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I consider the hydrodynamic stability of imploding ideal gases as an idealized model for in-
ertial confinement fusion (ICF) capsules, sonoluminescent bubbles, and the gravitational
collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes
elongated in the direction of the mean flow), a second-order ordinary differential equation
is derived that can be used to assess the stability of any time-dependent flow with planar,
cylindrical or spherical symmetry. Further restricting the analysis to homologous flows,
it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant
stability. Under buoyantly-unstable conditions, both entropy and vorticity fluctuations
experience power-law growth in time, with a growth rate that depends upon mean-flow
gradients and, in the absence of dissipative effects, is independent of mode number. If the
flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)|N0|ti ,
where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency
and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase
followed by stagnation, oblate modes amplify by a factor exp (π |N0| ts), where N0 is
the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under
stable conditions, vorticity fluctuations grow due to the conservation of angular momen-
tum as the gas is compressed. For non-monatomic gases, this additional growth due to
compression results in weak oscillatory growth under conditions that would otherwise be
buoyantly-stable; this over-stability is consistent with the conservation of wave action in
the fluid frame. The above analytical results are verified by evolving the complete set of
linear equations as an initial value problem, and it is demonstrated that oblate modes
are the fastest-growing modes and that high mode numbers are required to reach this
limit (Legendre mode ` & 100 for spherical flows). Finally, comparisons are made with
a Lagrangian hydrodynamics code, and it is found that a numerical resolution of ∼30
zones per wavelength is required to capture these solutions accurately. This translates to
an angular resolution of ∼(12/`)◦, or . 0.1◦ to resolve the fastest growing modes.

Key words:

1. Introduction

Examples of imploding gases include inertial confinement fusion (ICF) capsules (Atzeni
& Meyer-ter-Vehn 2004), sonoluminescent bubbles (Suslick & Flannigan 2008), and core-
collapse supernovae (Janka 2012). The hydrodynamic stability of these flows is an impor-
tant issue, as perturbations of sufficient amplitude can drain the energy driving the im-
plosion, and the breakdown of symmetry, even for small amplitudes, can have important
diagnostic/observational effects (e.g., Murphy 2014). Stability analyses of an imploding
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gas are significantly complicated by the time-dependent mean flow, and homologous flow
(i.e., flow in which fluid elements share a common time-dependent scaling, the Hubble
flow being a prime example), is a useful idealization that allows some analytical progress
to be made. Such a study was performed for core-collapse supernovae by Goldreich &
Weber (1980), who claim stability, but their results have recently been revisited by Cao
& Lou (2009, 2010), who claim instability. Chu (1996) applied the analysis of Goldreich
& Weber (1980) to a sonoluminescing bubble and also claimed stability. The extensive
body of work on the stability of ICF implosions has focused almost exclusively on inter-
facial instability, with little attention being given to the stability of the gas (see, however,
Greenspan & Benney 1963; Mjonlsness & Ruppel 1978; Cook et al. 2000). At the same
time, hot-spot turbulence has recently received attention as a potential source of yield
degradation in ICF capsules (Thomas & Kares 2012; Gatu et al. 2013; Clark et al. 2013;
Cerjan et al. 2013), and the origin of these vortical flows, if present, remains unclear.
Basko & Murakami (1998) consider the possibility of buoyancy instability in self-similar
implosions but do not perform a formal stability analysis.

The purpose of this work is to clarify some of these issues by performing a stability
analysis that complements previous work. By solving the initial value problem (Lai &
Goldreich 2000), rather than decomposing perturbations into radial modes, I am able to
obtain results that are more physically transparent than those of previous authors, in-
cluding a precise stability criterion. The following assumptions are made: 1) the implosion
is externally driven rather than driven by gravity; 2) dissipative effects are ignored (this
is almost certainly unrealistic for ICF capsules and bubbles, but it permits isolation of
the instability driving mechanism); 3) perturbations are assumed to be short wavelength,
incompressive, and elongated in the direction of the implosion. I shall refer to this final
approximation as the oblate limit, and it is perhaps the most useful new result to come
out of this work, as it allows for significant analytical progress to be made in a problem
that must otherwise be treated numerically. Under these assumptions, I demonstrate
that homologously-imploding ideal gases are essentially governed by the Schwarzschild
criterion for buoyant stability (Schwarzschild 1992), with a slight modification due to
compression.

The basic equations and mean flow are outlined in §2, the stability analysis is given in
§3, and §4 summarizes and discusses applications.

2. Basic equations and mean flow

The fundamental equations used are the continuity equation, Euler’s equation, and the
first law of thermodynamics for adiabatic flow:

Dρ

Dt
+ ρ∇ · v = 0, ρ

Dv

Dt
+ ∇p = 0,

Ds

Dt
= 0, (2.1)

where ρ, v, p and s are the mass density, velocity, pressure and entropy of the gas and
D/Dt = ∂/∂t+v·∇ is the Lagrangian derivative following a fluid element (e.g., Landau &
Lifshitz 1987). I will assume throughout an ideal gas equation of state, p = (γ − 1) ρCvT ,
where γ, Cv and T are the adiabatic index, specific heat and temperature of the gas. For
this equation of state, s = ln (pρ−γ) to within a constant factor; this expression shall be
used in what follows to define the entropy.

Fluid elements in a homologous flow obey the relationship r(t, a) = r(0, a)h(t) =
ar01h(t), where r is the spatial coordinate in the direction of the mean flow and the
Lagrangian label for a fluid element is a ≡ r(0, a)/r01. For a spherical flow, r(0, a) is
the field of radial positions for all the fluid elements at t = 0 and r01 ≡ r(0, 1) is the
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outer radius of the gas at t = 0; this implies that the scale factor h(t) is normalized
to unity at t = 0, i.e. h(0) ≡ 1. The velocity field associated with homologous flow is
vr(t, a) = ar01ḣ(t) = r(t, a)ḣ/h, where an overdot denotes a time derivative. Mass and
entropy conservation under spherical adiabatic homologous flow imply ρ(t, a) = ρ0(a)/h3

and p(t, a) = p0(a)/h3γ , where a zero subscript denotes a spatial profile at t = 0, and
Euler’s equation becomes

h3γ−2ḧ = − 1

ρ0r2
01a

∂p0

∂a
≡ ± 1

t2c
, (2.2)

where the plus (minus) sign is associated with a decelerating (an accelerating) implosion
and tc is a characteristic time scale.

For γ = 5/3 and ḣ0 = 0, the time-dependent portion of expression (2.2) yields the
well-known Kidder implosions (Kidder 1974; Atzeni & Meyer-ter-Vehn 2004)

h(t) =

√
1±

(
t

tc

)2

. (2.3)

For ḣ0 6= 0, an additional solution to (2.2) valid for any γ is (Goldreich & Weber 1980)

h(t) =

1−
√

[3γ − 1]
2

6[γ − 1]

t

tc

 2
3γ−1

. (2.4)

This solution, while valid only for accelerating implosions, is useful for assessing the
impact of the gas equation of state. Following Atzeni & Meyer-ter-Vehn (2004), acceler-
ating solutions are defined as starting out from t = 0, so that they evolve from h = 1
to h = C−1, where C ≡ rinitial/rfinal is the convergence factor, i.e, the ratio of initial to
final sizes. The decelerating solution, on the other hand (the Kidder implosion with the
+ sign), is defined as stagnating at t = 0, so that its implosion phase evolves from h = C
to h = 1.

Aside from the equation of state, the space-dependent portion of equation (2.2) is
the only constraint on the spatial profile of the mean gas quantities. This allows for a
significant amount of flexibility in setting up various mean flow profiles. An analytical
model that mimics the hot spot of an ICF implosion during deceleration (this is likely a
good approximation for a collapsing bubble as well) is given by

ρ0 = ρ0pe
a2−a2p
2σ2 exp

(
1− e

a2−a2p
2σ2

)
, (2.5)

T0 = T0pe
−
a2−a2p
2σ2 , p0 = p0p exp

(
1− e

a2−a2p
2σ2

)
, (2.6)

where the gas quantities have been normalized to their value at ap (the location of the
density peak; see Fig. 1). Both ap and σ can be regarded as free parameters of the
model, and can be alternatively expressed in terms of ratios of physical quantities. The
characteristic time scale in this case is tc =

√
γr01σ/c0p, where c0p is the sound speed at

ap. The square of the Brunt-Väisälä, or buoyancy, frequency,

N2 ≡ − 1

γρ

∂p

∂r

∂s

∂r
,

is useful for assessing buoyant stability (Johnson & Gammie 2005). For homologous flow,
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Figure 1. Profiles of density (solid), temperature (dotted), pressure (dashed) and the negative
portion of N2

0 (dot-dashed) for expressions (2.5)–(2.7) with σ = 0.2 and ap = 0.9. All quantities
have been normalized to their peak magnitude.

N2 = N2
0h

1−3γ , and for the hot-spot configuration described above,

N2
0 t

2
c = − a

2

σ2

(
1− γ − 1

γ
e
a2−a2p
2σ2

)
. (2.7)

Mean flow profiles for the hot-spot configuration are shown in Fig. 1.

3. Stability analysis

For an equilibrium configuration (v = 0), it is well known that the local dispersion
relation for short-wavelength incompressive modes governed by equations (2.1) is

ω2 =
k2
⊥

k2
r + k2

⊥
N2, (3.1)

where ω is the wave frequency and k⊥, kr are wave numbers perpendicular and parallel to
the mean gradients (see, e.g., Johnson & Gammie 2005). It can be seen from expression
(3.1) that N2 < 0 denotes instability; N2 > 0 is the Schwarzschild criterion for buoyant
stability (Schwarzschild 1992). The buoyancy frequency can be rewritten as

N2 =
g

γ

∂s

∂r
= −g

(
g

c2s
+

1

ρ

∂ρ

∂r

)
=
g

γ

(
1

T

∂T

∂r
− γ − 1

ρ

∂ρ

∂r

)
,

where g ≡ dvr/dt is the acceleration (d/dt is the Lagrangian derivative following the mean
flow) and cs is the mean sound speed. It can be seen from this expression that configura-
tions with “order-over-disorder” (∂s/∂r < 0) are buoyantly unstable. If density gradients
dominate, a “heavy-over-light” configuration is unstable (∂ρ/∂r > 0), whereas if temper-
ature gradients dominate, a “cold-over-hot” configuration is unstable (∂T/∂r < 0). The
former situation represents Rayleigh-Taylor instability, and the latter represents thermal
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convection; in general, buoyancy instability depends upon the mean entropy gradient.
Because fluid elements evolve adiabatically, and the relationship between entropy and
density depends upon γ, the stability criterion in general depends upon the compress-
ibility of the fluid. Notice that in the limit gLρ � c2s, where Lρ = (∂ ln ρ/∂r)−1 is the
density gradient length scale, the growth rate is independent of γ and reduces to the
short-wavelength limit of the classical Rayleigh-Taylor growth rate when the effects of
density-gradient stabilization are included (e.g., Betti et al. 1998). For the hot-spot con-
figuration described above, it can be seen from Fig. 1 that the entire gas region and most
of the shell is buoyantly unstable during deceleration.

For a spherically-symmetric mean flow (v = vrr̂), perturbations can be decomposed
into spherical harmonics Y`m (θ, φ), and the resulting equations are

dρ′

dt
= − 1

r2

∂

∂r

(
r2vr

)
ρ′ − 1

r2

∂

∂r

(
ρr2v′r

)
+
` (`+ 1)

r
ρv′⊥, (3.2)

dv′r
dt

= −∂vr
∂r

v′r +
1

ρ2

∂p

∂r
ρ′ − 1

ρ

∂p′

∂r
, (3.3)

dv′⊥
dt

= −vr
r
v′⊥ −

p′

ρr
,
ds′

dt
= −∂s

∂r
v′r, (3.4)

where a prime denotes a fluctuation, v′⊥ is the component of the velocity fluctuation
parallel to ∇Y`m, s′ = p′/p− γρ′/ρ is the entropy fluctuation, and ` is a Legendre mode
number (Lai & Goldreich 2000). The third velocity component decouples from the other
variables and will not be considered here. Short-wavelength, low-frequency fluctuations
satisfy ∇ · v ′ ≈ 0 and s′ ≈ −γρ′/ρ (the Boussinesq approximation for buoyancy-driven
flows; Johnson & Gammie 2005). This reduces the perturbed continuity equation to the
incompressive condition. It is important to note that the gas remains compressible; the
incompressive condition applies only to the fluctuations.

Notice from expression (3.1) that the growth rate of local modes in an equilibrium con-
figuration is largest for modes with kr � k⊥. This suggests the additional approximation
of restricting the analysis to modes with ∂/∂r � `/r, i.e., modes that are sufficiently
elongated in the radial direction that their radial variation can be neglected. I shall re-
fer to this (along with the incompressive condition) as the oblate limit, and the modes
thus isolated as oblate modes. This approximation considerably simplifies the analysis
while retaining the essential physics. In the oblate limit, which amounts to neglecting the
pressure perturbation in equation (3.3), the linear equations reduce to the set of coupled
ordinary differential equations

dv′r
dt

= −∂vr
∂r

v′r +
1

ρ2

∂p

∂r
ρ′,

ds′

dt
= −∂s

∂r
v′r, (3.5)

with s′ = −γρ′/ρ. The first term on the right-hand side of the perturbed Euler equation
represents angular momentum conservation: vortical modes spin faster (slower) under
compression (expansion). The second term represents the baroclinic production of vor-
ticity: entropy fluctuations spin up due to the baroclinic torque applied to them by the
mean pressure gradient. The perturbed entropy equation represents the fact that in the
presence of a mean entropy gradient, entropy fluctuations evolve to compensate for mean
entropy changes. An entropy fluctuation that moves up the mean entropy gradient, for
example (to a region of higher mean entropy), must decrease in magnitude in order
for total entropy to be conserved. This can increase or decrease the magnitude of the
baroclinic term in the perturbed Euler equation.

One can see the connection between the perturbed Euler equation in (3.5) and the
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vorticity equation as follows. The dominant vorticity component for oblate modes is the
one perpendicular to both r̂ and ∇Ylm; in axisymmetry, it is the only non-zero component
and is given by

ωφ = (∇× v′)φ =

(
v′⊥ − v′r

r
+
∂v′⊥
∂r

)
∂P`(cos θ)

∂θ
≈ −v

′
r

r

∂P`(cos θ)

∂θ
, (3.6)

where the approximation is valid for oblate modes and P` is a Legendre polynomial. The
non-radial velocity of an oblate eddy is much smaller than its radial velocity fluctuation
(this follows from ∇ · v′ ≈ 0 and `/r � ∂/∂r), which implies that its vorticity is domi-
nated by radial motion in a frame moving with the mean flow. Appendix A of Johnson
(2014) derives the perturbed vorticity equation under the Boussinesq approximation;
in spherical geometry and axisymmetry, the φ component of expression A4 of Johnson
(2014) (there is a sign error in front of the baroclinic term in that reference) is

dωφ
dt

= −
(
vr
r

+
∂vr
∂r

)
ωφ −

1

ρ2r

∂p

∂r

∂P`(cos θ)

∂θ
ρ′ (3.7)

Using the approximation in (3.6), one can readily show that equation (3.7) is equivalent
to the perturbed Euler equation in (3.5).

Using the mean flow expression d ln
(
ρr2
)
/dt = −∂vr/∂r and recalling that the La-

grangian derivative commutes with a derivatives but not r derivatives, equations (3.5)
can be combined to give

d2s′

dt2
+ 2

∂vr
∂r

ds′

dt
+N2s′ = 0. (3.8)

The only assumptions regarding the mean flow that have been made in deriving this
equation are an ideal-gas equation of state and radial adiabatic flow. This equation
therefore governs oblate modes in any flow satisfying these conditions. It is shown in the
Appendix that equation (3.8) also applies to flows with cylindrical and planar symmetry.
For vr = 0, it reduces to the dispersion relation (3.1) with kr = 0.

For Kidder implosions, the solutions to equation (3.8) have the form s′ ∝ exp
(
−i
∫
ω dt

)
,

with ω2 = N2; this demonstrates that the stability of Kidder implosions is governed by
the Schwarzschild criterion. The full solution is given by

ρ′

ρ
=
ρ′0
ρ0

coshφK +
v′r0

γLs0
√
−N2

0

sinhφK , (3.9)

v′r
cs

=
v′r0
cs0

coshφK +
ρ′0
ρ0

γLs0
√
−N2

0

cs0
sinhφK , (3.10)

where

φK ≡
∫ t

0

√
−N2

0

h (t′)
2 dt′ =

√
−N2

0

∫ t

0

dt′

1± (t′/tc)
2 (3.11)

and Ls0 ≡ r01 (∂s0/∂a)
−1

is the entropy gradient length scale at t = 0. In these expres-
sions, all quantities with a zero subscript can be regarded as functions of a, since for
oblate modes each fluid element evolves with time independently of all the others. For
N2

0 = 0, entropy fluctuations are conserved and v′r = v′r0/h (for ρ′0 = 0), reflecting the
conservation of angular momentum as the gas is compressed.

An implosion takes place over a finite time scale, such that the impact of unstable
fluctuations on the mean flow depends upon both their initial amplitude and how much
they are amplified over the course of the implosion. Expression (3.9) or (3.10) can be
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Figure 2. Growth factor as a function of mode number for the profile shown in Fig. 1 and a
stagnating Kidder implosion/explosion (with C = 10), showing results from the full linear code
(solid) and the analytical oblate limit (dotted).
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Figure 3. Peak vorticity as a function of time for the profile given by expressions (2.5)–(2.6)
(with σ = 0.25 and ap = 1), a stagnating Kidder implosion/explosion (with C = 10), and
` = 30. Shown are results from two-dimensional Kull calculations at several grid resolutions
(solid, labeled by zones-per-wavelength), along with results from the linear code (dotted).
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used to obtain an estimate of the growth factor when N2
0 < 0:

G ≡ (ρ′/ρ)final

(ρ′/ρ)initial

∼
{

(2C)
|N0tc| (accelerating)

eπ|N0tc| (decelerating).
(3.12)

The growth factor for the decelerating solution takes into account the explosion phase
which follows the implosion phase in the Kidder stagnating solution (i.e., h evolving from
C to 1 and then back to C), since the gas is unstable both before and after stagnation.
The same expressions apply to the amplification of vorticity fluctuations.

Growth factors for a representative fluid element (a = 0.7) undergoing a decelerating
Kidder implosion/explosion are shown in Fig. 2 as a function of Legendre mode number
`. These results were obtained with a Lagrangian code that solves the full set of linear
equations (3.2)–(3.4), where the radial profile of the initial entropy fluctuation was a
Gaussian with a width 10% of the outer radius. It can be seen from Figure 2 that oblate
modes are the fastest-growing modes and that fairly large values of ` are required to
reach the oblate limit (` & 100). Figure 3 shows the evolution of the peak vorticity
for ` = 30 in both the linear code and a two-dimensional version of the Lagrangian
hydrodynamics code Kull (Rathkopf 2000) at various grid resolutions. These results
indicate that a resolution of ∼30 zones per wavelength is required to accurately capture
the amplification of vorticity under an implosion in a numerical simulation.

For implosions whose trajectory is given by expression (2.4), the solutions to equation
(3.8) again have the form s′ ∝ exp

(
−i
∫
ω dt

)
, where here

ω2 +
5− 3γ

2
iDω −N2 = 0

and D ≡ ∂vr/∂r is the dilatation. These solutions can equivalently be expressed as
s′ ∝ hβ , where

β = − iω
D

= −5− 3γ

4
±
√

∆2, ∆2 ≡
(

5− 3γ

4

)2

− Ric,

where Ric ≡ N2/D2 is a compressive Richardson number. It can be seen that instability
(ωi > 0, where ωi is the imaginary part of ω) corresponds to βr < 0, where βr is the
real part of the negative branch of β (for an implosion, a quantity that grows with time
decays with h).

For γ = 5/3, β = ±√−Ric = ±
√
−N2

0 t
2
c , which is real for N2

0 < 0. For a monatomic
gas, then, the stability of these implosions is also governed by the Schwarzschild criterion.
For γ < 5/3, however, the system is unconditionally unstable as a result of the additional

growth due to compression. For ∆2 < 0, i.e., Ric > ([5− 3γ] /4)
2
, the fluctuations have

an oscillatory component with an amplitude that increases slowly with time. For ∆2 > 0,
the growth is purely a power-law in time, and increases with decreasing Ric. The critical
Ric above which oscillations appear varies between 0 for γ = 5/3 and 1/4 for γ = 1. This
is reminiscent of the Richardson criterion for the stability of a stratified shear flow (Miles
1961; Chimonas 1970), with shear replaced by dilatation. In this case the transition is not
between stability and instability, but rather simply between the presence and absence of
oscillations.

The complete linear solution for oblate modes under implosions satisfying expression
(2.4) is

ρ′

ρ
= h−

5−3γ
4

(
ρ′0
ρ0

[
coshφ+

5− 3γ

4∆
sinhφ

]
− v′r0
vr0

2Ric
3[γ − 1]∆

sinhφ

)
, (3.13)
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v′r
vr

= h−
5−3γ

4

(
v′r0
vr0

[
coshφ− 5− 3γ

4∆
sinhφ

]
+
ρ′0
ρ0

3[γ − 1]

2∆
sinhφ

)
, (3.14)

where φ ≡
√

∆2 lnh. For ∆2 < 0, these solutions become oscillatory, and it is straight-
forward to show that the amplitude of the oscillations is consistent with the conservation
of wave action in the fluid frame (Whitham 1965), i.e.,

d

dt

( E
ωr

)
= 0, E ≡ 1

2
v′2r +

1

2
N2ξ′2r ,

where E is the specific energy of the fluctuations (kinetic plus potential), ξ′r = −Lss′ is
the fluctuating radial fluid displacement, ωr is the real part of ω, and an overbar denotes
an angular average. An estimate of the growth factor for the fluctuations in this case can
be made from (3.13) or (3.14):

G ∼ C−βr ∼

 C
√
−Ric for Ric � −1

C(5−3γ)/2 for Ric = 0
C(5−3γ)/4 for Ric > 0.

(3.15)

4. Summary and discussion

By isolating incompressive modes that are elongated in the direction of the mean
flow (the oblate limit), the following conclusions are drawn regarding the stability of
homologously-imploding ideal gases: 1) monatomic gases are governed by the Schwarzschild
criterion for buoyant stability; 2) due to the time-dependent nature of the mean flow,
the growth is power-law rather than exponential in time; 3) additional growth occurs
due to the conservation of angular momentum as vortices are compressed; 4) gases with
γ < 5/3 are weakly unstable due to this additional growth mechanism even when the
flow is otherwise buoyantly stable. As pointed out by Cao & Lou (2009), the reason that
Goldreich & Weber (1980) and Chu (1996) do not find instability is that they assume
an isentropic background and ignore vorticity and entropy fluctuations; either of these
assumptions precludes the development of buoyancy instability.

The short-wavelength nature of the most unstable modes coupled with the compression
of the mean flow makes this instability challenging to capture in numerical calculations.
Fig. 3 indicates that accurately capturing the growth of vorticity under an implosion
requires a resolution on the order of 30 zones per wavelength; this translates to an an-
gular resolution of 360◦/(30`) = 12◦/`. Capturing the fastest-growing modes (` & 100)
therefore requires an angular resolution . 0.1◦. For an Eulerian code, high convergence
ratios of course impose severe constraints on the resolution in the direction of the mean
flow. Seeding buoyancy instability in the gas can occur in two ways: vorticity fluctua-
tions can be transported there by shocks rippled from drive asymmetry or interfacial
perturbations, or small-amplitude entropy fluctuations can be present initially in the
gas. Even a sufficiently-resolved calculation that is initialized without ambient density
or temperature fluctuations may not capture this instability properly.

Finally, for ICF implosions and sonoluminescent bubbles, the growth at large ` is likely
to be reduced by conduction and viscosity (Atzeni & Meyer-ter-Vehn 2004; Weber et al.
2014). These effects have been neglected here for several reasons: 1) as with classical
stability analyses, a better understanding is gained if the effects driving the instability
are isolated first, and stabilizing effects are added afterwards; 2) there are uncertainties
associated with conduction and viscosity models, and it is useful to know what insta-
bilities are lurking in the background in their absence; 3) the analytic results obtained
here in the adiabatic limit provide physical insight and are useful for code verification.
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Self-similar solutions have been obtained previously with non-adiabatic effects (Basko &
Murakami 1998; Sanz et al. 2005), although the adiabatic profiles in Fig. 1 are remark-
ably similar to the actual profiles in an ICF implosion (compare Fig. 1 with Fig. 3.11
of Atzeni & Meyer-ter-Vehn 2004). Dissipation primarily affects small scales; in reality
the amplification in Fig. 2 will fall off at high mode numbers. At the same time, Fig. 2
indicates that potentially significant growth can occur even for moderate `. Definitive
conclusions regarding the application of this analysis to ICF and sonoluminescent bub-
bles will require a more faithful representation of both the mean flow and the dissipation.
This, as well as application to astrophysical gases, will be pursued in future studies.

I thank Dan Clark, Omar Hurricane, Karnig Mikaelian, Oleg Schilling, and the referees
for their comments. This work was performed under the auspices of Lawrence Livermore
National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

Appendix A. Results for cylindrical and planar symmetry

A complete set of homologous solutions can also be derived for flows with cylindrical
and planar symmetry. In general, mass and entropy conservation for homologous adia-
batic flow imply ρ(t, a) = ρ0(a)/hn and p(t, a) = p0(a)/hnγ , where n = 1, 2 or 3 for
planar, cylindrical or spherical symmetry, and the time-dependent portion of (2.2) is
hnγ−n+1ḧ = ±t−2

c . All of the above results for the mean spatial profiles remain valid if
r is interpreted as the spatial coordinate in the direction of the mean flow. Expression
(2.3) for the Kidder implosion remains valid for γ = 1 + 2/n, and the generalization of
(2.4) is

h(t) =

(
1− nγ − n+ 2

2

√
2

nγ − n
t

tc

) 2
nγ−n+2

,

valid for ḣ0tc = −
√

2/(nγ − n). Both the buoyancy frequency and the dilatation have
the time dependence N ∝ D ∝ h(n−nγ−2)/2.

Equations (3.5) for the perturbations remain valid in all three geometries, and imply

d2s′

dt2
= −∂s

∂r

dv′r
dt
− d

dt

(
ρrn−1

ρ0r
n−1
0

∂s

∂r0

)
v′r,

where r0 = r(0, a). Using the mean flow relation d
(
ln ρrn−1

)
/dt = −∂vr/∂r, this leads to

equation (3.8). The solutions for a Kidder implosion, (3.9) and (3.10), are therefore valid
for all three geometries (provided γ = 1 + 2/n). Expressions (3.13) and (3.14) generalize
to

ρ′

ρ
= h−

2+n−nγ
4

(
ρ′0
ρ0

[
coshφ+

2 + n− nγ
4∆

sinhφ

]
− v′r0
vr0

2Ric
n[γ − 1]∆

sinhφ

)
, (A 1)

v′r
vr

= h−
2+n−nγ

4

(
v′r0
vr0

[
coshφ− 2 + n− nγ

4∆
sinhφ

]
+
ρ′0
ρ0

n[γ − 1]

2∆
sinhφ

)
, (A 2)

with ∆2 = (2+n−nγ)2/16−Ric, so that oscillations appear for Ric > (2 + n− nγ)
2
/16.

For Ric = 0, ρ′0 = 0, and γ = 5/3, expression (A 2) reduces to v′r/vr = (v′r0/vr0)hn/3−1,
which implies that the growth due to compression in a monatomic gas can impact the
mean flow for planar and cylindrical implosions, but not for spherical implosions. In the
latter case, the velocity fluctuations grow at the same rate as the mean and therefore
never become large enough to drain energy from it.
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