—bask+1>1> [b] —b.
So, for any d < |b] — 1, we always have that d < b+ k. Therefore, for d = [a] + 1, ..., [b] — 1,

1
b—a

fx(d—k)= (266)

Thus, from (263),

[b]—1 .
R = fe(al =0+ S (s + Ix(1 =)

d=[a]+1
= Ix(fal k) + Sx([0] k) + (=1 [a]) (267
Now,
fXUaW—k:):{bi DRI e (268)
and
-0 ={ O RTEZh ZESh (260)
Therefore, from (267), (268) and (269), we have the following 4 cases:
if k<]|a]—a and k< [b] —b,
fak) = g 0 (18]~ 1~ Tal)
= ([0 [a]) (270
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if k<Jal—a and k> [b] —b,

1 1 1

fz(k) = b—a+b—a+b—a
1

= (- [l +1)

(fo] =1 —Tal)

if k> Ja]l—a and k< [b] —b,

falk) = 040+ = (6]~ 1~ [a])
1

= (- [a] - 1)

if k> [a]—a and k> [b] =0,

1 1

b—a+b—a

1
= m(m — [al)

fz(k) = 0+ ([6] =1 —=Tal)

Hence, putting the 4 cases together, we have

7 (
fZ(k){IH“EPZ 1) [a] —a<k<[b]—b
(

) [b] —b<k<TJa]—a

89

bl —Ja]) 0<Ek<min([a]—a,[b] —D)

bl — [a])  max([a] —a,[b] —a) <k <1

(271)

(272)

(273)

(274)

(275)

(276)



E.2.3 Special Uniform Case

The special case of the result derived in Appendix E.2.1 is when a — |a] = b — [b], while a
special case of the result derived in Appendix E.2.2 is when [a| —a = [b] —b. In the former
case, we have that |b] — |a] = b— a, while in the latter case, we have that [b] — [a] = b—a,
in other words, in both cases, the length of the interval over which the random variable X
is distributed is an integer.

In the case of the random variable Y = X — | X|, equations (261) and (262) combine to
yield

frk)=1 0<k<1, (277)

that is, Y is Uniform(0,1). Analogously, in the case of the random variable Z = [X] — X,
equations (275) and (276) combine to yield

fz(k)=1 0<k<1, (278)

so, Z, too, is Uniform(0,1). (Note that the case when a and b are both integers is a special
case of the special case, so for X ~ Uniform(a,b) with a and b both integers, Y and Z are
both Uniform(0,1).)

E.3 Distributions of pgcl) and p;(f) when r < 1,

When x < vy, there are 2 partially filled voxels if and only if 0 < ¢, < 22 op 1 — % <q¢ <1

(otherwise, there is only 1 partially filled voxel whose fraction covered is fixed at Jv1). The
fraction covered in the voxel on the left is given by

x/2 x/2
) = ’ngc - Lw - (CII - L) (279)
1 U1
while the fraction covered in the voxel on the right is given by
/2 x/2
P = (qx + L) - qu + LJ (280)
U1 U1

forogqxng—?orl—xv—fgqxgl.

For ease of notation, let
2
R= <qx - i) (281)

U1
and )
S = (qx L2y (282)
01
SO pg(cl) and pﬁf) become
) =[Rl—R=2Z (283)
and
pP=5—-15=Y (284)



in keeping with notation introduced in Appendix E.1. Since the distributions of p(l) and p(Z)
are only relevant when 0 < ¢, < xv—/f orl— 9”/ 2 < ¢- < 1, the goal is to obtain the conditional

distributions of Z = [R]| — Rand Y =5 — LSJ given 0 < ¢, < z/2 or1— x/f <q <1

E.3.1 Distribution of pg)

First, we will obtain the conditional distributions of R given 0 < ¢, < xv—/f orl— % <qg <1
and use the results we obtained in Appendix E.1 to derive the conditional distribution of

= [R] — R. Recall that g, is Uniform(0,1), so the probability of ¢, being in any subinterval
of (0,1) is just the length of that subinterval. With that in mind, the conditional distribution
function of R is given by

PR<Kk|[0<g<Lorl1-22<q <1)=

P(qx—iﬁgkyogqxg 2or1— 22 < g, <1

0
z/2
v1
1/2
v1

orl—xv—/fﬁqxél

N— —
I

P(qékﬂ—?ﬂ(os%sx—/?orl—%s%g))/P(ong_x/zorl—w/2<qzs1)

U1 v1
/2 /2 z/2 T

Plo<kt2n(0<a<2o1-2<q<1))/(2). (285)
The numerator P <qx <k+ x/2 <O <gq, < xv—/f or1l— J:U_/12 <q < 1)) evaluates to

P ogqx<k+xv—/f> 0<k+22 <22

P(0<q <) LY RS R (286)

P(1-22<q <h+22) 1-2L2 <22
Thus, the conditional distribution function of R given 0 < ¢, < % or 1 Iv—/lz <q,<1is
equal to

PR<k|0<gq, < x/Q or1— x/fgqxgl):
o)) s ine
=< 1/2 0<k<l—uz/v (287)

(l{;—l—l—x/vl)/(%) l—afoy <k <1-— 22

Taking a derivative of the conditional distribution function with respect to k, we have that
the conditional density of R is given by
/ 2

2
<k<Oorl-— —<k<1—$/
U1 U1

fr(k) = v/, (288)
and 0 otherwise.
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Now, using the notation introduced in Appendix E.1, according to (247), we have that
the density of pi = = [R] — R is equal to

fz2(k) = fr(=F) + fr(1 — k) (289)

for 0 < k < z/v; (recall that the upper bound on Z is now z/v; rather than 1, as the entire
area covered by the two partially covered voxels is equal to x/vq, so the area covered by
either of the two partially covered voxels cannot exceed this value).

Let A and B denote the sets of values k for which fr(—k) and fr(1 — k), respectively,
are nonzero, and let A and B denote the complements of A and B, respectively (these are
the sets of k for which the corresponding densities are 0). Then

201/r ke Aand ke B

) vw/z k€eAandkeB
f2(k) = v/t k€AandkeB (290)
0 otherwise

Now, the set A is given by

A:{k: 2 k<0m1—<k<1—%&} {k 0<b<™2 2 1 ope® g

V1 U1 U1 V1 U1 U1

(291)
The inequality % — 1<k <z/v; —1isirrelevant since x < vy, implying that z/v; —1 < 0
while £ must be nonnegative, so

A:{k:@gkgﬂg}. (292)

U1

Thus, the complement of A is given by

— 2
A:{k z/2 <k<1}. (293)
U1
The set B is given by
B:{k: W2<1—k<0m1—<1—k<1—%m} {k:1§k§1+xﬂorwqgk§$}
U1 U1 U1 U1 U1 U1
(294)
The inequality 1 < k£ <1+ / is irrelevant since k < x/v; < 1, so
2
B:{k:ﬂ—gkgﬁ} (295)
(%1 U1

The complement of B is given by

2
:{k:ogk<ﬂor£<kg1}. (296)

U1 (%1
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Note that A and B are mutually exclusive. The intersection of A and B is equal to
{k: 0<k< 1;—/12} The intersection of A and B is equal to {k: : % <k< ;“—1} Thus,

from (290), we have that the density of Z = p;” is given by
fz(k) =v/z, 0<k<uz/u, (297)

ie., pi is distributed Uniform(0, z/vy).

E.3.2 Distribution of p{”

We will follow analogous arguments to those used to derive the distribution of pg(ﬁl) in the
previous section. We first obtain the conditional distribution of S given 0 < ¢, < xv—/f or

1-— xv—/f < ¢, < 1 and use the results we obtained in Appendix E.1 to derive the conditional
distribution of Y =S — | S]. The conditional distribution of S is given by

PS<k|0<qg<Zor1-22<q <1)=

v1

P<qx+””v—/f§k|0§qm§ﬂor —””U—/féqx§1>

v1

— 0

P(qzék—%|0§qm<x—/20r1—wv—/l2§qz§1>

Pla<k-2n(0<q<Lo1-22<q <1))/

v1

VRS

%) . (298)

The numerator P (qm <k- xv_/2 N <0 <q, < T2 opq 22 <gq, < 1)) evaluates to
1 v1 U1

Pogqxgk—zv—/f) 0<k—22 <22
Pogqxg”;—f) N - (299)
P(1-2<q <h-22) 1-22<p-22<y

Thus, the conditional distribution function of S given 0 < ¢, < % or 1 — xv—/f <q <l1lis
equal to

PS<k|0<qg<Lorl-"2<q <1)=

V1 v —
(=) /(2) w=hss
=< 1/2 L <k<l (300)

v1

(k;—1)/(£) 1< k<1422
Taking the derivative with respect to k, we have that the density of S is given by

2 2
fo) = vijm, k< or1<h<1s M2 (301)
U1 U1 U1
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and 0 otherwise.
Now, using the notation introduced in Appendix E.1, according to (245), we have that

the density of pi¥) =Y = § — |.$] is equal to
fy(k) = fs(k) + fs(1+ k) (302)

for 0 < k < x/v; (recall that the upper bound on Y is now x/v; rather than 1, as the entire
area covered by the two partially covered voxels is equal to x/vy, so the area covered by
either of the two partially covered voxels cannot exceed this value).

Let A and B denote the sets of values k for which fs(k) and fs(1 + k), respectively, are
nonzero, and let A and B denote the complements of A and B, respectively (these are the
sets of k for which the corresponding densities are 0). Then

201/r k€ Aand k€ B

) vw/z k€eAandkeB
Jr(k) = v/r k€AandkeB (303)
0 otherwise

Now, the set A is given by

U1 U1 (%1

A:{k x/2<k<—or1<kz<1+£} (304)

The inequality 1 < k <1+ % is irrelevant since k < z/v; < 1, so
2
A:{k z/2 <k<—} (305)
(%) V1

Thus, the complement of A is given by

Z:{k:0§k<w—/20r£§k§1}. (306)

U1 U1

The set B is given by

B:{k:: m§1+k§$or1§1+k§1+x/2}:{k: T2 k< ® qoro<k<®?

U1 U1 U1 U1 U1 U1
(307)
The inequality xv—/f —-1<k< f—l — 1 is irrelevant since x < vy, implying that z/v; —1 < 0
while k£ must be nonnegative, so

B= {k O<k<$/2} (308)

U1

The complement of B is given by

E:{k: z/2 <k:<1} (309)
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Note that A and B are mutually exclusive. The intersection of A and B is equal to
{k : xv—/f <k< ﬁ} The intersection of A and B is equal to {k: 0<k< xy—/f} Thus,

from (303), we have that the density of Y = pf) is given by
frk)=v/x, 0<k<zx/v, (310)

ie., pt is also distributed Uniform(0, z/vy).
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Appendix F Distribution of the Product of n Indepen-
dent Uniform(0, ;) Random Variables

F.1 General case

Let X;’s, i = 1,...,n, be independently distributed, each with Uniform(0,b;) distribution,
where each b; is a known real value greater than 0. We want to obtain the distribution of
the product of X;’s, i.e., the random variable

w=]]x: (311)

Define T; = X;/b; for each i = 1,...,n. Then T;’s are independently and identically dis-
tributed as Uniform(0,1) random variables. Let

and V = —log W*. Then

V = —log W* = —log (ﬁ E) = i(—log T;). (313)

i=1

Now, for T; ~ U(0, 1), it is a standard result that —log T; has an Exponential(1) distribution
[3]. Note that the random variables —log T; are independent from one another since 7;’s are
independent from one another. Furthermore, it is another standard result that the sum of n
independently distributed Exponential(1) random variables is distributed as Gamma(n, 1)
3], so V'~ Gamma(n, 1), that is, the probability density function (pdf) of V' is given by

gv(v) = e "t u>0 (314)

and 0 otherwise. Now, W* = e~V so its distribution function, denoted by Gy, is given by
Gw(w*) = POW* <w*) = P(e™V <w*) = P(V > —log w*) = 1 — Gy(—log w*), (315)

where Gy denotes the distribution function of V. Thus, the probability density function of
W= is equal to

gw+(w*) = T Gw+(w*) = T (1 - Gy(—log w")) = e - gv(—log w*)
1 1 * x\n—1 <_l0g w*)n_l
g _ —_ n = —— 1
w*  (n—1)! wi{—log wr) (n—1)! (316)

for 0 < w* <1 and 0 otherwise.
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Now, since our variable of interest, W, is related to W* via

_ (H bz-) e, (317)

the distribution function of W can be obtained as follows:

(1)) ) o o 1)

(318)
Taking a derivative of Gy (w) with respect to w gives the pdf of W:

- 2o () 1)
() (Slog (w/TT )"
- (Eb) 1)

for 0 < w <[, b; and 0 otherwise.
While we can obtain the expectation E(W) directly from the density of W by computing
the integral

[[i, b
EW)= /0 w - gw(w) dw, (320)

(this can be done by establishing a recursive relationship in terms of n), it is much easier to
use the fact that X;’s are independent and therefore

= E (ﬁx) HE H <%) = (ﬁ bi> /2m. (321)

=1

Similarly, while the variance can be computed directly from the density of W by first obtain-
ing E(W?) (also using recursion to obtain the integral for arbitrary n) and then calculating
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Var(W) = E(W?) — [E(W)]Z, it is easier to again use the independence of X;’s and X?’s:
Var(W) = Var (H Xi) = <H Xi> - |E (H XZ-) =F (H X}) -~ (H E(
i=1 i=1 i=1 i=1 i=1

The standard deviation is therefore equal to

VI

= VVar(W) = = H bi. (323)
Finally, the 100 x pth percentile of W is the value k such that
k -1 n -1
l — b)) —1 "
p=P(W <k) :/0 o (w) dw—/ (Hb) <"9(Hz=(1n11)!09 W e (324)

with 0 < p < 1. In particular, the median, or the 50th percentile of W is the value k so
that the integral in (324) evaluates to 0.5. This is easiest to compute numerically.

F.2 Special case: n = 2

For n = 2, the density of W in (316) becomes
1
gw(w) = by (log(b1bs) — log w), 0 < w < biby (325)

and 0 otherwise. The probability that W is in the interval (A, B) with 0 < A < B < byby is

therefore equal to
B
/ (b1ba)™
A

_ b11b2 [(log(biba) (B — A) +w(1 — log w) 5]

P(A<W<B) =

Y(log(biby) — log w) dw

-(Alog A— B log B).
(326)

b162
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with 0 -log 0 = 0.

When b, = by = 1, the density of W is then equal to
gw(w) =—=logw, 0<w<1 (327)

and 0 otherwise. In this special case, the probability that W is in the interval (A, B) with
0 < A < B <1 is hence equal to

P(A<W <B)=B(1—-log B)—A(1 —log A) (328)

with 0 -log 0 = 0.
Also, according to (321) and (323), the expectation E(W) = (b;by)/4 and the standard
deviation oy = —V(lf_g - (b1by) = g - (b1be) = 0.2205 - (b1b2). In the special case when

by = by = 1, the expectation and standard deviation are then equal to 1/4 and 0.2205,
respectively.

The median of W is the value k£ that solves the equation
0.5 =P(W < k)= Ek(log(biby) + 1 —log k)/(b1b2). (329)
When b; = by = 1, the solution is £ = 0.1867. Thus, the solution for arbitrary values of by
and by is k - (b1bg) = 0.1867 - (b1bs).
F.3 Special case: n = 3
For n = 3, the density of W in (316) becomes

(log(b1bsbs) — log w)?
2(brbabs) ’

and 0 otherwise. When b; = by = b3 = 1, the density of W is given by

(log w)?

2 )
and 0 otherwise. In this special case, the probability that W is in the interval (A, B) with
with 0 < A < B <1 is then equal to

gw(w) = 0<w<1 (331)

P(ASW<B) = /dew:%((logw—l)2+l)|§
A
_ B((log B—1)>+1)— A((log A—1)*+1) (332)
2

Note that the expression in (332) is equal to the probability P(A < W* < B), with W*
defined in (312), since W* is the product of Uniform(0,1) random variables. Moreover, from
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(312), we also have that W = (bybebs)W*. Therefore, using the expression in (332), we can
get the probability P(A < W < B) for arbitrary by, by and b3, with 0 < A < B < bybybs, as
follows:

<W*<

bibabs — - b1b2b3>

s ((log(B/bibabs) — 1) + 1) — =2 ((log(A/bibabs — 1)* + 1)

PASW<B) = P(A< (bibbs)W* < B)=P (

2

B ((log B —log(bibsbs) — 1)> +1) — A((log A — log(bibabs) — 1)?

+1)

2(bybobs)

Also, according to (321) and (323), the expectation E(W) = (b1beb3)/8 and the standard

deviation oy = V;fj;7 - (b1babs) = 0.1463 - (b1bobs). The median of W is the value & that

solves the equation

—~

0.5=PW <k)= ((log k — log(bibsbs) — 1)* + 1), (334)

LA
2(bybabs)

For by = by = b3 = 1, the solution is £k = 0.069. The solution for arbitrary values of by, bs
and b3 is therefore k - (blebg) = 0.069 - (blebg).

F.4 Distribution of a Positive Constant Times the Product of Two
Independent Uniform(0, b;) Random Variables

In this section, we derive the distribution of the random variable ¥ = ¢X;X, where ¢

is a positive constant and X; and X, are independently distributed Uniform(0, b;) and

Uniform(0, by), respectively. In Appendix F.2, we obtained the distribution of W = X X5,

given in (325). Now, to obtain the distribution of Y = ¢W, we note that the distribution
function of Y is given by

Gy(y) = P(Y <y) = P(cW <y)=P(W < y/c) = Gwl(y/c), (335)

so the pdf of Y is given by

d

ov(y) = 3G ) = 7 aw(v/e). (330

Putting together (336) and (325), we have that the pdf of Y is given by

gy (y) - (log(cbiby) —log y), 0 <y < cbiby (337)

- Cbl b2
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and 0 otherwise. We can also use the result in (326) to get the expression for P(A <Y < B)
with0 < A< B< Cb1b22

P(A<Y <B) = P(A<cW < B)=P(A)c <W < BJc)

1 1
_ - (log(cbyby) +1) - (B — A — . (Alog A—Blog B
Db, (log(cbiby) +1) - ( ) + i (A log og B)
(338)

with 0 -log 0 = 0, as before.

From the results for E(WW) and oy in Appendix F.2, we have that the expected value of
Y is equal to
E(Y)=E(W)=cE(W) = (cbbs)/4, (339)

the median is equal to 0.1867 - (cbyby), and the standard deviation of Y is equal to

oy = ooy = cow = 0.2205 - (chyby). (340)
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Appendix G Variance of N, in 3-Dimensional Setting
(No Small Dimensions)

In 3-dimensional setting, when = > vy, y > vy and z > w3 (i.e., no small dimensions), the
number of partially covered voxels IV, is given by

Np =8+ 4(fo + fy + f2) +2(fufy + fuf: + fuf2)- (341)

Therefore, the variance of N, is equal to

Var(N,) = 16[Var(f.) +Var(fy) + Var(f)] +4[Var(fofy) + Var(fofy) + Var(f,f.)]  (342)
+ 16[C(fa, fofy) + C(fa, fuf2) + C(fys fufy) + C(fy, [y f) + C(fe, fofe) + C(fes £ f2)]
+ 8[C(f;rfyvf$f2)+C(fl“fy7fyfz>+O(fxfzafyfz)]a (343)

where C'(A, B) denotes the covariance of the random variables A and B (we have to account
for several covariances because several of the summands in (341) are not independent).

The variances of f,, f, and f, were derived in (25), (39) and (89), respectively. The
variance of the product f,f, was derived in (46) in Section 2.2.1. The expressions for the
variances of f,f, and f,f. are exactly analogous. Using the independence of f, and f,, we
have the covariance C(f, f.f,) given by

= (E(f)) = (BE(£))") E(f,) = Var(f.) E(f,). (344)

The expressions for the other 5 covariances of one of f,, f, or f. with a pair of these are
analogous. The covariance of f, f, and f,f, is given by

(B(fD) — (B(f))) < FE(f > < f2)E (fy) (f-): (345)

The covariances of the other two sets of pairs are analogous. Putting together everything
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together, we have that the variance of N, is given by

Var(N,) 16 (Var(fz) + Var(fy) + Var(f.))
4(Var(fofy) + Var(fof:) + Var(fyf.
8 (Var(fu)E(fy)E(f:) + Var(fy)E(f

16 (Var(f:)(E(fy) + E(f.)) + Var(f,)(
(Var(fxfy) +Var(f.f.) + Var(fyfz )
8 [Var(fs)2E(fy) + 2E(f.) + E(fy)E(f:) + 2)

Var(f,)2E(f:) +2E(f.) + E(f2)E(f.) +2)

Var(f.)(2E(fz) +2E(fy) + E(f2)E([:) + 2)]
4(Var(fofy) +Var(fuf.) + Var(fyf.))

{Var(fm) (——+3+——1> +Var(f,) <£i+£+i—1) (346)

V2 U3 V2 U3 U1 U3 (%1 U3

Var(f.) (£ﬂ+f . 1)} |

U1 V2 (%1 V2

)

) E(f2) + Var(f)E(f)E(fy))

JE(f2) + E(f2) + Var(f)(E(f:) + E(fy)))
)

m++ + 1 + + + 1

+

+
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