
LLNL-CONF-671591

Secure Coding Practices, Tools,
and Processes

G. K. White

May 28, 2015

International Conference on Computer Security in a Nuclear
World: Expert Discussion and Exchange
Vienna, Austria
June 1, 2015 through June 5, 2015



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



LLNL-CONF-nnnnnn

Secure Coding Practices, Tools, and Processes

Greg White
Lawrence Livermore National Laboratory

June 2015

Abstract
Recent events in the news have shown the need for improved computer security vigilance by 
the nuclear industry. While the majority of security techniques, processes, and technologies 
attempt to defeat attackers while they are attacking, secure coding attempts to eliminate the 
vulnerabilities these attackers are seeking before the systems are fielded. By using best 
practices and processes for secure coding, the nuclear industry can minimize their 
susceptibility to both external and internal threats. The nuclear industry relies on a large 
amount of specialized and custom systems for industrial control, access control, and physical 
protection systems and therefore is a good candidate to benefit from secure coding. The 
paper will review the secure coding process, and examples of software failures will be 
explained to demonstrate the need for specific secure coding practices.

1 – Introduction

Most cyber security techniques attempt to defeat attackers while they are attacking.  However, secure 
coding attempts to eliminate vulnerabilities before the software is fielded.  It minimizes the susceptibility to 
both internal and external threats.  As a side effect, secure code tends to be more reliable1.

2 – Simplicity

Overall simpler code is more secure than complex code2.  We should remove code and software 
requirements that are no longer needed.  There are two recent vulnerabilities which demonstrate this.  The 
first is the recent Heartbleed vulnerability in OpenSSL3.  In 2014, OpenSSL continued to support operating 
systems that were no longer supported by their developer and no security conscious professional would use.  
This included MacOS 9 and earlier, NetWare, OS/2, VMS and Windows 3.14.  Performance issues for these 
operating systems led the OpenSSL developers to write their own portable (and vulnerable) memory 
management software5.  This added complexity to their software and they assumed responsibility for a new 
subsystem that the operating system was normally responsible for.  This new subsystem isn’t in their area of 
expertise, so it received fewer resources than the main cryptographic code.  They also concentrated on 
performance over security.

The second vulnerability was last month’s Venom vulnerability6 in open source virtualization software
(QEMU, Xen, KVM, and VirtualBox).  All of these software packages included QEMU’s virtual floppy driver.  
This shows one of the potential dangers of reusing open source software, using other’s software without 
taking ownership for the security.  Because the software worked, it didn’t receive much developer attention.  
This was even more dangerous because the software was vulnerable even if it was disabled, due to another 

                                               
1 Code B., Building Reliable and Secure Embedded Systems, http://embeddedgurus.com/barr-code/2012/03/building-
reliable-and-secure-embedded-systems/
2 More complex = Less Secure, http://www.mccabe.com/pdf/More%20Complex%20Equals%20Less%20Secure-
McCabe.pdf
3 http://heartbleed.com/
4 http://en.wikipedia.org/wiki/LibreSSL
5 http://article.gmane.org/gmane.os.openbsd.misc/211963
6 http://venom.crowdstrike.com/



LLNL-CONF-nnnnnn

unrelated bug in the software.  It allowed an attacker to escape from a virtual machine to attack the host 
machine and even compromise other virtual machines on the host.

Automated code coverage is one tool that can be used to find unused or extra functionality in software.  It 
reports which lines of code were executed during normal operation and expected failure modes.  This can 
lead reviewers to visual inspection of unexecuted code.  Examples of code coverage tools are EMMA for Java7

and gcov which is included in the GNU Compiler Collection8.

The choice of software development computer language tends to lead toward different distributions and 
types of vulnerabilities9.  Secure coding guides are available from CERT10, the Open Web Application Security 
Project (OWASP, which also applies to non-web applications) Top 10 list11 and Secure Coding Practices 
Guide12, and ICS CERT’s Recommended Practice Case Study on Cross Site Scripting (XSS)13

3 – Inputs

Validating all input data is a critical part of secure coding.  It is critical to perform input validation on a 
system you trust (i.e. the server) instead of an untrusted or spoofed client.  It is important to centralize input 
validation code in your application, instead of spreading it over the entire code base.  Specify the proper 
character sets for all sources of input and encode into a common character set before validation.  All 
validation failure should result in input rejection.  Validate the input based on expected data types, ranges 
and lengths.  Finally, if you can’t reject them outright, handle hazardous characters very carefully.  These 
hazardous characters are many symbols used in programming, null bytes, new line characters and characters 
used to alter directory paths.

Extensive software testing with widely diverse inputs can increase the security of your code. Some input 
should be generated by a domain expert.  Other input should be invalid, unexpected or random (via data 
fuzzing).  Automation can make this tractable.  It is expected that good input should always result in the 
correct output and no input should crash the system.  An example of the need for input testing is Atomic 
Energy of Canada Limited’s (AECL) Therac-25 radiation therapy machine14.  Not enough testing was 
performed using varied inputs.  The failure sequence of an incorrect dose, followed by a correct dose resulted 
in the patient getting the incorrect dose.  Six patients were injured from radiation overdose.

The Heartbleed vulnerability15 is another example for the need for input testing.  A malicious user could 
send a reply packet with an invalid length and get upto 64 kilobytes of memory returned16.  That memory 
contained storage currently and previously used by the OpenSSL.  This included secret keys, certificates, 
usernames, passwords, instant messages, emails, and documents.17

4 – Code Reviews

Secure code should be easily understandable with no obfuscation.  A code review should consist of 
experts in the application domain and experts in the software environment (development tools and 
programming languages).  Using good software development practices makes this review easier.  The code 
review should also perform penetration testing of the software.

                                               
7 http://emma.sourceforge.net/
8 https://gcc.gnu.org/
9 Turner S., Security vulnerabilities of the top ten programming languages: C, Java, C++, Objective-C, C#, PHP, 
Visual Basic, Python, Perl, and Ruby, , http://www.aabri.com/manuscripts/131731.pdf
10 https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
11 https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
12 https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
13 https://ics-cert.us-cert.gov/sites/default/files/recommended_practices/RP_CaseStudy_XSS_10-24-07_Final.pdf
14 Leveson N., Medical Devices:  The Therac-25, http://sunnyday.mit.edu/papers/therac.pdf
15 http://heartbleed.com/
16 Simple visual explanation: https://xkcd.com/1354/
17 http://www.troyhunt.com/2014/04/everything-you-need-to-know-about.html



LLNL-CONF-nnnnnn

Automated analysis of the source code can assist the visual inspection process.  It can direct the visual 
inspection towards specific sections of the code.  It can enforce coding standards.  It can also look for well-
known coding vulnerabilities, such as memory leaks, buffer overflows, vulnerable system calls, variable and 
type casting, etc.  There are a number of commercial source code analysis tools from a range of vendors
(Coverity, Grammatech, Klokwork, Polyspace, etc.).  They are typically closed systems with proprietary tests 
(some support minor customizations) and are expensive to operate.  Each tool supports a certain languages.  
It is important to try a variety of tools before committing funding to compare false positive rates and find out 
how well they integrate into existing software development workflows.

There are also a number of open source code analysis tools which complement commercial tools.
FindBugs18 works well for Java code.  Cppcheck19 is a static analysis tool for C/C++ code which has the 
primary goal of no false positive findings.  LLNL’s ROSE20 is a full compiler infrastructure developed at LLNL 
under US DOE sponsorship.  It handles C, C++, Fortran, php, and binaries (x86, PowerPC, and ARM instruction 
sets).  It can perform combined analysis of both the source and binary versions of code.  Custom analysis and 
transformation tools can be created in C++21.  It scales better than commercial tools.  This includes the 
maximum size of the analyzed source and binary code and the ability to perform analysis using 
multiprocessor and cluster computers.  It remains a top download on the US DOE SciDAC website and was 
given an R&D 100 award in 200922.

Modern compilers are including more source code analysis features.  Software developers should set the 
compiler warning level as high as possible.  They should understand and heed compiler warnings.  False 
positives should be disabled using compiler pragmas around the code and justified in nearby comments.  
However, compilers can sometimes cause insecurity.  In an older version of Internet Explorer an important 
password was stored on the heap.  When the password was no longer needed, the source code overwrote the 
password.  The compiler then optimized the code and removed the code to overwrite the password.  This led 
to the password being left intact and vulnerable.  ROSE could be used to detect this kind of vulnerability by 
comparing the source and binary versions of the code.

5 – Runtime Tools and Libraries

There are also a number of tools and libraries that can be applied at runtime.  Dynamic analysis tools 
such as Intel’s PIN23 (which is a dynamic binary instrumentation framework) and Valgrind24 (which detect 
memory errors and multithreaded race conditions) can be applied to secure coding.  There are also a number 
of runtime libraries that increase code security.  This includes stronger and more secure memory allocation 
libraries (Phkmalloc and Dmalloc), and libraries which perform bounds checking and safe string functions 
(Safe C Library).

6 – Defense in Depth

Privilege separation25 is an example of defense in depth and is demonstrated in the OpenSSH project.  It 
divides your program into two processes.  The first is the main process.  It is usually relatively large and does 
most of the work.  It drops to a lower privilege level and handles all external communication.  The second 
process is relatively small.  It retains its high privilege level and communicates only with the main process.  It 
performs only the minimum necessary privilege operations.  Security auditing can be concentrated mostly on 
the small process.

                                               
18 http://findbugs.sourceforge.net/
19 http://cppcheck.sourceforge.net/
20 ROSE is not an acronym. http://www.RoseCompiler.org
21 White G., Software Authentication Using Rose and Compass, 2010 INMM Conference, https://e-reports-
ext.llnl.gov/pdf/399942.pdf
22 http://www.rdmag.com/Awards/RD-100-Awards/2009/07/Free-Compiler-Aids-Novices-And-Experts/
23 Luk et. Al., Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation, 
http://www.cs.virginia.edu/kim/courses/cs851/papers/luk05pin.pdf
24 http://valgrind.org/
25 Provos, Friedl, Honeyman, Preventing Privilege Escalation, http://niels.xtdnet.nl/papers/privsep.pdf



LLNL-CONF-nnnnnn

Many modern Unix operating systems support process separation.  This includes Linux (OpenVZ, Vserver, 
and lxc), BSD Unix (jails) and Solaris (containers and zones).  It allows a server process to be separated from 
the primary operating system and other server processes.  The compromise of one server process does not 
expand to the a compromise of other server processes and/or the whole machine.  These server processes are 
limited to their own directory tree and are not allowed to perform a number of operating system tasks.  This 
includes creating device nodes, mount or unmount filesystems, modify network interfaces, or modify the 
running kernel.

7 – Measurement Unit Testing

Measurement Unit Testing is a less mature and less automated technology.  The need for it was 
demonstrated with the loss of the 1999 Mars Climate Orbiter26.  One software module measured in pounds 
force and another measured in newtons (1 pound force = 4.45 newtons).  The orbiter was supposed to be 
inserted at 125 miles above the surface, instead it inserted itself at 35 miles above the surface.  Insertions 
below 53 miles were not survivable.  End-to-end testing was never performed, and no independent software 
was written to validate the answer between the two modules before proceeding.  OSPREY27 was developed at 
US Davis, using ROSE, to detect measurement unit errors.  It shows good results in finding previously 
unknown measurement unit errors in mature computational physics codes.  It can also be performed 
manually as part of code reviews.

                                               
26 http://www.washingtonpost.com/wp-srv/national/longterm/space/stories/orbiter100199.htm
27 Jiang and Su, Osprey: A Practical Type System for Validating Dimensional Unit Correctness of C Programs, UC 
Davis, ISCE ’06, May 2006.

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text
Prepared by LLNL under Contract DE-AC52-07NA27344.




