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Abstract. In this paper we continue our investigations started in [4] into
the effects of using different synchronization mechanisms in OpenMP-
threaded iterative mesh optimization algorithms. We port our test code
to the Intel® Xeon® processor (former codename “Haswell”) by em-
ploying a user-guided locking API for OpenMP [1] that provides a gen-
eral and unified user interface and runtime framework. Since the Intel®
Transactional Synchronization Extensions (TSX) provide two different
options for speculation—Hardware Lock Elision (HLE) and Restricted
Transactional Memory (RTM)—we compare a total of four different run
modes: (i) HLE, (ii) RTM, (iii) OpenMP critical, and (iv) “unsyn-
chronized”. As we did in [4], we find that either speculative execution
always outperforms the other two modes in terms of their convergence
characteristics. Even with their higher overhead, the TSX options are
very competitive when it comes to runtime performance measured with
the “time-to-convergence” criterion introduced in [4].

1 Introduction

While transactional memory (TM) has been around for over two decades [7], and
despite the many different implementations in both software and hardware that
have been offered over the years, it has yet to become a mainstream mechanism
of thread synchronization. This is partly due to the fact that any reasonable
TM runtime performance strongly depends on specialized hardware, typically
achieved through modifications to the L1 and/or L2 caches. So far, two major
vendors, IBM" and Intel, provide hardware transactional memory (HTM) on
their Blue Gene™/Q (BG/Q) [6] and Intel® Xeon® processors [8], respectively.
Despite the availability of HTM platforms, support for TM has not yet made it
into the OpenMP API specification [10] (though a hinted lock proposal seems
likely to be adopted into OpenMP 4.1). As a consequence, for those intending to



write identical code for a range of systems, the elegance and promised efficiency
of TM is compromised by its lack of portability between different platforms.

Over three years ago IBM offered the first production quality TM comprising
BG/Q hardware and a TM runtime that delivered features such as multiple roll-
back capability and smart heuristics in its software stack, but without burdening
the user with and exposing all the details of the underlying algorithms. To use
TM, the user only needed to insert directives, call runtime libraries, and tune a
few environmental variables.

Intel platforms, on the other hand, offer a more versatile and potentially more
efficient TM capability — the (Intel® Transactional Synchronization Extensions
(TSX) — with two options: Hardware Lock Elision (HLE) and Restricted Trans-
actional Memory (RTM). However, the system does not come with a complete
runtime library that would be readily usable with RTM: the programmer has to
provide a non-transactional fall-back path which would have code to eventually
acquire the lock that was elided. For most non-expert developers, some of whom
maintain or modify legacy code, this is a major drawback, as each transaction
(e.g., at least once in each for loop with race conditions) would require several
lines of coding to be able to use the new hardware features. A more ambitious
customer may develop a home-grown library of the different transactional backup
paths, but at the cost of some non-trivial time and effort.

An attractive solution to this “missing software dilemma” was introduced in
[1] where a library of user-guided locks was proposed as an extension of the well-
known OpenMP" API. This API enables the use of HLE and RTM, and also
includes other lock hints which can be used as either real alternatives to TSX,
or to tune lock-synchronized code by using different lock implementations in the
absence of TM. At the user level, the complete package is now comparable to
IBM’s system, with the added benefit that it is implemented in the open-source
LLVM" /Intel runtime, allowing potential modifications by an expert user.

Given this background and the availability of another major vendor’s HTM
system (i.e., Intel TSX), we continue our experimentation with threaded mesh
optimization where potential race conditions exist. Both the hardware and the
software are very different from the IBM environment used in our previous
work [4], thus our intent was to experimentally test and ideally verify that the
principles detailed in [4] still hold. That is, in a shared-memory environment
does a threaded algorithm benefit from using TM to dynamically update shared
variables that have dependencies? We find the answer through extensive exper-
imentation on the same code used in [4] but run in the Intel environment. The
results are quite encouraging: we find similar trends to those of [4] and the same
conclusions remain true.

The rest of this paper is organized as follows. Section 2 presents an overview
of Intel TSX as well as the user-guided lock library as it relates to our experi-
mentation, while Section 3 gives a brief review of the algorithm and the role we
expect TM to play in it. We present our experimental results in Section 4, where
we compare three different flavors of synchronizations, as well as a completely
unsynchronized version of the code. We also show TM statistics and runtime



performance using the new metric introduced in [4]. We conclude with Section 5
with a brief review of our results.

2 User-guided Locking API with TSX

For completeness, we briefly review Intel TSX and show how it can be used in
an OpenMP application that is compiled and linked with the Intel (or LLVM)
OpenMP runtime.

2.1 Intel Transactional Synchronization Extensions

Intel Transactional Synchronization Extensions are new capabilities introduced
in the current Intel Xeon processor series, which was formerly known as “Haswell”.
The extensions provide support for transactional execution while using cache-
coherence protocols to detect memory access conflicts. On a transactional abort,
the architectural state of the processor is restored to that at the start of the
transaction (all transactional memory writes are discarded, and register state
is restored). At transaction commit all transactional writes become atomically
visible to other cores.

By using Intel TSX it is possible to execute multiple dynamic instances of
a critical region simultaneously, with the required mutual exclusion enforced by
the hardware when conflicting memory accesses occur between these instruction
streams. This allows code written with a single coarse lock to behave as if it were
implemented through fine-grain reader-writer locks at cache-line granularity.

Intel TSX provides two different interfaces to speculation: Hardware Lock
Elision (HLE) and Restricted Transactional Memory (RTM). In both cases,
speculation is implemented in the coherence protocol of the processor caches.
Because the cache protocol keeps track of the states of individual cache lines,
the hardware can use this information to detect conflicting memory accesses
and to abort the speculative execution in the cores executing the threads that
suffered the conflicts.

HLE is a backwards binary-compatible interface that can be added to an
existing lock by tagging the lock and unlock instructions with instruction pre-
fixes that are ignored on processors without TSX support. It requests that the
processor executes the protected critical region speculatively. If the speculation
fails the processor rolls back, takes the lock “for real”, and executes the critical
section non-speculatively. HLE preserves all of the semantics of existing locks,
such that the lock value read inside the critical section appears to be locked, as
it would if there were no speculation.

RTM adds new instructions to put the processor into the speculative exe-
cution state and to commit the speculative state. With RTM the user has to
provide a non-speculative execution path, since no lock is visible to the hard-
ware. The backup path is triggered whenever the transaction fails and has been
aborted by the hardware. The code invoked for this case may choose to retry



speculation, but must ultimately provide a way of executing the critical region
non-speculatively.

Since some operations (inter alia any ring transition that enters the kernel)
cannot be executed speculatively so will abort, blindly converting all critical
regions of a code to use speculative locks will likely be counterproductive. If a
large amount of speculative work has been performed before the abort, discarding
it becomes prohibitively expensive. Consider a lock used to serialize output,
for instance, in which effort may be expended to format data before the write
system call is made. If this is done within speculative execution the formatting
work will all be lost and will have to be repeated in the non-speculative backup.
Therefore, it is hard for the runtime system to determine which locks should
be speculated without information from the programmer (who knows what code
will be executed in the critical region). This observation motivated our previous
proposal for hinted locks [1].

2.2 Using the User-guided Locking API

The Intel/LLVM OpenMP runtime library contains lock implementations that
use HLE and RTM. Programmers can select the lock implementation either
globally through an environment variable or selectively through an OpenMP
extension [1].

The OpenMP extension was proposed to overcome one of the disadvantages
of the lock API available in the current OpenMP API specification. The key
feature of the new API is to give application writers the capability to choose
a hint on a per-lock basis and to pass information to the runtime about the
estimated degree of lock contention. As a result, users gain fine-grained control
of the OpenMP runtime and can optimize their applications by adjusting the
lock implementation for each individual lock if desired.

The proposed API is available in the latest release of Intel’s open-source
OpenMP runtime [9], and can be enabled at build time. Two additional lock
initialization functions are provided to pass extra information to the runtime:

void kmp_init_lock_hinted(omp_lock_t*, kmp_lock_hint_t)
void kmp_init_nest_lock_hinted(omp_nest_lock_t*, kmp_lock_hint_t)

User-selectable hints (of type kmp_lock_hint_t) are defined as an enumera-
tion:

typedef enum kmp_lock_hint_t {
kmp_lock_hint_none,

kmp_lock_hint_uncontended, // Optimize for an uncontended lock
kmp_lock_hint_contended, // Optimize for a contended lock
kmp_lock_hint_nonspeculative, // Do not use hardware speculation
kmp_lock_hint_speculative, // Do use HLE hardware speculation
kmp_lock_hint_adaptive, // Adaptively use RTM speculation

} kmp_lock_hint_t;



void example () {
omp_lock_t lock;
kmp_init_lock_hinted(&lock, kmp_lock_hint_speculative);

omp_set_lock(&lock);
// critical section
omp_unset_lock(&lock);

Fig. 1. Using user-guided locks in the Intel OpenMP runtime.

Programmers can use these hints together with the additional initialization
routines to tag a lock with a hint. The example code in Figure 1 shows how
to use the new API to speculatively execute a critical region that is protected
through the OpenMP lock API. After the lock has been initialized and the hint
has been bound to the lock, the standard lock routines of OpenMP acquire and
release the lock as usual. This simplifies the task of changing the code to use a
specific type of lock; only a single initialization of a lock needs to be located and
not all the places where the lock is claimed and released. The runtime system
uses the hint to change the lock implementation for this particular lock, and, in
this case, to select speculation for it.

3 Application of TSX to the Test Code

We will now briefly introduce the algorithm under investigation and then show
how Intel TSX can be applied to its efficient thread synchronization.

3.1 A Brief Review of the Algorithm

In our experiments we use the same simple C+4 mesh smoothing algorithm
of [4] that takes the same initially distorted mesh as input and produces a fi-
nal converged mesh as output. The main for loop accomplishing the averaging
operation is symbolically represented by the equation:

1 &

n+1 m

XY = A > %™ (1)
)

where x is a 2- or 3-D vector, n is the current (old) iteration, n + 1 is the latest
(new) iteration, N; is the number of connected vertices for grid point ¢, and m
can refer to either n or n+1 depending on whether or not that point has already
been updated or not. Figure 2 shows the relevant code section, as modified to
run with our user-guided locking API on the Intel machines.

In order to avoid write-after-read (WAR) race conditions in Figure 2, the
code needs to protect the entire section that includes both “Step 1”7 and “Step
2”, and not just the update operations of “Step 2”. The associated {} brackets
symbolize and the omp_set_lock and omp_unset_lock routines actually delimit



omp_lock_t lock;
kmp_init_lock_hinted(&lock, kmp_lock_hint_speculative);
#pragma omp parallel for
for(int i=0; i < numFreeVerts; i++) {
int vertexID = freeVertexIDs|[i];

// get attached vertex ids:
std:: vector <Point2Dx> &myAttachedVertices =
attachedVertices[vertexID |;

Point2D newX={0.0,0.0};
size _t numAttachedVertices = myAttachedVertices. size ();

omp_set_lock(&lock) // start of critical region

{

// Step 1: take average of neighbors
for (int j=0;j<numAttachedVertices;j-++){
newX.x += myAttachedVertices|[j]—>x;
newX.y += myAttachedVertices|[j]->y;
} // end for (over mneighbor vertices)
newX.x = newX.x/numAttachedVertices;
newX.y = newX.y/numAttachedVertices;

// Step 2: update current coordinates:
x| vertexID].x = newX.x/numAttachedVertices;
x[vertexID].y = newX.y/numAttachedVertices;

}

omp_unset_lock(&lock) // end of critical region
} // end for (over all vertices)

Fig. 2. Simple Laplacian mesh smoothing algorithm.

the entire transaction. Note that this is essentially the same simple construct as
that of the IBM BG/Q TM runtime, and, apart from the lock initialization, the
code of Figure 2 is identical to that of [4].

The OpenMP language offers the critical construct for the purposes of
simple coarse-grain locking, which would be the obvious choice. However, because
OpenMP does not yet support hints to change the behavior of critical from
regular lock acquire/release to speculation, we emulate this functionality by using
the OpenMP lock API and run in two additional modes, called speculative or
HLE, as well as adaptive or RTM (see Section 2.2).

Note that if we restrict the critical region in Figure 2 to the coordinate update
in “Step 2” only, no conflicts exist since each thread only updates the points that
it owns. However, the neighboring coordinates might change during “Step 1”7 so
the result could depend significantly on whether old or new data is being used
during the update. In other words, we have a write-after-read (WAR) conflict
for which we cannot use #pragma omp atomic. Thus, we will not compare HLE
or RTM to atomic as we did in some of our prior experiments in [5] and [11].



3.2 The Role of TSX

As seen in [4], the BG/Q TM system made a substantial difference to the quality
of the solution we obtained because of the way the updates were done dynam-
ically. With Intel’s TSX system, we also expect to see a difference, especially
since now we actually have two options to properly synchronize the critical code
section of Figure 2.

HLE When HLE is requested, the system tries to elide the lock and execute the
critical region without requiring any communication through the lock. However,
the TSX-enabled hardware is able to detect conflicting operations in hardware.
Should such a conflict occur, the system will execute the protected code section
non-transactionally, that is, without elision and with an acquire/release cycle
for the lock. If such a retry happens (often referred to as a “rollback”) the code
will essentially be serialized and forward progress is ensured, albeit with lower
efficiency. In terms of the usual TM terminology, only one rollback is allowed
with HLE. Once that happens, HLE becomes equivalent to omp critical.

RTM With RTM, the lock protecting the transactional region is also elided at
first. Upon a conflict—detected by the hardware as with HLE—the transaction
aborts and reverts to the fallback instruction address provided by the program-
mer. This provides a great deal of flexibility to handle the abort, as well as
the implied responsibility to provide a code sequence that guarantees forward
progress. In our work, we took advantage of the OpenMP extensions of [1] in or-
der to benefit from the hardware-assisted RTM. As mentioned in Section 2.2, and
further elaborated on in [1], the basic system-provided RTM software interface
was built into the “adaptive” option. The adaptive lock has some additional fea-
tures, such as the environmental variable KMP_ADAPTIVE_LOCK_PROPS = ’M,N’
which allows M number of maximum retries, and a “maximum badness” of N. The
latter parameter is used to guess or speculate whether or not to even try RTM
since transactions that have previously failed may only have a slight chance of
succeeding in the future and may not be worth the higher overhead of new specu-
lative attempts, hence the name “adaptive”. The adaptive lock also collects some
statistics related to the successes and different failure modes of the speculation.
Because of all these additional features, the “adaptive” lock is naturally more ex-
pensive than its “speculative” counterpart, but it can potentially yield a higher
quality result as multiple rollbacks typically mean multiple updates, therefore
newer and more accurate neighbor coordinates for the the current mesh point.
As was the case with BG/Q [4], the way the hardware detects memory con-
flicts and how the software handles them will significantly affect the overall
behavior of algorithm itself. In our experiments, for example, there were many
instances of multiple retries on the same location, where RTM turned out to be
quite useful, while for others HLE with its low overhead was sufficient to handle
a low conflict-probability scenario. Indeed, the choice for handling of the critical
section will have a profound influence on the algorithm and the solution quality



Errors, 2 threads, 1600 X 1600 mesh . 7I1Errors, 4 threads, 1600 X 1600 mesh

= T
© 10
S HLE HLE
010 RTM RTM
510' ¢ Critical ¢ Critical
® 497" ° Unsyng o Unsyng
S 3 °°«> —Serial —Serial
e 10 °° OO °
8107 %o, S 3
= -19 9 0 = -]
©10 % o e )
5 G 15 ¢
0 10 20 30 40 0 10 20 30 40
Iteration number Iteration number
Fig. 3. Convergence on 2 threads. Fig. 4. Convergence on 4 threads.

itself. The right decision of which synchronization method to use will likely be
made by weighing quality against cost.

4 Experimental Results

We now present some computational experiments using the algorithm and test
mesh described above. As in [4], the original Cartesian mesh cells were 1 x 1
non-dimensional units in size, which are then disturbed by a random factor in
the range of (—0.5,0.5), the largest distortion that still guarantees no initial
mesh-line cross-overs. During the runs we vary the number of threads (1, 2, 4,
8, 16, 32, and 64) and use the three coarse-grain synchronization modes HLE,
RTM, and critical as well as unsync.

For the evaluation, we use Intel® C-+-+ Compiler 16.0.0.056 Beta running on
an Intel® Xeon® E5-2698v3 (2.3GHz, 64GB DDR3 at 2133 MHz, TSX enabled).
Our system runs Red Hat Enterprise Linux Server release 6.6 (Santiago), with
kernel version kernel-2.6.32-504.16.2.

We now analyze the convergence, and some TM characteristics of the results.

4.1 Convergence

Convergence is measured in terms of the /; norm of the difference between the
current iterate and the exact solution which is known. The error (™ at time n
is defined by:

M
e(n) _ % Z |Xz(exact) . Xgn)‘ (2)
i=1
where (n) denotes the current iteration counter, M is the number of interior (non-
boundary) vertices, and x; is the coordinate vector of point i. The (exact) su-
persript denotes the solution of the mesh optimization problem, which is known
for our simple problem.
We use the serial solution (which is the same as executing a single thread) as
our reference solution in all plots. Figure 3 shows that convergence rates with 2
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threads exhibit little difference between HLE and critical, which are close to each
other, while unsync is the slowest to converge, RTM being in between. However,
Figures 4, 5, and 6 show RTM overtaking the others, with critical performing
the worst on 8 and 16 threads. As explained in [4], the serial version will have
the least error as the points will always get the most recent update possible. As
we increase the thread count to 32 (Figure 7), HLE gets closer to RTM, and at
64 threads (Figure 8) HLE actually performs the best.

4.2 Transactional Memory Statistics

Results for threaded code with memory conflicts, with or without TM, are always
timing-sensitive. Therefore, we typically repeat the same outer loop dozens or
hundreds of times — as we did in e.g. [2,5,3] — and run it well past convergence.
We thus obtain some statistical averages as well as the iteration-dependent varia-
tion of the TM statistics. The statistics for the RTM case are obtained from the
__kmp_print_speculative_stats() utility provided by the user-guided lock
runtime. At each iteration we observe the number of retries (“soft failures”) that
have occurred, the grand total at the end of the run, as well as several other
diagnostic numbers such as “non-speculative acquires” (i.e. the number of times
the code was serialized) and “hard failures”; the difference of these two numbers
is the number of times speculation was not even tried by the “adaptive” lock.
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Plotting the number of retries in Figure 9, we see a relatively large (one order
of magnitude) spread in the number of conflicts from iteration to iteration on
64 threads, but small oscillations on low to moderate thread counts (2 to 32
threads). This may be due to the fact that the Haswell node this was run on has
32 cores, and at 64 threads hyperthreading may have created some anomalies.
The iteration-to-iteration volatility is certainly much smaller than that observed
on the BG/Q (see [4]).

Figure 10 shows the total number of conflicts over 100 iterations for all thread
counts. We observe a monotonic increase in the number of total conflicts as the
number of threads increases to 8, with some drop at 16 and 32 threads, and
another increase at 64 threads.

4.3 Performance Measurement

Finally, we use the new performance measure of [4] to define “run time per

quality” té") (loosely speaking “time to convergence”), assuming ¢™ is the inverse
of the error e(™) defined by equation ( 2):

g™

We use this measure to gauge whether one or both of the TSX options provides
some benefit when their well-known overhead is balanced against their superior
convergence behavior. For this study, we again run the code in four different
modes (HLE, RTM, critical, and unsync), and to iteration n = 17. The inclusion
of unsync in the study is for information purposes only since strictly speaking it
is non-conforming OpenMP code due to the data races.

We find that both HLE and RTM outperform critical by one or two orders
of magnitude on all except 2 threads (Figure 11). Moreover, RTM yields signif-
icantly better time-per-quality than unsync on 2, 4 and 8 threads, and is the
same on 16 and 32 threads. On the other hand, HLE outperforms unsync on 2,
4, and 64 threads. In essence, one of the TSX options meets or beats unsync
at every thread count, with HLE being the overall best at 64 threads. Indeed,

10
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at 64 threads there are an order of magnitude more retries than on all other
thread counts (see Figures 9 and 10). These retries come with all their overhead
costs, providing at least a partial explanation for the difference between HLE
and RTM at 64 threads. As alluded to earlier, hyperthreading may be another
cause of this outlier behavior.

5 Conclusion

We continued studying different OpenMP synchronization constructs using the
iterative Laplacian mesh-smoothing algorithm of [4] and the user-guided locking
API of [1] on the Intel® Xeon® processor. We again concentrated on evaluating
the specialized TSX hardware offered by this platform as well as the open source
library developed as a user interface to it. Using the new figure of merit intro-
duced in [4], we concluded that not only both TSX options compared favorably
to OpenMP critical—an expected result—but also that they outperformed
even a completely unsynchronized version of the code. In all of our tests the best
performance is provided by one of the two speculative execution options.
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