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Abstract. Maximizing the scope of a parallel region, which avoids the
costs of barriers and of launching additional parallel regions, is among
the first recommendations in any optimization guide for OpenMP. While
clearly beneficial and easily accomplished for code where regions are
visibly contiguous, regions often become contiguous only after compiler
optimization or resolution of abstraction layers. This paper explores the
changes to the OpenMP specification that would allow implementations
to merge adjacent parallel regions automatically, including the removal of
issues that make the transformation non-conforming and the addition of
hints that facilitate the optimization. Beyond simple merging, we explore
hints to fuse workshared loops that occur in syntactically distinct parallel
regions or to apply nowait to such loops. Our evaluation shows these
changes can provide an overall speedup of 2−8× for a microbenchmark,
or 6% for a representative physics application.

1 Introduction

That OpenMP programs should minimize the number of synchronization points
and parallel regions is well know optimization guidance. The region’s team of
threads must be initialized when it begins and joined when it ends, which is
a costly synchronization point. Reducing these costs can significantly improve
performance, especially for short parallel regions. In the common case, merging
contiguous parallel regions with no intervening serial code is a trivial optimiza-
tion. However, few compilers implement it and instead expect programmers to
merge them in the source code. Further, the OpenMP specification does not
explicitly allow merging of parallel regions.

While the OpenMP specification does not explicitly allow region merging,
a few simple changes would allow it while preserving the semantics of parallel
regions. Even with those adjustments however, some cases for which merging is
desired would not be facilitated without hints on the parallel constructs that they
can be merged safely. This paper proposes the necessary changes to allow region
merging, and extensions to the parallel construct to control the merging and
generate more efficient code. Specifically, we make the following contributions:

? This material is based upon work supported by the U.S. Department of Energy
(LLNL-CONF-670944)
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1 // parallel_forall.hpp

2 template<typename FunT, typename It>

3 void parallel_forall(It begin, It end, FunT fun){

4 #if defined(USE_OMP)

5 #pragma omp parallel for

6 #endif

7 for(It i = begin; i < end; ++i){

8 fun(i);

9 }

10 }

11 // user_code.cc

12 #include <parallel_forall.hpp>

13 void foo(double* a, double* b, size_t N){

14 std::vector<double> c(N);

15 parallel_forall(0, N, [&](int i){

16 c[i] = a[i] * b[i];

17 }

18 );

19 parallel_forall(0, N, [&](int i){

20 a[i] = sqrt(c[i]);

21 }

22 );

23 }

Fig. 1. A C++ lambda abstraction over OpenMP

– Specification changes to allow merging of adjacent parallel regions;
– Syntax to guide region merging and synchronization of merged regions;
– Evaluation of region merging benefit with several OpenMP runtimes.

The remainder of the paper is composed as follows. Section 2 describes the
proposed optimizations along with the proposed clauses to support them. Sec-
tion 3 presents our evaluation. Section 4 presents related work.

2 Region Merging and Control

The overhead of starting a thread team has been considered a key performance
issue for nearly as long as OpenMP has existed. Recently, however, users have
begun to interact with OpenMP and other threading models from higher levels
of abstraction. These abstraction levels support portable parallel frameworks
across multiple threading models or target devices, including C++ frameworks
like RAJA [6] and Kokkos [1]. When using these frameworks, programmers may
not even be aware that an OpenMP parallel region exists in their code.

For example, in Figure 2, the parallel for is conditionally applied in a
library header. While the user could simply fuse the loops of this trivial example,
more complex cases can make the source level fusion undesirable or hard to detect
by eye. Even if the loops cannot be fused, however, the parallel regions could be
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1 void foo(double* a, double* b, size_t N){

2 std::vector<double> c(N);

3 #pragma omp parallel for

4 for(int i=0; i < N; i++){

5 c[i] = a[i] * b[i];

6 }

7 #pragma omp parallel for

8 for(int i=0; i < N; i++){

9 a[i] = sqrt(c[i]);

10 }

11 }

Fig. 2. Lambda code after the templates are inlined

1 //Library function

2 void mutate_all(double* a, size_t N){

3 #pragma omp parallel //Launch thread team

4 #pragma omp for //Schedule loop onto threads

5 for(int i=0; i < N; i++){

6 mutate(a[i]);

7 }// Implicit barrier followed by join, threads idle or block

8 }

9 void foo(double* a, double* b, size_t N){

10 mutate_all(a, N);

11 mutate_all(b, N);

12 }

Fig. 3. Function call indirection

if they were accessible. After the template instantiation and inlining passes of
the compiler, the function is transformed to the one that Figure ?? shows. Since
no user ever sees this code, a compiler optimization pass is the only option to
merge the regions short of contorting the abstraction to fit OpenMP’s fork/join
model. While code using C++ lambdas, or Apple’s C blocks, in this way is not
yet common, the benefits of this sort of abstractions are numerous so we expect
the use of lambdas will soon be common in a wide range of applications.

Even without a higher-level abstraction, cases for which source code merg-
ing is difficult or impossible can arise from functions or libraries that contain
OpenMP regions, such as the example that Figure 3 shows. The two calls into
mutate_all do not visibly create OpenMP parallel regions at the call-site but,
after an inlining pass, as in Figure 4, region merging is clearly desirable.

The rest of this section first discusses the validity of region merging under
the current OpenMP specification. We then detail the additional clauses that we
propose to assist compilers in making appropriate and efficient decisions when
considering regions for merging.



4 Authors Suppressed Due to Excessive Length

1 void foo(double* a, double* b, size_t N){

2 #pragma omp parallel //Launch thread team

3 #pragma omp for //Schedule loop onto threads

4 for(int i=0; i < N; i++){

5 mutate(a[i]);

6 }// Implicit barrier followed by join, threads idle or block

7 #pragma omp parallel //Re-activate thread team

8 #pragma omp for //Schedule loop onto threads

9 for(int i=0; i < N; i++){

10 mutate(b[i]);

11 }// Implicit barrier followed by join, threads idle or block

12 }

Fig. 4. Regions after inlining

1 void foo(double* a, double* b, size_t N){

2 #pragma omp parallel //Launch thread team

3 {

4 #pragma omp for //Schedule loop onto threads

5 for(int i=0; i < N; i++){

6 mutate(a[i]);

7 }// Implicit barrier, threads idle or block

8 #pragma omp for //Schedule loop onto threads

9 for(int i=0; i < N; i++){

10 mutate(b[i]);

11 }// Implicit barrier followed by join, threads idle or block

12 }

13 }

Fig. 5. Regions after merging

2.1 Region Merging Validity in OpenMP

Continuing the example in Figure 3, we now define the effect of merging the two
regions to produce the version of the code in Figure 5. Since the loop construct
ends with an implicit barrier, the memory access ordering and synchronization
semantics of the merged version remain identical to the original. However, the
specification of parallel regions creates a few key differences. First, the number of
threads in a parallel region must agree with Algorithm 2.1 of the specification. In
cases with complex nested parallelism, a program could observe the difference
in behavior, but the worst result would be over- or under-subscription if the
program conforms to the specification. Merging would still preserve correctness.

In addition to the algorithm to calculate the number of threads, the speci-
fication explicitly states that only the master thread continues execution of the
enclosing task region after the join operation. For a case such as Figure 4, one
could reasonably argue that eliminating the join, as in Figure 5, does not cre-
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1 void foo(double* a, double* b, size_t N){

2 #pragma omp parallel //Launch thread team

3 {

4 #pragma omp for //Schedule loop onto threads

5 for(int i=0; i < N; i++){

6 mutate(a[i]);

7 }// Implicit barrier, threads idle or block

8 #pragma omp master

9 {

10 orthogonal_serial_work();//serial

11 }

12 #pragma omp barrier

13 #pragma omp for //Schedule loop onto threads

14 for(int i=0; i < N; i++){

15 mutate(b[i]);

16 }// Implicit barrier followed by join, threads idle or block

17 }

18 }

Fig. 6. A merged pair of regions with an embedded serial section

ate an observable difference despite not temporarily returning to master-only
execution. Fundamentally, neither this rule nor the selection of the number of
threads make region merging necessarily non-conforming, but they do obscure
whether the transformation is conforming. Thus, the specification arguably al-
ready allows it. However, we suggest that the OpenMP specification explicitly
state that region-merging and similar transformations that result in well-defined
semantically consistent behavior are conforming.

2.2 Syntax Extensions to Support Merging

For regions that are lexically back-to-back, possibly after simple transforma-
tions such as inlining as in Figure 3, the compiler can easily determine that the
merging transformation is both possible and desirable. However, slightly more
complicated scenarios, with serial code between the regions, can still benefit from
a slightly more advanced transformation, although the extent to which it should
be applied is less clear. For this reason, we propose additional clauses for the
parallel construct to guide optimization.

First, we propose a merge clause. While we could apply this clause to other
constructs, we first limit the proposal to the parallel construct and the com-
bined or composite constructs for which it is logically the outermost construct.
This clause indicates that the compiler should merge the current region with the
next construct in the translation unit. It is a descriptive clause (i.e., it is a hint);
merging is not required for conformance. However, if another parallel region can
be reached then ideally the compiler will merge the two constructs into a single
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parallel region, even across serial code. This merge transformation would result
in code such as that shown in Figure 6.

This transformation encapsulates the serial region in a master region, which
ensures that it only runs on a single thread. While a single region might be
more efficient, the master region ensures that the same thread executes the
code as in the untransformed case, preserving correctness in the presence of
thread local state. This transformation does have some drawbacks. We must
insert barriers after the first loop region and after the master region in order to
preserve the original semantics. However, in our example, the serial region has
no dependence on the results of the first loop, so we could theoretically omit the
first barrier. In order to support this potentially common use-case, we propose
that the parallel and parallel loop constructs accept the nowait clause. If
we include this clause on the first construct in the source code that corresponds
to our example, the compiler should apply the nowait clause to the first loop
construct of the transformed code.

Our proposal still requires an extra explicit barrier after the master region,
which our example also does not require. We cannot apply a clause to the first
construct to remove this barrier because its semantic meaning would involve
dependences of the second parallel loop construct of the original code. We have
considered support for a third clause that addresses dependence on the preceding
code. However, it would need to identify data dependences within the region
explicitly or otherwise limit its scope. We leave this issue for future proposals
due to its complexity and potentially limited applicability.

3 Results and Evaluation

This section presents results for manually merged parallel regions of represen-
tative OpenMP applications in the context of four hardware platforms and five
OpenMP runtime libraries. We base our microbenchmark on CLOMP [2], which
we modify into two new variants that specifically target the overhead of OpenMP
region setup and synchronization. The first variant, referred to as CLOMPK,
has its inner-loop composed of ten back-to-back parallel loop regions that use
a function call to update independent values. The second, CLOMPKS, inter-
poses dependent serial work between each of the parallel loop regions. To pro-
vide a representative application for testing, we also investigate a version of the
LULESH [7] benchmark that has been parallelized with RAJA. All results are
presented in terms of speedup over an OpenMP execution of the code with no
(manual) merging or annotation applied on the same number of cores unless oth-
erwise noted. Table 1 lists the test environment that we use for our evaluation.

3.1 Back to Back Regions

To investigate the purest case, the results in Figure 7 represent the CLOMPK
results, which do not include any serial code between the ten parallel loop regions.
In order to explore the space, we tested four different levels of merging in addition
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Table 1. Evaluated systems. Note: Power8 tests were conducted in little-endian mode

Name Processor OMP Runtimes Cores Threads/Core Sockets
BlueGene/Q IBM PowerPC A2 default, lomp1/2 16 4 1

RZMerl Intel Xeon E5-2670 Intel, GNU 8 2 2
RZAlastor Intel Xeon E5-2680 Intel 10 2 2

RZMist IBM Power8 GNU 12 8 2
Mic Intel Xeon Phi 7120P Intel 61 4 1

to the unmerged baseline. The numbers refer to the number of merged regions
at a given level, so two refers to running five parallel regions each containing two
workshared loops. Since ten does not divide evenly by three, the three case is
actually distributed as 3×3×4. In nearly all cases, basic parallel region merging
improves performance, often substantially. Merging pairs of regions gains 2-5%
in most cases, although notably it loses approximately 2% with BlueGene/Q’s
default OpenMP runtime. When merging into groups of three or more, basic
parallel merging always improves performance, from a 15% speedup for some
cases on BG/Q to over 2× with the GNU OpenMP runtime on Power8.

In principle, the nowait option only removes the implicit barrier between
parallel loop regions, so it should always improve performance. On all of the
Linux-based platforms, including the Intel Xeon Phi accelerator, adding nowait

provides the expected benefit, producing as much as a 5× speedup over the
baseline on Power8. However, the BG/Q default and LOMP1 results suggest
that adding the nowait clause can result in more complicated side-effects. With
the BG/Q default runtime, it results in a slowdown of as much as 75%. With
LOMP1, it remains faster than the baseline, but is a slowdown compared to
parallel region merging. With LOMP2, however, the nowait option provides
benefits on BG/Q similarly to the Linux-based platforms. The overall runtimes
also track this trend, with LOMP1 outperforming default, and LOMP2 outper-
forming LOMP1 in overall runtimes with nowait.

Since each iteration of each of the loops is dependent only on the value pro-
duced by the same iteration in the previous loop, we can fuse the loop regions
into one loop region. While we do not expect most compilers to implement this
optimization, it is valid for back-to-back loop regions that use the static schedule
and no cross-iteration dependences. This optimization provides significant per-
formance benefit on BG/Q, achieving as much as a 2× more speedup in one case,
but only slightly outperforms the nowait option on the Linux-based platforms.

3.2 Parallel Regions with Intervening Serial Regions

Using the merge directive discussed in Section 2.2, users can request that com-
piler merge consecutive parallel regions even with intervening serial code. As
previously discussed, parallel region merging is performed with the serial code en-
capsulated in a master region followed by an additional barrier directive. Figure 8
shows results with this optimization, using the untransformed code, including
the intervening serial region as the baseline. The serial regions essentially pre-
vent the loop fusion optimization so we omit the LOOP variant. As expected in
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Fig. 7. Performance of back-to-back microbenchmark: parallel region merging (PARA);
loop barrier elimination (NOWAIT); and loop fusion (LOOP).

a case with additional serial overhead, as well as the barriers required to protect
the master region, the speedups are not as large as with the back-to-back tests.
Notably, both the default BG/Q OpenMP runtime and the Intel MIC OpenMP
runtime lose performance in some cases. Specifically the BG/Q results for 16
threads slow down by as much as 25%, and on 64 threads by as much as 80%
for the use of nowait. This pathological weakness of the default BG/Q OpenMP
runtime is not shared by the LOMP runtimes on the same platform. In fact, even
with the default runtime as much as a 10% speedup is achieved in the 64 thread
case with basic parallel region merging. Other runtimes behave approximately
as they do for the back-to-back case. The largest benefits are a speedup of 2.25×
for the GOMP runtime on rzmist, the IBM Power8 system.

3.3 Lulesh

Lulesh is a representative application for shock hydrodynamics that serves as a
widely available and comparable algorithm for programming model evaluation.
It is also composed of a significant number of parallel loop regions, many of which
can be fused into larger parallel regions. Figure 9 shows results of four runs each
of the original code, which has forty distinct parallel regions with a version in
which we manually merged the forty regions into two larger regions. As each
of the forty regions performed a large amount of work, the overall application
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Fig. 8. Performance of intervening serial code microbenchmark: parallel region merging
(PARA); and loop barrier elimination (NOWAIT).

speedup is not as large as for the microbenchmarks, but the median speedup
remains slightly above 5% on RZAlastor and over 6% on RZMerl. Given that
these results apply the optimization to a realistic and reasonably optimized code,
5% is a significant improvement.

4 Related Work

The synchronization, thread launching and scheduling overheads inherent in
multi-threaded programming models have been topics of research and discus-
sion since the concept of threading came into being. OpenMP is no exception;
the MPCC benchmark suite [3] was published in 1999. At the time, launch-
ing a parallel region was approximately as costly as executing a barrier across
all threads inside the region. Later work by Müller [8] found that parallel re-
gion launch was still as expensive, and recommended merging regions to be as
comprehensive as possible. This work also asserts that both the SGI native com-
pilers and the PGI compiler of the time merge contiguous parallel regions based
on their performance results. Our tests, discussed in Section 3, show that this
optimization does not take place in several current compilers.

Attempts have been made to construct OpenMP compiler and runtime en-
vironments that reduce the overhead of launching a parallel region. Eichen-
berger [5] proposed a lightweight OpenMP runtime, called LOMP, designed to
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cut the overhead to as much as possible on BG/Q while following the OpenMP
specification. Some of the optimizations applied included caching thread con-
texts, distributing region setup to the thread team, the use of low-overhead
sleep and wake primitives and creating fast-paths for parallel launches using
default parameters. Overall, this work decreased the cost of launching a team
of threads across the system, and especially re-entering the region later, but
region launch still takes thousands of cycles, and barriers remain a bottleneck.
We further evaluate the original LOMP runtime, as well as an updated version,
LOMP2, in Section 3.

One exception to our results that show modern compilers do not merge par-
allel region merging is craycc from the Cray Compiling Environment [4]. It offers
the -h threadn flag, which when set to a value of two or higher instructs the
compiler to attempt to merge, to expand, or otherwise to transform parallel re-
gions. The option documentation implies that these optimizations break strict
conformance with the OpenMP specification, which may be why other compilers
do not perform parallel region merging.

5 Conclusion

In this paper we re-affirm the common wisdom that merging nearby, and espe-
cially contiguous, OpenMP regions improves performance. Further, we identify
situations in which regions become contiguous as a result of compiler optimiza-
tion or evaluation of code at compile time, making the optimization require
compiler support. OpenMP as a rule does not require a compiler to perform
analysis of the correctness of transformations, and our recommended specifica-
tion changes maintain that property by ensuring that proper synchronization
remains wherever it may be expected. The extended clauses, merge and nowait,
for parallel regions make this possible while giving the user greater control over
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the interpretation of a parallel region and the following serial code, if any. Our
evaluation shows that for a realistic representative application, region merging
can achieve a 5% speedup over the original, and as much as 5× in microbench-
marks. In summary, parallel region merging is an effective optimization with a
significant benefit to include in OpenMP compilers.
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