‘ ! ! . LLNL-TH-687161

LAWRENCE
LIVERM ORE
NATIONAL

womrony | SENSItIVILY Of Inferred Electron
Temperature from X-ray Emission of NIF
Cryogenic DT Implosions

M. Klem

March 30, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

2

>

VI/ UNIVERSITY OF DALLAS

L —

Sensitivity of inferred electron temperature
from X-ray emission of NIF cryogenic DT
implosions

Submitted in partial fulfillment of the Bachelor of
Science Degree

in
Physics
By
Michael Klem

May 2015

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Abstract

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory seeks to
achieve thermonuclear ignition through inertial confinement fusion. The accurate assessment of
the performance of each implosion experiment is a crucial step. Here we report on work to derive
a reliable electron temperature for the cryogenic deuterium-tritium implosions completed on the
NIF using the x-ray signal from the Ross filter diagnostic. These X-rays are dominated by
bremsstrahlung emission. By fitting the x-ray signal measured through each of the individual Ross
filters, the source bremsstrahlung spectrum can be inferred, and an electron temperature of the
implosion hot spot inferred. Currently, each filter is weighted equally in this analysis. We present
work quantifying the errors with such a technique and the results from investigating the
contribution of each filter to the overall accuracy of the temperature inference. Using this research,
we also compare the inferred electron temperature against other measured implosion quantities to

develop a more complete understanding of the hot-spot physics.

Acknowledgments

I would would like to first and foremost thank to my summer internship advisor Tammy Ma. She
gave me an incredible chance to spend a wonderful summer in Livermore learning about inertial
confinement fusion and to experience the inspiring environment of a national laboratory. Her
persistent willingness to answer my many questions, as well as her perpetual cheerfulness made

my summer research pleasant as well as interesting.

Thank you to Professors Sally Hicks, Richard Olenick, and Jacob Moldenhauer of the University
of Dallas for their years of kind physics instruction. It was only through their lucid teaching that I
became prepared to conduct my research. Their enthusiasm for physics has been a great

encouragement and advising has long proved to be invaluable.
I am grateful for the financial support of the Lawrence Livermore Summer Student Program.

Lastly, thank you to my parents, Daniel and Karen Klem, for your love and kind support. Thank

you for you a lifetime of encouragement, and invaluable advice.

Table of Contents

A DSETACT ..ottt e e 1
ACKNOWICAZMENTS ...ttt 2
LISt OF FagUIES ..ttt e e e ettt e e e aaeee s 4
INrOAUCEION ...t e e e e e 5
Data ACQUISTEION ...ttt ettt ettt e et e et e et et e et et e earee e 17
Developing SYNthetic DAt@c.ouueeii i et ee e e 18
Developing Experimental DAtaccoouuiiiiiiii ittt eiieee e 19
Data ANALYSIS ...ttt 23
Fitting A Bremsstrahlung Spectrumc...cooviiiiiiiiiiiiiiiii i, 23
Analysis of the Sensitivity to Filter Configurationcccueieeiiiiiiniainesnnnnnnnn 24
Application of the Code to Experimental Implosion Data..........................c.coeeeen. .. 25
(03 4 Ted 1D T) & T 30
RO OIENCES. . .ttt e 31
N 0 157 416 Lo 32
SAMPLE COC. ..o e e 32

List of Figures

Figure 1., Coulomb barrier illustration, 6

Figure 2. Implosion sequence, 8

Figure 3., Direct/ indirect drive, 8-9

Figure 4. Diagram of experimental setup, 11

Figure 5. X-ray path to Image Plate, 11

Figure 6.........cooiiiiiiiiii, X-ray spectra comparison , 12

Figure 7......ccooiiiiiiiiiiiiin, Core emission spectra through different filters , 13

Figure ... Implosion self emission at peak compression, 14

Figure 9. A visual description of the code, 17

Figure 10...........coooiiiiii, Image Plates , 20

Figure 11............coooiiiiiiiinn, Filter array and image plate , 21

Figure 12...........ooiiiiiiiii, Sample Data , 21

Figure 13..........ooiii Polar versus Equatorial View , 22

Figure 14.........coooiiiii, Standard Deviation of Inferred Te vs. Synthetic Implosion
Core Temperature with 200 eV Noise, 24

Figure 15. ... Inferred Temperatures with 200 eV noise at 4 Kev for various
filter sets, 25

Figure 16...........ooiiiiiiiiii, Plot of Te Polar vs. Te Equatorial, 26

Figure 17.......ccooiiiiiiiiiiinn, Polar view and Equatorial view comparison, 27

Figure 18...........coiiiiiiii, Plot of Ti DT vs. Polar-Equatorial Average Te, 28

Figure 19.............oil, Plot of DT Yield vs. Polar-Equatorial Average Te, 29

Introduction

The study of nuclear fusion has been of vital national interest for many years. The potential for
nuclear fusion to change the world was first demonstrated in November of 1952 with the
detonation of the first hydrogen bomb'!. The use of fusion energy though has not been purely
destructive. The amount of energy released in a fusion reaction is immense, and can not only
power the most destructive weapons known to mankind, but could in the future, become a nearly
infinite source of clean and safe energy. To this latter effect, the National Ignition Facility was

developed at Lawrence Livermore National Laboratory.

Nuclear fusion reactions only occur under extreme temperatures and densities. For this reason it is
only observed in the heart of stars and in the detonation of a thermonuclear device. These
conditions are required due to the nature of the reaction. Unlike in fission, when a nucleus splits in
half, in fusion two nuclei join to form a new element. For this union to occur, the nuclei must
overcome the coulomb barrier. The coulomb barrier is the repulsive force a charge’s nucleus
“feels” as it approaches a second charge’s nucleus. This force is due to the coulomb repulsion
between the protons in each nuclei. The height of the coulomb barrier for a fusion reaction is on
the order of one million electron volts (1 MeV). Under the classical understanding, nuclei in a
fusion reaction would be required to have an energy in excess of the height of the coulomb barrier.
Without sufficient energy, the nuclei would reach a classical “turning point” and would be repelled

away from the other nuclei. An illustration of the coulomb barrier is seen in Figure 1.

1
Vb """
Coulomb potential
£ approaching nucleus
% Elscecdeornunnmd
f. rll! r b

1 1

T nuclear well
-Uy —J

Figure 1: Under the classical understanding, an approaching nucleus must pass over the coulomb potential barrier. By a

consideration of quantum mechanics the ability of the nucleus to “tunnel” through the barrier is understood. (needs citation)

However, fusion reaction take place in solar plasma at energies below 1 Mev. This is possible due
to quantum tunneling and the uncertainty principle. A nucleus can tunnel through the coulomb
barrier because of the uncertainty in the position of the protons in the nucleus. As might be
expected, the higher the energy of the nucleus, the more likely it is that the nucleus will tunnel

through the potential barrier®.

While this tunneling effect allows fusion reactions to occur at substantially lower energies than
might be expected from a classical consideration, the energy released in fusion reactions is
immense. To create self-sustained nuclear fusion, conditions like those found in the center of stars
are required. Our nearest star, the sun, has a core temperature of about 15 million degrees kelvin,
which is necessary for the proton-proton chain reaction. In a deuterium tritium (DT) reaction
(currently being investigated at the NIF), tunneling becomes most probable when the nuclei have

64 keV energies. Such conditions for fusion require an extraordinary environment available

previously only in the heart of stars, and in the midst of thermonuclear detonations. In the hopes of
better understanding fusion science and because of it’s possible applications to government
weapons programs, laboratory controlled fusion projects have been explored since the 1950°s. One
such approach explored at Lawrence Livermore National Laboratory is inertial confinement fusion

(ICF).

In the ICF regime, high-powered lasers are used to compress and heat nuclear fuel to fusion
sustainable conditions. While there are two different methods of heating the outside of the target,
one being through direct laser irradiance, the second being from indirect irradiance from a laser
driven x-ray source, direct and indirect drive respectively, the fundamental theory of the fusion
process is the same. In both cases the outside of the target is ablated off by incident radiation. It is
blown off in a rocket like expansion °, which both eject the outside of the fuel capsule and, via
action-reaction, implodes the inside of the target. As the target collapses in on itself, the pressure
at the core rapidly increases. The work done to compress the volume of the target remains as heat,
increasing as the volume decreases. Under these conditions a “hotspot” is formed at the core of the
fuel capsule, where, the fusion reaction begins. The NIF currently employs the ICF indirect drive
approach in a campaign to achieve thermonuclear ignition. Ignition is a self-sustained fusion
reaction inside the fuel capsule when the fusion reaction is sufficiently virulent to allow
thermonuclear burn to propagate out from the hot core into the surrounding cooler fuel. Figure 2
illustrates the steps of an ICF implosion and Figure 3 illustrates the difference between direct drive

and indirect drive methods.

2) b)
N ‘./ S/
SN

Figure 2. a) the laser light, or X-rays illuminate the outside of the capsule. b) The outside shell is ablated off causing rocket like
expansion of the outside of the fuel capsule. “Blowoff” is ejected which the remainder of the capsule in force inwards. c) As the
capsule reaches max compression, both the pressure and the temperature massively increase. ¢) A hotspot is generated at the center
of the capsule and fusion begins. (needs citation)

(a) Direct drive

Ablator
i (low-Z foam or solid)
Laser or \ /
ion beams Solid or liquid fuel

4}, *7
Gaseous fuel (at

vapor pressure of
solid or liquid fuel)

Figure 3. a) In direct drive, laser beams are incident on the outside of the capsule. This method is advantage due to higher energy
coupling efficiency and reduces laser plasma interaction effects. (needs citation)

(b) Indirect drive

lon target Laser target

lon
beams

Hohlraum - Low-Z gas

Radiation
converter

Figure 3. b) In indirect drive, laser beams are incident on the inside of gold capsule called a hohlraum. The hohlraum then emits
X-rays which bath the fuel capsule in nearly uniform light. It is advantageous because it relaxes the requirement on beam
uniformity and reduces hydrodynamic instability. (needs citation)

While the general theory of ICF indirect drive fusion is simple, there are many fundamental
features of ICF, which make achieving ignition a prodigious challenge. These features include
laser beam uniformity discrepancies, laser plasma interactions, and hydrodynamic instabilities. If
the power delivered by each of the beams is not perfectly identical, the laser can drive an
asymmetric implosion. In this case energy can be wasted by translational movement of the target
during an implosion or by pushing the target into a non-spherical shape by either pressing too
heavily on the top, bottom or sides. Asymmetric drive can be caused by poor beam uniformity or
also via laser plasma interactions. These interactions can come in the form of stimulated Raman
scattering, stimulated Brillouin scattering, or cross beam energy transfer. In stimulated Brillouin,
scattering is caused by laser light scattering off ion sound waves, while stimulated raman
scattering is caused by laser light scattering off electron waves. Cross beam energy transfer occurs
when energy from laser beam is coupled into that of an intersecting beam. All of these laser
plasma interactions can lead to power loss as well as asymmetric drive. In addition to the

challenges of beam uniformity discrepancies and laser plasma interactions, hydrodynamic

instabilities can cripple the integrity of an implosion. Hydrodynamic instabilities are instabilities
in fluid flow, in this case, plasma. These are important at the interfaces of different layers of the
target. As instabilities grow during an implosion, the interfaces of the boundaries degrade and the
symmetry of the implosion deteriorates. These instabilities can cause mix within the target, where
the material of the outside of the target is mixed in with the nuclear fuel. This mix can make

ignition impossible.

For these reasons, and more, ignition has not been achieved at the NIF. As a result strong
diagnostic techniques are required to diagnose how close the ignition campaign is to success.
Chief among these needed measures is a robust measurement of the temperature of the core of the
implosion. The term temperature is however partially ambiguous. Because the entire target is
plasma at the time of the implosion, the ions and electrons in the core of the implosion are
decoupled. This allows each to have a different thermal distribution. It is currently unknown
whether the two are in thermal equilibrium. Thus two temperature measurements are made T, ,
and T, the ion temperature and the electron temperature. It would be expected that the ions and
the electrons would be in thermal equilibrium, but this is not known. An accurate measurement of

the electron temperature is needed because currently there is a discrepancy between the electron

and ion temperatures.

The ion temperatures are measured using a Neutron Time Of Flight detector (NTOF). The NTOF
detector measures the neutron energy spectrum. The energy spectrum is Doppler broadened

because the fuel ions acquire a thermal distribution.

10

Time integrated

i images

Filter array ||;

Figure 4: X-rays are emitted from the gold hohlraum, pass through the front stage of the Ross Filter Pair diagnostic, pass through

the filter array, and are recorded on the image plate, making time integrated images. (needs citation)

: Image
Capsule F"t? Plate

R

\

N

Hot Spot

Figure 5: X-rays from the center of the implosion are emitted. Low energy X-rays (red) are attenuated by the ablator shell. Higher
energy X-rays pass out of the target, through the hohlraum, filter array, and are recorded on the image plate.

11

A) B) C)
=Implosion Core Emission {mlfsr kel =implosien Core Emission Through Ablater [mufsrkey) —Core Emisslon Spectrum through a Germanium Filter
i 10000
fl ——
= e -
E 1060 g 1600 E i e
= = = 1 f o "‘"\-\-.____H_
% 'g -E. II ":)j/_ﬁﬁ;-.(—
E o E m E a | Y, i, T~
: s P o,
E E | %,
E v Eow Euom I e
1 1 |
1 5 1o 15 E] = a0 35 a H] 15 el 2 n 35 [} i 1]] Al ¥
Photon energy (keV) Photon energy (kev) Photon energy (kev)

Figure 6: The spectrum changes as the X-rays passes from the center of the implosion to the detector. Initially unattenuated (A), the
low energy portion of the spectrum is filtered out by absorption in the ablator as seen in (B). After the X-rays pass through the
filter, the spectrum is again attenuated. The sharp drop seen in (C) is the K-edge of the material. It corresponds to an energy just

above the binding energy of the K-shell electrons.

The focus of the summer project was the development of a code to calculate the uncertainty in the
inferred electron temperatures from the Ross Filter Pair diagnostic. The Ross Filter Pair
Diagnostic is a simple device, which measures the x-ray flux coming from a NIF implosion. The
diagnostic is divided into twelve sections. Each section has a “view” of the implosion out through
the entrance hole of the diagnostic. Each section has two parts, an attenuation filter, and an x-ray
image plate. Part of the x-ray flux from the implosion enters the detector, passes through the first
stage, then through the x-ray filters, and then is recorded on the x-ray image plate. There are six
different types of attenuation filters. These are, vanadium, copper, germanium, molybdenum and
two thicknesses of aluminum filters. These are repeated twice in the detector to insure that a signal
is recorded through at least one of them. The attenuation filters are chosen carefully for a

particular thickness and atomic number, to have a very particular attenuation characteristic.

12

Core Emission Spectra through Different Filters

100; /
<
g_ 1. — Mo
@ I — Ge
g — Cu
S 0.01: L=V
@ { — Al(85um)
£ — Al (1000m)
04]

1076 A

20 30 40 50
Photon Energy (keV)

Figure 7: The x-ray spectra through the different filters are each shaped differently by the filter attenuation. This shaping allows the
research to inferrer the x-ray spectrum from the signals recorded on the image plate.

The front stage prepares the X-rays for attenuation and detection. While the detector’s image plate
is recessed from the site of the implosion, the front stage has a long “snout” which protrudes out of
the target chamber wall to within centimeters of the implosion. It is designed to capture a small
solid angle of the x-ray flux coming from the implosion. The X-rays pass through a preliminary
kapton plastic debris shield, which protects the detector, and are then imaged through a pinhole
array and collimator. The pinhole array allows multiple images of the implosion to be recorded on
the x-ray image plate in the same way that early pinhole cameras recorded images on photographic
plates. The collimator is used to block as many of the high-energy neutrons from the implosion as

possible from hitting the image plate and prematurely developing it.

13

The Ross Filter Pair diagnostic has three main features. It is spatially resolved, time integrated and
absolutely calibrated. To be spatially resolved means that image information about the implosion
is recorded in two dimensions. It is spatially resolved in the same way that a photograph is
spatially resolved as opposed to a single line in that photograph. To be time integrated, means that
the diagnostic records x-ray irradiance for the entirety of the implosion. It records radiation from
the beginning of the implosion to the end. It is analogous to leaving the shutter open on a camera
pointed at a light bulb as the bulb is momentarily turned on. The diagnostic records the x-ray flux
as it increases like the light from a light bulb as it heats up and continues to record as it reaches
peak brightness and then dims. To be absolutely calibrated means that an exact measurement can
be made of the signal level received on the X-ray image plate*. The Ross Filter Pair diagnostic
records information on the shape of the implosion as well as the absolute signal level. This latter

part is used to infer the electron temperature of the implosion.

‘l' Jam]

X (pam)

Figure 8: Self emission at peak compression is recorded on the image plate of the detector. Imaged through a pinhole, the X-ray
flux from the implosion in recorded in two dimensions. Recording over the entire period of the implosion, it is seen that the center
radiates most intensely. This is a product of its greater temperature. (needs citation)

14

This is possible because of the important link between the X-rays and the plasma electron
temperature. In plasma, at the core of the implosion, all the deuterium and tritium gas atoms are
fully ionized. This produces a “soup” of free electrons and ions that can move independent of each
other. Due to conservation of momentum, the velocities of the electrons are much higher than
those of the ions. Due to the electrostatic force of the ions on the moving electrons, a moving
electron will be accelerated around a near ion. To conserve energy, the electron radiates energy in
the form of X-rays. This radiation is known as Bremsstrahlung radiation. The radiation is emitted
in a continuous spectrum with a frequency peak, which is dependent on the temperature of the
plasma. When this radiation is emitted from the hot plasma at the center of the implosion and is
incident on the x-ray image plate, the image plate can only record the total energy deposited on it,
not the spectrum. With the use of filters, which attenuate preferentially different parts of the x-ray

band, one can infer the initial Bremsstrahlung spectrum.

Previously using this method, an electron temperature was inferred. This temperature was
however, inconsistent with the ion temperature, being too low. It was not known how sensitive the
inferred electron temperature was to the choice of filters used in the diagnostic. It was not known

if one filter could be throwing off the final inferred temperature.

This thesis discusses the work done to evaluate the sensitivity of the inferred electron temperature
to filter choice. The chosen approach to solve this problem was to build a monte carlo method
code to simulate the system, infer and electron temperature, and then evaluate how that

temperature changes with choice of filters given random error in the recorded signal.

15

The analysis was completed using the programing language Mathematica. While it offered many
of the advantages of a high level programing language, it was the cause of significant difficulty as
the author needed to first learn the language to complete the summer research. It had the additional
disadvantage, like other compiled languages, of running comparatively slowly. This necessitated a

fair bit of cleverness to accelerate the run time of the program.

16

DATA ACQUISITION:

The data used in this research was both synthetic and experimental. After methods were developed
with synthetic data, they were applied to experimental results to look for trends in implosion
performance. To investigate the sensitivity of electron temperature measurements to filter
configuration, synthetic data was required. To examine the errors in the calculation of the inferred
electron temperature, the correct value needed to be known. Impossible under an experimental
setting, the raw data from the detector was simulated, assuming an x-ray spectrum and knowing
the attenuation characteristics and dimensions of the detector. By assuming a spectrum, an
electron temperature was also assumed. This “true” electron temperature was then compared to the
inferred values. Once the synthetic data was created and the error in the inferred electron
temperature was analysed, data from NIF implosions was examined using the methods developed
previously. Having built confidence in the electron temperature determining part of the code (by
running error free synthetic values through it and inferring the original generating electron

temperature), it was used to infer electron temperature from NIF implosion data.

1 .| A program was written to simulate the
brightness levels that would be 4 From these fits, electron temperature
recorded on the image plates for an 0 g==P| were inferred for each simulated u
implosion with a given T, ,Z ,n, and implosion. 1 e
ablator attenuation. l {
‘ 5. Knowing the initial plasma temperature
2. Thousands of simulated implosions and the noise levels the uncertainty in I
with identical conditions, and E the inferred electron temperatures was I I
randomized noise were then run. I quantified. I
v
L 6 The above steps were then repeated
3. A bremsstrahlung spectrum was fit to for a variety of filter configurations and @
each synthetic data point produced implosion core conditions.
above.

Figure 9: A visual description of the code used to calculate inferred electron temperature sensitivity to filter configuration.

17

Developing Synthetic Data:

To infer an electron temperature, one must fit a bremsstrahlung spectrum to the signal level data
from the detector. The electron temperature can easily be inferred from the slope of the spectrum.
To this end, the program must be capable of producing a synthetic spectrum. This is accomplished
using the following equation for a Bremsstrahlung spectrum.

7Eph.ata'n
T (

3
0.0001%2.84p?#(5.04x1022) e dr)*(R*D.DDDI)3(Bu.dth*D.ODDDDODDDOOI)*.‘J_DOW * (&)

Ephata'n

fspec (T Ephoton) = (2.5)2ED-39*T0'15

We then define the constants to describe the plasma conditions. We assumed a density of 75
grams/cc, a radius of 30 microns, a bandwidth (time it emits X-rays) of 225 picoseconds, and an
optical depth factor of 1. The spectrum is initially in terms of mJ of energy and required a
conversion to KeV. The spectrum was then scaled by the fraction of the solid angle that the
detector could see. Next, the program imports the required data to simulate the implosion. The
transmission data for vanadium, copper, germanium, molybdenum, aluminum, kapton,
high-density carbon, and gold were imported. In addition, the response data for the x-ray image
plate was also imported. This is required in a calculation the absolute signal on the plate, since it
describes how sensitive the image plate is to different x-ray frequencies. Scaling the synthetic
spectra by the transmission spectra, the image plate (x-ray image plate) response, the KeV
conversion factor, and the solid angle factor, the implosion bremsstrahlung spectra on each image
plate was calculated. This spectra was then integrated over the considered energy range (1 Kev to
50 KeV). This integration produces six PSL (photostimulated luminescence) values, one for each

filter channel. The PSL is a measure of light given off by the x-ray image plate when read. Unlike

18

conventional x-ray film, the image plates used in the detector are reusable. Incoming radiation
displaces electrons in the crystal lattice. When scanned with a laser, the electron can be stimulated
to return to its position in the lattice. This transition emits a photon, which is then detected by the
image plate scanner. The amount of stimulated luminescence is proportional to the prior irradiance
of the image plate. Thus, given a set of plasma conditions, the program calculates the signal that

would be seen behind any given filter.

Using this function, the program then creates a table of PSL values for a range of different plasma
temperatures. (Because there is a different x-ray spectrum for each assumed plasma temperature).
It repeats this process, creating a second table with greater temperature resolution (using the same

range, but more values).

We then define a function which, given a filter configuration and a list of plasma temperatures,
returns an array of PSL values at those temperatures and filter configuration. This function is then
used to build a second function, which takes a temperature range, noise level, and filter
configuration. It returns an array as before, but this time with random “error” added to each of the
PSL values at levels set by the noise level input. Once the program was capable of creating
synthetic PSL values for any filter configuration, plasma temperature, and noise level, a method to

fit a bremsstrahlung spectrum to any PSL set was needed.

Developing Experimental Data:

19

As described above, the experimental data was generated from the Ross Filter Pair diagnostics
recording x-ray flux from NIF implosions. All experimental data was obtained by collaborators of
the author. After an experimental run, the image plate was removed from the diagnostic. The
image plate was a Fujifilm BAS-SR type medical imaging imaging plate. This plate has 25um
resolution and was scanned on a GE FLA 7000. An image of similar image plates can be seen

below (Figure 10).

Figure 10: Image plates like these where used in the Ross Filter Pair diagnostic to record the x-ray signal from NIF implosions.

The image plates were then scanned on a Tycoon FLA 7000 and the PLS values were recorded in
a two dimensional plot. Figure eleven shows an image of a scanned image plate, note the multiple
exposures behind the filter. Also present in this image is evidence of experimental mispointing.
The diagnostic was not in perfect alignment with the target at the time of the implosion. This

results in images being recorded on only part of the image plate.

20

Figure 11. Left) An image of the the filter set used in the Ross Filter Pair Diagnostic. Right) The image recorded on the image plate
after an implosion. Filters are repeated around the film to ensure an image is recorded in the event of diagnostic mispointing.

The images behind each filter are extracted and averaged together to produce one composite image
for each filter. The shape characteristics and integral brightness was analyzed from each

composite. This data was then compiled in a spreadsheet like the one seen in figure twelve.

— Vanadium Copper Molybdenum | Germanium | Al (85um) AI (1000um)
. | ' : B o |
P90-78 ' I h I
of Frames 5 5 3 5 3 5

+550

+789 +239/ 23020+3037/ s | 1435172 | 26373 7% | 4508 / von

Brightness (PSL) 8323 '/ ., | 9242

PO (um) [27.10 7", ,|28.14 7"/, [27.64 "1, . [28.25 L, ,|27.57 7L, [26.98 771, .,
P2/P0 (%) [18.06 i 25@ 17.37 %) 1@ 15.89 7%/ oag 13.13 %) 22@ +14.12 +2'04/_1,zg 20.32 """/ 353
P3/P0 (%) |-3.52 "% . [-1.88 "%/, ,|-2.33 %1 ,,[-1.93 "%, o|-0.41 0 [-2.52 T
P4/PO (%) |3.03"%1 . [470""" | 1.427% | 3.66 "%, |3.08 %/ . [4.10 7/,

Figure 12. Date from the Ross Filter Pair diagnostic was compiled in a spreadsheet. The images vary slightly between filters. The
integral PSL value of each composite image is calculated including error estimates. Note the number of images that each composite
image is made of.

Additional data about each implosion was recorded with other detectors. Later analysis used

the implosion’s ion temperature, polar-equatorial average electron temperature, DT and DD

neutron yields, maximum fuel velocity (speed of the implosion), X-ray burn width time

21

(approximately, the amount of time the core emitted X-rays), laser power, laser energy, polar and
equatorial electron temperature . A collection of these data points were compiled in a different

spreadsheet, recording data for each implosion.

There are two different electron temperatures. These two measurements differ by the orientation of
the Ross Filter Pair diagnostic at the time of data acquisition. The polar electron temperature is the
measurement of the electron temperature inferred from data from the detector when it is pointed at
one of the poles of the target. The equatorial electron temperature is inferred from data from the
detector when it is pointed at the equator of the target. These two differ in the material that the
X-rays must pass through. From the polar view, X-rays pass through the ablative material of the
target and continue unobstructed until they reach the detector. From the equatorial view, X-rays
pass through an additional layer of gold and high density carbon. The difference in signal is simple

to account for in calculations.

Polar ViewA

5o A £%». Laser Entrance
g
Hole

L S

Capsule fill tube
'

He gas

fill [—

Equatorial View (’.-.?&\\
/

A

Cryo-cooling
rings

Figure 13: Equatorial electron temperatures are inferred from data produced when the Ross Filter Pair diagnostic has an equatorial
view of the implosion. Polar electron temperatures are inferred from data produced when the Ross Filter Pair diagnostic has an
polar view of the implosion.

22

DATA ANALYSIS:

Fitting A Bremsstrahlung Spectrum:

To do this, an ensemble of possible PSL values was calculated. An ensemble of at least 1000 was
used. Each of the members has a random error. This ensemble of PSL values was then processed
through the program. For each member, the set of PSL values was compared to a large list of
synthetic error free PSL values produced from a wide range of temperatures. The program then
calculated the root mean square error of the difference between the PSL values in the ensemble
and the ideal list. The entry that produced the smallest root mean square error was selected and
that entry’s generating plasma temperature was taken as the inferred electron temperature of that
member of the ensemble. This process was repeated for each member of the ensemble. The
program then took minimum and maximum values of the inferred temperatures, and assuming

they were mostly correct, used them for the second stage of the fitting process.

After an initial estimate of the temperature was made, the process was repeated, but at a higher
resolution. The maximum and minimum values were used from the first stage to create a small
window in which to search inside of for the high-resolution analysis. The second stage used a table
of ideal PSL values using smaller temperature steps. This two-stage approach was employed to

efficiently fit the bremsstrahlung spectra to the data.

23

Analysis of the Sensitivity to Filter Configuration:

Once the second fitting routine was completed, a list of inferred electron temperatures was
returned. The standard deviation of these temperatures was then computed. This process was
repeated for pairs of filters to compare the standard deviation of the inferred electron temperatures.
It was found that there was no set of filters, which produced a significantly inferior inferred

electron temperature.

Standard Deviation of Inferred Te vs. Synthetic

Implosion Core Temperature with 200 eV Noise
010

o o o
! o 0
< @ ©

o
o)
)

Standard Deviation of Inferred
Electron Temperatures(keV)

0.05

0.0zb 2 4 6 8 10
Synthetic Implosion Core Temperature(keV)

Figure 14: To verify the correct function of the program, synthetic implosion core temperatures were plotted against the standard
deviation of the inferred electron temperature. As expected, it is seen that at higher temperatures, the standard deviation decrease.
The standard deviation decreases because the signal to noise ratio increases with increased temperature. The hotter the plasma, the
greater the number of X-rays that are incident on the image plate.

24

Inferred Temperatures with 200 eV noise at 4 Kev
for various filter sets

LWL

Maximum Inferred
Temperature

Mean Inferred
Temperature

V+Cu
V+Cu+Ge+Mo+Althick+Althin
V+Ge
V+Mo

Minimum Inferred
Temperature

Althick+Althin
Cu+Althick
Cu+Althin
Cu+Ge
Cu+Mo
Ge+Althick
Ge+Althin
Ge+Mo
Mo+Althick
Mo+Althin
V+Althick
V+Althin
V+Cu+Ge+Mo+Althin

Inferred Temperature (keV)
= N

* Where ablator
optical depth is
held constant

Figure 15: The known systematic error in the diagnostic is on the order of 200 eV. Applying this same value to the synthetic data,
and then employing a monte-carlo method program to assess the subsequent error in the inferred temperature, it is demonstrated
that all filter configurations yield nearly identical temperature values.

Application of the Code to Experimental Implosion Data:

After comparing the errors of the inferred electron temperature between the different filter
configurations, the methods used to compute these values were then applied to experimental data.
Implosions from April 2013 to August 2014 were analyzed, totaling fourteen in number. For each
of these implosions, inferred polar and equatorial electron temperatures were calculated with
associated errors. The errors were computed from the calculations with the synthetic data. These
values were then added to an existing dataset which had values for each implosion’s ion
temperature, polar-equatorial average electron temperature, DT and DD neutron yields, maximum

fuel velocity (speed of the implosion), X-ray burn width time (approximately, the amount of time

25

the core emitted X-rays), laser power, and laser energy. A Mathematica script was then written to

harvest and plot the information from the dataset for any set of datapoints.

First the polar and equatorial inferred electron temperatures were plotted against each other. As
can be seen in Fig. 16, both temperatures are very similar. While in principle they should be

identical, they are not.

Te Polar keV vs. Te Equatorial keV

> First 3

fa’ N130501,
N130710,

g4 N130802

et

8 DU Hohlraum
TO

° ®

= ®T 1

@1 15

2 3 4 5 6
Te Equatorial keV

Figure 16: When plotting the polar inferred electron temperature versus the equatorial inferred electron temperature, it is evident
that both measurements are not identical. This is likely due to asymmetries in the implosions, were more target material obscures
the view of the core in one direction than the other.

Differences in the two inferred temperatures is likely due to the asymmetry of the target at the time
of the implosion. The asymmetry could cause the core to be more shielded from view in one view

than the other. In the case of implosion N130710 it is clear from the composite images from the

26

polar and equatorial views that the core of the implosion appeared quite differently to the detectors

positioned with each of these views.

A) Equatorial N130710 B) Paolar N130710

Figure 17: Polar and equatorial views show different images. For N120710 the polar electron temperature is significantly less than
the equatorial temperature. It is thought that image B shows not a “donut” shaped temperature profile, but rather a uniform
temperature distribution with the center obscured by residual cold fuel. By shielding the center from Ross Filter Pair diagnostic a
“cooler” electron temperature will be inferred.

It is seen, except for a few exceptions, that polar inferred electron temperatures match equatorial

temperatures well.

The next trend to be examined was the electron temperature versus the ion temperature. As
discussed above, prior work had discovered that measurements of the electron and the ion
temperatures yielded different results, with measurements of the ion temperature yielding higher
values. This discrepancy was investigated using the inferred temperatures from this research as
well as the errors. As seen in Fig. 18, this discrepancy still exists and cannot be accounted for by

error in the inferred electron temperature.

27

Ti DT keV wvs. Polar Equatorial Average Te keV

5
> First 3
i) N130501,
N130710,
E N130802
—_ DU Hohlraum
=4 ®
®T 1
®T 15

2 3 4 5 6 7
Polar Equatorial Average Te keV

Figure 18: Plotting the implosion core ion temperature versus the polar equatorial average electron temperature, the ion temperature
is shown to be characteristically higher. This may be due to residual motion of the core.

The difference in the electron and ion temperatures may be due to residual motion in the core.
Under ideal conditions, the target is uniformly compressed on all sides in a spherical implosion,
where all external forces balance out and the target stays stationary. If this does not occur, part of
the laser energy can be lost into displacing the target within the target chamber. Consequently, this

motion could skew the ion temperature.

The next trend to be examined was DT neutron yield versus inferred electron temperature. The

relationship of neutron yield to temperature was one of the metrics examined in the planning of the

28

ICF program. Computer simulations predicted a power law scaling of Y=T*7 for the DT yield as a
function of ion temperature. When the inferred electron temperature was plotted against the DT
yield it was found that this relationship did not hold. Instead, as seen in figure 19, a power scaling

of Y=T*% was found. The exact cause for this discrepancy is not well known.

Yield (DT) (+x10”M15) vs. Polar—Equatorial Average Te (keV)

8

a
< 6 o a
b First 3
~ (N130501,
Z N130710,
Q 4 N130802)
e DU Hohlraum
3 ®
2
=02 . T-1

o T-15

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Polar—-Equatorial Average Te (keV)

Figure 19: Plotting DT neutron yield versus the polar-equatorial average inferred electron temperature reveals that yield scales as
Y=T*%. This is much more gradual that the predicted scaling of Y=T*".

29

CONCLUSION:

The success of inertial confinement fusion would have a profound effect on american energy
independence and the long term health and safety of the environment. Unfortunately, the problems
to be solved before such technology can be developed are immense. The approach at the Lawrence
Livermore National Laboratory has had much success in comparison to previous efforts in the
field to reach ignition. There is still much to be learned about the particulars of inertial
confinement fusion before ignition will take place. It an effort to understand how close the NIF is
to achieving ignition, a robust measurement of the temperature of the core is needed. While the
neutron time of flight method is currently used, data from these measurements seems to conflict
with inferred electron temperatures. To understand the significance of this disagreement, the errors
in the inferred electron temperature must be fully understood. The systematic uncertainty of the
the measurements due to the construction of the detector had been previously investigated, but the
significance of the choice of filters used in the diagnostic had never been probed. After using a
monte carlo method to investigate the sensitivity of the inferred electron temperature on filter
choice, it was found that no one filter impaired the accuracy of the inferred electron temperature.
The method used to calculate error in the first simulation was then applied to experimental NIF
data for fourteen implosions. Having done this, trends were then examined in the data. It was

3

observed that for “well performing” implosions, the equatorial and polar inferred electron
temperatures matched well. After plotting ion temperature versus electron temperature, the
difference in the two was maintained and it could not be accounted for by the error in the inferred

electron temperature. Lastly, plotting the yield of the implosions versus the electron temperature,

the yield was found not to scale as strongly with temperature as predicted by simulations.

30

REFERENCES:

[1] A. Fitzpatrick, Igniting The Light Elements: The Los Alamos Thermonuclear Weapon Project,
1942-1952, Ph.D., Virginia Polytechnic Institute and State University, 1999.

[2] S. Hansen, Physics Of Plasmas 19, (2012).

[3] S. Atzeni and J. Meyer-ter-Vehn, The Physics Of Inertial Fusion (Oxford University Press,
Oxford, U.K., 2009).

[4] B. Maddox, H. Park, B. Remington, N. [zumi, S. Chen, C. Chen, G. Kimminau, Z. Ali, M.
Haugh and Q. Ma, Rev. Sci. Instrum. 82, (2011).

[5]7J. Lindl, P. Amendt, R. Berger, S. Glendinning, S. Glenzer, S. Haan, R. Kauffman, O. Landen
and L. Suter, Physics Of Plasmas 11, (2004).

31

APPENDICES:

Sample of Project Code Written in Mathematica:
Calculates the inferred polar electron temperatures assuming an uniform error level in PSL values.

32

Bremsstrahlung X-Ray Time Integrated PSL Value Calculator and Plasma
Temperature Calculator

(*NIF Implosion Bremsstrahlung X-
Ray Signal Through Ross Filter Pair Diagnostic Simulator

*k*kxxkx*USES STANDARD ERROR, NOT PERCENTAGE OF SIGNAL LEVEL# %%k &sk#kkki

*x*xx*k*x+x*ONLY USE FOR Polar DATAx*xx*kkxkxkktkkx
This is an identical copy of the Polar version,
but Au and HDC have been added to the spectrum scalars

*kkkkk***DOES NOT INCLUDE KAPTON##k*kkkikkkhkhhhkr
(Note: swap names of kapton transmission file and a thick aluminum filer and
exclude thin aluminium filter from inputed set to get around this prohlem)

*This Program was written by Summer Student Michael Klem,

Summer (2014) as the backbone of his summer project to look at te sensitivity of
infered electron temperatures of the core of NIF ICF implosions to choise of
filters in the ross pair diagnostic. This program implements a Monte Carlo
method to infer a error (standard deviatian) in inferred electron temperatures.

*Last Edit Date Aug 21, 2014

*)

(%
«*General Notes:

+To indicate filter configuration this program
used bionary indicators (1 or 0) to indicate the presence of a
particular filter. The number 1 indicated that a filter is in a set,
the number 0 indicated that it has been excluded.
*The filters are alway listed in the following order. Vanadium,
Copper, Germanium, Molybdenum, Althick (1000um),Althin (85um).

*You must save this file to disk and

create a file named /Userslklem3/Desktop/simulation

pata/ (obviously changing klem3 to whatever is appropriate) before the

exportation of files will function properly. This is because all exported

files expect to see the above path. You must same this notebook to disk,
because the program saves a copy of itself in each folder holding exported data. If
the notebook is not saved to disk. The program will have no file to make a copy of.
*)

33

2 | Uniform Error-Polar Code Thurs.nb

Part | : Bremsstrahlung Spectrum Equation

(* The X-Ray emmission spectra is a function of Temperture(y) and x-
ray energy (x) =)

(*The implosion core plasma conditions are entered belows)

Density = 75; (% (g/cc)x)

Radius = 30; (*(um)*)

Burnwidth = 120; (% (ps) *)

OpticalDepth = 1; (*at 10.85 keV *)

(*The bremsstrahlung spectrum equation from Prav's powerpointx)

XRaySpectrum[Temp_, PhotonEnergy_] :=0.0001%2.8 + Density”2/2.5%2«
(5.04%10"22) » Exp[-PhotonEnergy / Temp] / PhotonEnergy“0.39 / Temp " 0.15 %
(4/3%3.14) » (Radius + 0.0001) "3 » (Burnwidth « 0.000000000001) *
Exp[-OpticalDepth x (10.85 / PhotonEnergy) " 3]

Part 2 : Initiate Variables and load Files

(*Initiate Variablesx)

(*The spectrum is in units of mJ so Convert to KeVx)

ConverttoKeV = 6 241 500000000.0;

(*The Detector only sees a small portion of the total emitted X-rays,

thus scale the calculation by the detectors solid angle «)

SolidAngle = 0.00000000785398;

(#This is a list of x-ray energies for which the spectrum is defineds)
xvalImport = Import["/Users/klem3/Desktop/Files To Run Michael's Code/xval.csv"];

(*Import the filter transmission data for all the filterss)
vdata =
Import["/Users/klem3/Desktop/Files To Run Michael's Code/VTransmission.csv"];
Cuboiddata = Import|[
"/Users/klem3/Desktop/Files To Run Michael's Code/CuTransmission.csv"];
Gedata = Import["/Users/klem3/Desktop/Files To Run
Michael's Code/GeTransmission.csv"];
Modata = Import["/Users/klem3/Desktop/Files To Run Michael's
Code/MoTransmission.csv"];
Althickdata = Import[" /Users/klem3/Desktop/Files To Run
Michael's Code/AlthickTransmission.csv"];
Althindata = Import["/Users/klem3/Desktop/Files To Run
Michael's Code/AlthinTransmission.csv"];
Kapdata = Import["/Users/klem3/Desktop/Files To Run Michael's
Code/KapTransmission.csv"];
HDCdata = Import["/Users/klem3/Desktop/Files To Run Michael's Code/HDC160um.dat"];
Golddata =
Import["/Users/klem3/Desktop/Files To Run Michael's Code/filterAu2.25um.dat"];
(*Import the image plate response datax)
IPresponseData =
Import["/Users/klem3/Desktop/Files To Run Michael's Code/IPdata.csv"];

34

Part 3

Part 4

: Format Imported Data

(#*Flatten the newly created lists to get rid of unwanted structure from importx)

xval = Flatten[xvalImport];

VIransmission = Flatten[vdata];
CuTransmission = Flatten[Cuboiddata];
GeTransmission = Flatten[Gedata];
MoTransmission = Flatten[Modata];
AlthickTransmission = Flatten[Althickdata];
AlthinTransmission = Flatten[Althindata];
KapTransmission = Flatten[Kapdata];
GoldTransmission = Golddata[All, 2];
KapTransmission = Flatten[Kapdata];
HDCTransmission = HDCdata[All, 2];

: Calculate Spectrum Scalars

(xCreate a unique spectrum scalar for each filter. It
accounts for the transmittence of the filter metal,

Uniform Error-Polar Code Thurs.nb

transmittence of Kapton of 1225 um thickness, the IP response,
and also includes the unit conversion from mJ to KeV and the
solid angle scaling to get expected values at the image platesx)

VSpectrumMult = VTransmission » KapTransmission =
IPresponseData » ConverttoKeV x SolidAngle;
CuSpectrumMult = CuTransmission x KapTransmission %
IPresponseData * ConverttoKeV = SolidAngle;
GeSpectrumMult = GeTransmission » KapTransmission
IPresponseData x ConverttoKeV « SolidAngle;
MoSpectrumMult = MoTransmission » KapTransmission *
IPresponseData » ConverttoKeV « SolidAngle;
AlthickSpectrumMult = AlthickTransmission » KapTransmission »
IPresponseData » ConverttoKeV » SolidAngle;
AlthinSpectrumMult = AlthinTransmission « KapTransmission %
IPresponseData x ConverttoKeV x SolidAngle;

| 3

35

4 | Uniform Error-Polar Code Thurs.nb
Part 4 : Define A Function to Solve For All PSL Values at a Certain Temperture

(*Now create a function to give expected time
integrated PSL through each of the Ross Pair Filtersx)
PSLvalues|[y_] :=
(*
(#*Create a list of the spectrum values at all the point in xvals)
XrayEmissionValues=XrayEmissionfn[xval,y];

*)

XrayEmissionValues = XRaySpectrum[y, xval];

(#*Produce a spectrum of PSL values in terms

of KeV. Multiply the spectrum by the Spectrum Scalarx)
VSpectrum = VSpectrumMult » XrayEmissionValues;
CuSpectrum = CuSpectrumMult « XrayEmissionValues;
GeSpectrum = GeSpectrumMult x XrayEmissionValues;
MoSpectrum = MoSpectrumMult » XrayEmissionValues;
AlthickSpectrum = AlthickSpectrumMult * XrayEmissionValues;
AlthinSpectrum = AlthinSpectrumMult * XrayEmissionValues;

(*Create lists of ordered pairs of the xval values and spectrum valuesx)
VintegrateData = Transpose[{xval, Flatten[VSpectrum]}];

CulntegrateData = Transpose[{xval, Flatten[CuSpectrum]}];

GeIntegrateData = Transpose[{xval, Flatten[GeSpectrum]}];

MoIntegrateData = Transpose|[{xval, Flatten[MoSpectrum]}];
AlthickIntegrateData = Transpose[{xval, Flatten[AlthickSpectrum]}];
AlthinIntegrateData = Transpose[{xval, Flatten[AlthinSpectrum]}];

(*For each list,
interpolate the data and then integrate it across all xval valuesx)
Vintegrate = NIntegrate[Interpolation[VIntegrateData, InterpolationOrder - 1] [x],
{x, Min[xval], Max[xval]}];
Culntegrate = NIntegrate[Interpolation[CulntegrateData, InterpolationOrder —» 1] [
x], {x, Min[xval], Max[xval]}];
GeIntegrate = NIntegrate[Interpolation[GeIntegrateData, InterpolationOrder - 1] [
x], {x, Min[xval], Max[xval]}];
MoIntegrate = NIntegrate[Interpolation[MoIntegrateData, InterpolationOrder » 1] [
x], {x, Min[xval], Max[xval]}];
AlthickIntegrate = NIntegrate[Interpolation[AlthickIntegrateData,
InterpolationOrder » 1] [x], {x, Min[xval], Max[xval]}];
AlthinIntegrate = NIntegrate[Interpolation[AlthinIntegrateData,
InterpolationOrder - 1] [x], {x, Min[xval], Max[xval]}];

(xCreate a list to hold all the integrated PSL values through the
different filters. This list is then returned by the functionx)
IntegratedPSLvalues = {VIntegrate, Culntegrate, GeIntegrate,
MoIntegrate, AlthickIntegrate, AlthinIntegrate};
IntegratedPSLvalues
)

Uniform Error-Polar Code Thurs.nb

Part 5 : Create A Table of All PSL Values of a Certain Range of Tempertures

(#*Create a table of all PSL values of a certain range of
tempertures. This list can then be writen to disk in a wdx filex)

(*Note:Make sure the iterator of this temperture range
matches all interators of other temperture ranges. If they
mismatch things that take transposes usually experience problemsx)

(*The {x,0.0,0.0,0.0,0.0,0.0} term is to make the list a tensor for compiled
function reasons. The last five elements of the first term is usually ignoredsx)

(*
mastertable=

Import["/Users/klem3/Desktop/Files To Run Michael's Code/datawide0.0l.wdx"];
mastertableOOne=

Import["/Users/klem3/Desktop/Files To Run Michael's Code/datawide0.l.wdx"];

*)

(*Mastertable is a table of all PSL levels throught the six
possible filters for synthetic plasma temperatures ranging from
0.01 to 11 keV steping through temperature in 0.01 keV stepsx)

mastertable = Table[{{x, 0.0, 0.0, 0.0, 0.0, 0.0}, PSLvalues[x]},
{x, 0.01, 11, 0.01}]; // AbsoluteTiming;

(*mastertableOOne is a table of all PSL levels throught the six possible
filters for synthetic plasma temperatures ranging from 0.01 to 11
keV steping through temperature in 0.1 keV steps. This is a lower
resolution table used in the first stage of the fitting routinew)

mastertableOOne =
Table[{{x, 0.0, 0.0, 0.0, 0.0, 0.0}, PSLvalues([x]}, {x, 0.1, 11, 0.1}];

(*This indicates the resolution of mastertable. It
is used when creating file and directory namess)

Resolution = 0.01;

Part 7 : Define A Function to Find PSL Values for a Given Temperture

(*This function returns a list of lists. The second level lists will have

1 to 6 elements depending on the filter set configuration indicated in the
input. This function takes a list of synthetic plasma temperatures (keV),

the mastertable table, and a filter set configuration. It returns the PSL
vlaues recored through all of the filters in the inputed configuration,

at each temperature inputed in the temperature values list)

| 5

37

6 | Uniform Error-Polar Code Thurs.nb

compPSLvaluesfinderSonly[Temp , Master_, V_, Cu_, Ge_, Mo_, Althick_, Althin] :=

(

currentlist = {};
Vvalue = V;
Cuvalue = Cu;
Gevalue = Ge;
Movalue = Mo;
Althickvalue = Althick;
Althinvalue = Althin;
If[Vvalue == 1, AppendTo[currentlist, {1}]];

If[Cuvalue == 1, AppendTo[currentlist, {2}]];
If [Gevalue == 1, AppendTo[currentlist, {3}]];
If[Movalue == 1, AppendTo[currentlist, {4}]];
If[Althickvalue == 1, AppendTo[currentlist, {5}]];

If[Althinvalue == 1, AppendTo[currentlist, {6}]];
currentlist;

(*StepSize calaculates the step size used to create the mastertable tablex)
StepSize = Rationalize[Differences [Extract[Master[All, 1][All, 1], {{1}, {2}}1]11;:

(*Knowing the step size and that the temperature values begin at lxstep size,
This function calcuates the position of the each inputed

synthetic plasma temperature in the table, and then uses that

position to find the corresponding PSL values in that listw)

GetPSLvalues[y_] :=
Extract [Extract [Master, (Rationalize[y]) / (StepSize[1])][2], currentlist];

Map [GetPSLvalues, Temp]

Part 8 : Define A Function to Create a List of a Certain Length of Some PSL Values with a Certain Percentage of Noise at a
Certain Temperture

(x0ffby2 returns the difference in PSL values corresponding to two
temperature. The first is the given synthetic plasma temperature and the
second is the given synthetic plasma temperature plus a given step width
in temperature. It returns these in a list whose entries are the change in
PSL through each filter in the specified filter configuration. The numbers
produced by this function are used to set the range by whic hPSL values
are randomly varied. This produces uniform noise through each filter %)

38

Uniform Error-Polar Code Thurs.nb

0ffby2 [Temp , OffbyAmount , V_, Cu_, Ge_, Mo_, Althick_, Althin_] :=
Tot = Total[{V, Cu, Ge, Mo, Althick, Althin}];
Table[(

((compPSLvaluesfinderS5Sonly [{Temp + Of fbyAmount},
mastertable, V, Cu, Ge, Mo, Althick, Althin]) [All, iJJ[1])
- ((compPSLvaluesfinder5only[{Temp}, mastertable, V, Cu, Ge,
Mo, Althick, Althin]) [All, i]J[1])), {i, 1, Tot}]

(*»monstertablefast is a function which returns a table of N filter sets
with added noise. It takes as inputs, a synthetic plasma temperature,
a noise level (ie 0.2 keV) and the filter set configrationx)

monstertablefast [Temp_, NoiseLevel_,
Ntimes_, V_, Cu_, Ge_, Mo_, Althick_, Althin_] :=

thismuch2 = 0Offby2 [Temp, NoiseLevel, V, Cu, Ge, Mo, Althick, Althin];
PSLvaluesforRandom = compPSLvaluesfinderSonly[
{Temp}, mastertable, V, Cu, Ge, Mo, Althick, Althin] [1];

Do[(

Rowlength = Length [PSLvaluesforRandom] ;
onetempNoisyPSL = {};
monsterlist = {};

monsterlist = Reap[Dol[(
Sow[onetempNoisyPSL = Reap[Do[(

PSLprenoise = PSLvaluesforRandom[[i]];

PSLwithNoise =
PSLprenoise +
RandomReal [{-thismuch2[[i]], thismuch2[i]}];

Sow[PSLwithNoise]
)r {1, Rowlength}];]1[[2]][[1]]

1
)r {Ntimes}];]1[[2]]1[[1]]

) {1}1:

monsterlist)

Part 9 : Define A Function to Find a Best Fit Temperture for a List of a Certain Length of Some PSL Values with a Certain
Percentage of Noise at a Certain Temperture

(*FindTheTemp5bonly is the function which executes the fitting
routine. It returns an inferred electron temperature given a set
of PSL values. The function opperates in two parts. The first
(FindTheTemp5bonly) is a low resolution search for a best fit
spectrum. The results from this search are then used to set the area

39

8 | Uniform Error-Polar Code Thurs.nb

of search for the second high resolution part (FindTheTempSbonly2).x)

(xAs mentioned above,
FindTheTemp5bonly2 is called by FindTheTemp5bonly to search for the
best fit temperature in a narrowly diffined high resolution areax)
FindTheTemp5bonly2 [TempRangeToLookOver_, ValuesToFindTempFor_,
Va_, Cua_, Gea_, Moa_, Althicka_, Althina_] :=

(#*We first define a function which finds the positions

of minimume RMS values in a list of lists of RMS values.x)

PositionFinder5 [RMSmins_, AllRMSs_] :=
PositionOfMinRMSsInRMSlistArray[a_] := Position[a[2], a[l1]][1]01D;
Map [PositionOfMinRMSsInRMSlistArray, Transpose[{RMSmins, AlL1RMSs}]]

)i

(* "This function creates a list of lists of RMS values. (RMS = Root Mean
Square). Given a temperature range to look over, a list
of lists of PSL values, and the the filter configuaration
of the sets, the function creates a lsit of fit values
(RMS) for each set of PSL values. This is done by
comparing one set of PSL values to a table of PSL
vlaues generated from a inputed range of temperature.

For each entry in the table, the individual differences
in PSL behind each filter are found and squared. The
square root of the avarage of these differneces is

then recored as an element in the list "RMS "" «)

compRMSvalue5 = Compile[{{Temp, _Real, 1},
{1ist2, _Real, 2}, {V}, {Cu}, {Ge}, {Mo}, {Althick}, {Althin}}, (

PSLsWithTemP = Table|
Partition|[
Flatten[Transpose[{Partition[Temp, 1], compPSLvaluesfinder5only|[
Temp, mastertable, V, Cu, Ge, Mo, Althick, Althin]}]],
(Dimensions [compPSLvaluesfinder5only[Temp, mastertable,
V, Cu, Ge, Mo, Althick, Althin]][2] +1)]
, {i, 1, Length[list2]}];
list3 = Transpose[Table[list2, {i, 1, Length[Temp]}]];

DifferenceInValues =
list3 - Table[compPSLvaluesfinder5only[Temp, mastertable, V, Cu,
Ge, Mo, Althick, Althin], {i, 1, Dimensions[list2][1]}];

SquaredDifferenceInValues = (DifferenceInValues) "“2.;
TotalSquaredDifferenceInValues = Total [SquaredDifferenceInvValues, {3, 3}];
MeanTotalSquaredDifferenceInValues = Total [SquaredDifferenceInValues,

{3, 3}] / pDimensions[SquaredDifferenceInValues][1];
RMS = Sqrt [MeanTotalSquaredDifferenceInValues];
RMS
), ({RMS, _Real, 2}}];

(* The step size used to create mastertable is measured »)
MastertableStepSize =
Rationalize[Differences [Extract [mastertable[[All, 1] [All, 17, {{1}, {2}}11]1;

Uniform Error-Polar Code Thurs.nb

(* " This function takes a list of positions inmastertable and
returns the corresponding temperature values at those positions

*)

theTemp[posision_] :=
TempFromPositionInMastertable[pos_] :=
Extract [mastertable, Round[Round[(Round[Min[TempRangeToLookOver]]) =
(1 /MastertableStepSize[1]) +pos]]][11M1];
Map [TempFromPositionInMastertable, posision]

)i

(* " The above functions are executed here. Atable of RMS
values are generte. Then a list of minimum RMS values is found from
that table. The Position of these minimusm are then found. Lastly the
corresponding temperatures are found from the positios of these RMS
values. These temperatures are the inferred electron temperatures " *)

RMSlist = compRMSvalue5 [TempRangeToLookOver,

ValuesToFindTempFor, Va, Cua, Gea, Moa, Althicka, Althina];
MinOfRMSlist = Map[Min, RMSlist];
PositionsOfMinimumRMSvalues = PositionFinder5 [MinOfRMSlist, RMSlist];
theTemp [PositionsOfMinimumRMSvalues]

)

(*This second part is almost a complete duplicate of the above function,
except that it is executed at lower temperature resolution and instead of
returning a list of inferred temperatures, it calles FindTheTempSbonly,
and defines a narrow region of tempertures for FindTheTemp5bonly to look
in. It uses mastertableOOne in place of mastertable. mastertableOOmne

is a lower temeprature resolution version of mastertablex)

FindTheTemp5bonly [TempRangeToLookOver_,
ValuesToFindTempFor_ , Va_, Cua_, Gea_, Moa_, Althicka_, Althina] :=

(#We first define a function which finds the positions
of minimume RMS values in a list of lists of RMS values.x)
PositionFinder5b[RMSmins_, ALLIRMSs_] :=
PositionOfMinRMSsInRMSlistArray[a_] := Position[a[2], a[l]]I1001];
Map [PositionOfMinRMSsInRMSlistArray, Transpose[{RMSmins, A11RMSs}]]
)i

(* "This function creates a list of lists of RMS values. (RMS = Root Mean
Square) . Given a temperature range to look over, a list of
lists of PSL values, and the the filter configuaration of
the sets, the function creates a lsit of fit values (RMS)
for each set of PSL values. This is done by comparing one
set of PSL values to a table of PSL vlaues generated from a
inputed range of temperature. For each entrv in the table, the

| o

41

10 | Uniform Error-Polar Code Thurs.nb

individual differences in PSL behind each filter are found and
squared. The square root of the avarage of these differneces
is then recored as an element in the list "RMS " " %)

compRMSvalue5bonly = Compile[{{Temp, _Real, 1},
{list2, _Real, 2}, {V}, {Cu}, {Ge}, {Mo}, {Althick}, {Althin}}, (

PSLsWithTemP = Table[
Partition|[
Flatten[Transpose[{Partition[Temp, 1], compPSLvaluesfinder5only|[
Temp, mastertableOOne, V, Cu, Ge, Mo, Althick, Althin]}]],

(Dimensions [compPSLvaluesfinder5only[Temp,
mastertableOOne, V, Cu, Ge, Mo, Althick, Althin]][2] +1)]
, {1, 1, Length[list2]}];

list3b = Transpose[Table[list2, {i, 1, Length[Temp]}]];
DifferenceInValues =
list3b - Table[compPSLvaluesfinder5only[Temp, mastertableOOne, V,

Cu, Ge, Mo, Althick, Althin], {i, 1, Dimensions[list2][1]}];
SquaredDifferenceInValues = (DifferenceInValues) "2.;
TotalSquaredDifferenceInValues = Total [SquaredDifferenceInValues, {3, 3}];
MeanTotalSquaredDifferenceInValues = Total [SquaredDifferenceInValues, {3, 3}]/

Dimensions [SquaredDifferenceInValues][1];
RMSb = Sqrt [MeanTotalSquaredDifferenceInValues];
RMSb

), {{RMSb, _Real, 2}}];

TempFromPositionInMastertableOOne[y_] := Extract[mastertableOOne, y];
theTempb[AllPositions_] :=

Map [TempFromPositionInMastertableOOne, AllPositions]
)i

RMSlistb = compRMSvalue5bonly [TempRangeToLookOver,

ValuesToFindTempFor, Va, Cua, Gea, Moa, Althicka, Althina];

MinOfRMSlistb = Map[Min, RMSlistb];

PositionsOfMinimumRMSvaluesb = PositionFinder5b[MinOfRMSlistb, RMSlistb];

LowResInferredTemps = theTempb [PositionsOfMinimumRMSvaluesb];

TempSmallEnd = Round [Min[LowResInferredTemps]] - 1;
TempLargeEnd = Round [Max [LowResInferredTemps]] +1;

rangeFinder[Cone , Ctwo 1 :=

12

| Uniform Error-Polar Code Thurs.nb

If[Cuvaluname == 1, AppendTo[currentlistname, "Cu"]];

If [Gevaluename == 1, AppendTo[currentlistname, "Ge"]];

If[Movaluname == 1, AppendTo[currentlistname, "Mo"]];

If [Althickvaluename == 1, AppendTo[currentlistname, "Althick"]];

If [Althinvaluename == 1, AppendTo[currentlistname, "Althin"]];

] , {1}]; currentlistname);

(*This takes the list of strings and joins them all to one string with "+" signsx)
FilterName = StringDrop [StringJoin[Table [namer [V, Cu, Ge, Mo, Althick, Althin] [i] <> "+",

{i, 1, Length[namer [V, Cu, Ge, Mo, Althick, Althin]]}]], -1];
(*Creates the folder name where all data is stored from a runx)
DirectoryFileName =

("/Users/klem3/Desktop/simulation Data/" <> DateString[{ "Hourl2Short", " ", "Minute",
"AMPM", " ", "DayName", " ", "Month", ":", "Day", ":", "YearsShort"}] <>"__ " <>
ToString[Resolution] <> "Res" <> ToString[Trials] <> "Trials" <> "__" <> l'-‘i.lterName}]

(*Creates the folder name where all the numerical data is
stored. It is placed inside the first folderx)
DirectoryFileNameDataFiles = DirectoryFileName <> "/" <> "/DataFiles";
(*Creates a string with all the
information about a run for use in file names later onx)
FileInfo = ToString[Resolution] <> "Res" <> ToString[Trials] <>
"Trials" <> " " <>DateString[

{ "Hour12Short", " ", "Minute", "AMPM", " ", "Month", ":
(*Creates the above stated directoriesx)
CreateDirectory[DirectoryFileName] ;
CreateDirectory[DirectoryFileNameDataFiles];

(*Finds path to current notebook filex)
DirectroyOfThisNoteBook = NotebookFileName[] ;

(*Creates name of copy of notebookx)
FileNameOfThisNoteBook =

DateString[{ "Hourl2Short", " ", "Minute", "AMPM", " ", "Month", ":", "Day", ":",

"YearShort", " "}] <> StringReplace[NotebookFileName[], NotebookDirectory[] » ""];

(#*Adds a copy of current notebook to data filex)
CopyFile[DirectroyOfThisNoteBook,

DirectoryFileNameDataFiles <> "/" <> FileNameOfThisNoteBook] ;

, "Day", ":", "YearShort"}];

(*Create empty list to apend
standard deviations of inferred Te at one temperature tox)
STDperTemp = {};

(*Repeats the process below for each
synthetic plasma temperature (1,2,3,4,5,6,7,8,9,10 keV))
po (
(#*Create empty listsx)
numbers = {};
numbersStandard = {};
AllTemps = {};
STDFourError = {};
ListofSTDBars = {};
(*Repeats calculations for 0.1 kev, 0.2 keV, 0.3 keV, 0.4 keV error #)
po|(
(*Generates all inferred temperaturesx)
FoundTemps =
FindTheTemp5bonly[Range[0.1, 11, 0.1], monstertablefast [Temp, NoiseLevel,
Trials, V, Cu, Ge, Mo, Althick, Althin], V, Cu, Ge, Mo, Althick, Althin];

MaxTemp = Max [FoundTemps] ;

43

Uniform Error-Polar Code Thurs.nb | 13

MaxTemp = Min [FoundTemps] ;

MaxTempDiff = Max [FoundTemps] - Mean [FoundTemps] ;

MinTempDiff = Min [FoundTemps] - Mean [FoundTemps] ;

bars = {{NoiseLevel, Mean[FoundTemps]}, ErrorBar [0, {MaxTempDiff, MinTempDiff}]};
(*Create error bar at each noise levelx)

STDbars =
{{NoiseLevel, Mean[FoundTemps]}, ErrorBar [0, StandardDeviation[FoundTemps]]};

(xAdd the above variable values to pre-made listsx)

AppendTo [ListofSTDBars, STDbars];

AppendTo [numbers, {Max[FoundTemps], Min[FoundTemps]}];

AppendTo [numbersStandard, {Mean[FoundTemps] - StandardDeviation[FoundTemps],

Mean [FoundTemps] + StandardDeviation[FoundTemps]}];

AppendTo[AllTemps, FoundTemps];

AppendTo [STDFourError, StandardDeviation[FoundTemps]];
), {NoiseLevel, 0.1, 0.4, o.1}];

(*Here, after the numbers have been calculated,
the images are made and the files are exportedsx)
Scalerr = Max[Flatten[numbers]];

Scalerr2 = Min[Flatten[numbers]];

Differ = Scalerr - Scalerr2;

(*Plot the purple max and min barsx)
BlueLineMinMax = Plot[
numbers, {x, -1, 21},
PlotRange + {{-1, 21},
{Round [Temp - (Differ + 0.15 » Differ)] , Round [Temp + (Differ +0.15 » Differ)] }}-
PlotStyle » {RGBColor[0, 0, 1, 0.001]},
Filling - {1 - {2}, 3> {4}, 5> {6}, 7> {8}},
FillingStyle - RGBColor [0, 0, 1, 0.09],
PlotStyle » Opacity[0]];

(#Create tick marks on large plots)
ticks[min_, max_] := Table[If[FractionalPart[i] ==0., {i, i, {.01, -.001}, Black},
{i, "", {.005, -.001}, Black}], {i, Floor[min], Ceiling[max], 0.05}];

ticks2[min_, max_] :=
Table[If[QuotientRemainder [Round[(i/2) 10" ((Ceiling[1/Log[Rationa1ize[1/ (round |
(2« Differ /50), (10."-Ceiling[1l/Log[Rationalize[1/ (2« Differ/
50)], 10.]]]])], 10.]]) -0), 0.000001], 10][2] = O.,
{i, i, {.010 , -.001}, Black}, {i, "", {.005, -.001}, Rad}},
{i, Floor[min], Ceiling[max],
Round[(2 + If[N[Rationalize[Differ]] == 0.25", 0.2500000000000001, Differ] /100) ,
(10." —Ceiling[l/Log[Rationalize[1/ (2 + 1£[N[Rationalize[Differ]] == 0.25",
0.2500000000000001, Differ] /50)], 10.]])]}]:

(*Plot error bars and format large plotsx)
StandardBars = ErrorListPlot[
{ListofSTDBars},
ErrorBarFunction - Automatic,

PlotRange - {{0.0, 1.0}, {Round['].‘emp - (Differ +0.15 Differ) ’
(10.”-ceiling[1/Log[Rationalize[1/ (2 »Differ /50)], 10.]])].
Round['remp + (Differ +0.15 % Differ) , (10. 2
-Ceiling[1l/Log[Rationalize[1/ (2« Differ /50)], 10.]])]}},
PlotStyle -+ {Thickness[0.004], Red},

44

14 | Uniform Error-Polar Code Thurs.nb

PlotLegends - SwatchLegend[{ToString[Temp] <> " KeV"}, LegendMarkerSize - {50, 7}];
PlotLabel - Style["Calculated Temperture of " <> ToString[Temp] <>

" KeV Initial Temp for " <>ToString[Trials] <> " Trial", FontSize - 20],
Frame - True,
FrameLabel - {"Noise Level (keV)", "Calculated Temperture"},
FrameStyle - Thickness[0.001],
BaseStyle -+ {FontSize - 18}, ImageSize - Scaled[1], PlotMarkers - None,
GridLines - Automatic,
GridLinesStyle - Directive[AbsoluteThickness[1l], RGBColor [0, 0, 0, 0.1], Dashed],
FrameTicks - {ticks, ticks2, False, ticks2},
FrameTicksStyle - Directive - FontSize - 10,
Prolog » {{RGBColor[0, 0, 0, 0.04], Rectangle[Scaled[{0, 0}], Scaled[{1, 1}]1}},
Epilog » ({Red, PointSize@.01, Point@ListofSTDBars[[All, 1]]1})];

(*Create black lines that connect to error barsx)
ssws = Transpose|[{Flatten[{{0.1, 0.1}, {0.2, 0.2}, {0.3, 0.3}, (0.4, 0.4}}],
Flatten[numbersStandard]}];
sses = Transpose[{Flatten[{{21, 21}, {21, 21}, {21, 21}, {21, 21}}],
Flatten[numbersStandard]}];
swld = Transpose[{ssws, sses}];
doxs = ListLinePlot[
swld,
PlotRange + {{-1, 21},
{Round [Temp - (Differ + 0.15 x Differ) |, Round|[Temp + (Differ + 0.15 «» Differ)|}},
PlotStyle -+ {RGBColor[0, 0, 0, 1]},
PlotStyle » Opacity[0]
I|g
(#Combine error bars, max/mi.n bars, and black connecting lines into one plotx)
Graphx = Show[StandardBars, BlueLineMinMax, doxs, ImageSize - Scaled[1.1]];

(*Create Histograms of Distributions if inferred Tex)
histl = Histogram[AllTemps[1], Length[AllTemps[1]],
ImageSize - Scaled[.22],
PlotLabel -+ Style["Temperture Distrubution for 0.1 keV \n noise and " <>
ToString[Trials] <> " Trial", FontSize - 14],
Frame - True,
BaseStyle -+ {FontSize - 14},
FrameLabel - {"Temperture", "Counts"}];

hist2 = Histogram[AllTemps[1], Length[AllTemps[1]],
ImageSize - Scaled[.22],
PlotLabel —+ Style["Temperture Distrubution for 0.2 keV \n noise and " <>
ToString[Trials] <> " Trial", FontSize - 14],
Frame - True,
BaseStyle -+ {FontSize - 14},
FrameLabel - {"Temperture", "Counts"}];

hist3 = Histogram[AllTemps[1], Length[AllTemps[1]],
ImageSize —» Scaled[.22],
PlotLabel —+ Style["Temperture Distrubution for 0.3 keV \n noise and " <>
ToString[Trials] <> " Trial", FontSize - 14],
Frame - True,
BaseStyle -+ {FontSize - 14},
FrameLabel - {"Temperture", "Counts"}];

hist4 = Histogram[AllTemps[1], Length[AllTemps([1]],
ImageSize -+ Scaled[.22],
PlotLabel » Style["Temperture Distrubution for 0.4 keV \n noise and " <>
ToString[Trials] <> " Trial", FontSize - 14],

45

Uniform Error-Polar Code Thurs.nb | 15

Frame - True,
BaseStyle -» {FontSize - 14},
FrameLabel - {"Temperture"”, "Counts"}];

(*Combine histograms and large plot to one imagex)
dots = Graphics[{
Inset [Graphx, {1.305, 3.45}, Center, {2.6, 2.6}],
Inset[histl, {0.435, 2.25}, Center, {0.6, 0.6}],
Inset[hist2, {1.08, 2.25}, Center, {0.6, 0.6}],
Inset[hist3, {1.685, 2.25}, Center, {0.6, 0.6}],
Inset[hist4, {2.315, 2.25}, Center, {0.6, 0.6}]

}, PlotRange » {{0, 2.75}, {2, 4.35}}, ImageSize » 1200];

(*Export final image in 4 file
formats and all the date usedto make images to DataFilesx)

Export [DirectoryFileName <> "/" <> FilterName <> "__" <> FileInfo <>

"__"<»"Temp-" <> ToString[Temp] <> ".pdf", dots, "PDF"];

Export [DirectoryFileName <> "/" <> FilterName <> "__" <> FileInfo <>
"__"<>"Temp-" <> ToString[Temp] <> ".gif", dots, "GIF"];

Export [DirectoryFileName <> "/" <>FilterName <> "__" <> FileInfo <>
"__"<>"Temp-" <> ToString[Temp] <> ".png", dots, "PNG"];

Export [DirectoryFileName <> "/" <> FilterName <> "__" <> FileInfo <>
"__"<>»"Temp-" <> ToString[Temp] <> ".jpeg", dots, "JPEG"];

Export [DirectoryFileNameDataFiles <> "/" <> FilterName <> "__" <>FilelInfo <>
"__"<>»"Temp-" <> ToString[Temp] <> ".wdx", AllTemps, "WDX"];

AppendTo [STDperTemp, STDFourError)]

)r {Temp, 1, 10}];

(*Create Plots of standard deviation
versus temperatue for each error percent levelx)
five = ListPlot [Transpose[{Table[x, {x, 1, 10}], STDperTemp[All, 1]}],
Joined -» True, PlotStyle - Red,
PlotLegends » SwatchLegend[{"5%"}, LegendMarkerSize - {50, 7}]1];

ten = ListPlot [Transpose[{Table[x, {x, 1, 10}], STDperTemp[[All, 2]}], Joined - True,
PlotStyle - Blue, PlotLegends -+ SwatchLegend[{"10%"}, LegendMarkerSize » {50, 7}]1];

fifteen = ListPlot [Transpose[{Table[x, {x, 1, 10}], STDperTemp[All, 3]}], Joined - True,
PlotStyle - Green, PlotLegends » SwatchLegend[{"15%"}, LegendMarkerSize - {50, 7}1];

twenty = ListPlot [Transpose[{Table[x, {x, 1, 10}], STDperTemp[[All, 4]]}], Joined -+ True,
PlotStyle - Purple, PlotLegends » SwatchLegend[{"20%"}, LegendMarkerSize » {50, 7}],
PlotLabel » Style["Standard deviation vs Temperture", FontSize - 16],
Frame - True, FrameLabel » {"Temperture", "Standard Deviation"},
FrameStyle -» Thickness[0.002], BaseStyle » {FontSize - 16}];

(*Combine all plotsx)

ErrorVStemp = Show[twenty, fifteen, ten, five, ImageSize - 400];

(*Export Standard deviation vs. Temerature plot as well as datax)
Export[DirectoryFileName <> "/" <> FilterName <> "__" <>

FileInfo<>"__ (STD-mean)VS Temp " <> ".pdf", ErrorVStemp, "PDF"];
Export[DirectoryFileName <> "/" <> FilterName <> "__" <> FileInfo <>

" __(STD-mean)VS Temp__" <> ".gif", ErrorVStemp, "GIF"];

46

16 | Uniform Error-Polar Code Thurs.nb

"

Export [DirectoryFileName <> "/" <> FilterName <> "__" <> FileInfo <>

" __(STD-mean)VS Temp__" <> ".png", ErrorVStemp, "PNG"];
Export[DirectoryFileName <> "/" <> FilterName <> "__" <>FileInfo <>

" __(STD-mean)VS Temp__" <> ".jpeg", ErrorVStemp, "JPEG"];
Export[DirectoryFileNameDataFiles <> "/" <> FilterName <> "__" <>

FileInfo<> "__(STD-mean)VS Temp__" <> ".wdx", STDperTemp, "WDX"];

Find Inferred Temperature

(*Use this function if you already have PSL values
you want to inferrer a electron temperature from. *++Made sure to
set the BWXray correctly at the vary beginning of the code.x**x%x*DOES
NOT WORK FOR Equatorial DATA.xx+x*xx*DOES NOT WORK FOR
FILTER SET WITH KAPTON,
UNLESS THE ABOVE WORKAROUND IS IMPLEMENTED*%x%)

(*To input data--Enter the PSL values as a s*smatrixsx*
(in the form {{},{}...}, it can be a one dimentional matrix ie ([{)]))
for the PSLset_ argument. They must be in the order (Vanadium, Copper,
Germanium, Molybdenum, Althick (1000um),Althin (85um). Replace the V_,
Cu_,Ge_,Mo_,Althick_,Althin_ arguemts individualy with 1's or 0's to to
tell the program if each filter is presentin the set. Enter 1 if it is,
enter 0 if it is not. The numner of 1's must equal thenumer of PSL
values in the list entered at the PSLset_ argument. This program is
designed to allow the user to select anywhere from 2 to 6 filters to
inferrer and electron temperature form. By entering the 1's and 0's,
you tell the program what filers the entered PSL values are recorded after)*)

ErrorPlotteronlyFind[PSLset_, V_, Cu_, Ge_, Mo_, Althick_, Althin_] := (
FindTheTemp5bonly[Range[0.1, 11, 0.1], PSLset, V, Cu, Ge, Mo, Althick, Althin]

)

Run Program

ErrorPlotteronlyGenerate[1000, 1,1, 1,1, 0, 1];

$Aborted

ErrorPlotteronlyFind([{{1, 1,1, 1,1, 1}},1,1,1,1,1,1]
{0.84}

47

