
LLNL-CONF-671602

Supporting Indirect Data
Mapping in OpenMP

T. Scogland, J. Gyllenhaal, J. Keasler, R.
Hornung, B. de Supinski

May 28, 2015

international workshop on OpenMP
Aachen, Germany
October 1, 2015 through October 2, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Supporting Indirect Data Mapping in OpenMP

Thomas R. W. Scogland, John Gyllenhaal, Jeff Keasler,
Rich Hornung, and Bronis R. de Supinski

Lawrence Livermore National Laboratory, Livermore, CA 94551 USA

Abstract. Code-passing abstractions based on lambdas and blocks are
becoming increasingly popular to capture repetitive patterns that are
amenable to parallelization. These abstractions improve code mantain-
ability and simplify choosing from a range of mechanisms to implement
parallelism. Several frameworks that use this model, including RAJA and
Kokkos, employ OpenMP as one of their target parallel models. How-
ever, OpenMP inadequately supports the abstraction since it frequently
requires information that is not available within the repetitive pattern in
order to parallelize the code efficiently. Thus, OpenMP requires access to
variables and parameters not directly supplied by the base language. This
paper explores the issues with supporting these abstractions in OpenMP,
with a particular focus on device constructs, and proposes mechanisms
to improve support for abstraction and also to reduce the burden of
duplication in existing OpenMP applications.

1 Introduction

Abstraction is a critical part of computer programming. The languages and li-
braries that we use, even basic constructs such as functions are common examples
of abstraction. Abstraction allows us to hide the complexity of actions behind
simple facades, and to concentrate effort on higher level concepts. While lambda
expressions, closures and other forms of general ”code passing” mechanisms have
been integral parts of functional languages such as LISP and Haskell for many
years, they have not been available in mainstream systems programming lan-
guages until recently. The C++11 standard [4] introduced support for lambda
expressions that was expanded in C++14 [5]. Further, the growing support for C
blocks in Objective-C suggests a path for their support in C. Frameworks such as
RAJA [3], Kokkos [1] and Grand Central Dispatch [7] employ these mechanisms
to abstract the implementation and management of parallelism away from the
use of that parallelism in user code.

OpenMP [6] provides a programming model that abstracts the specifics of
threaded programming on a variety of platforms across the C, C++ and Fortran
languages. It provides high-level constructs to represent parallel regions, work-
sharing, synchronization, ordering, and atomicity as well as data sharing and
dependencies. Using lambda expressions to wrap around these constructs to add
new features or to support multiple models appears straightforward.

Take an example like the C blocks parallel loop function in Figure 1. It effec-
tively abstracts the specific annotation on the loop out of the user code, which

2 Authors Suppressed Due to Excessive Length

1 void parallel_for_all(size_t start,

2 size_t end,

3 void (^fun)(size_t i)){

4 #if defined(USE_OPENMP)

5 #pragma omp parallel for

6 for(size_t i=start; i < end; ++i)

7 #elif defined(USE_CILK)

8 cilk_for(size_t i=start; i < end; ++i)

9 #endif

10 { fun(i);

11 } }

12 void add_arrays(double *a, double *b, size_t N){

13 parallel_for_all(0, N,

14 ^(size_t i) {

15 a[i] += b[i];

16 });

17 }

Fig. 1. An example parallel loop function using C blocks

allows a library or header to switch between OpenMP or Cilk+ to parallelize
the loop. However, interfaces such as these create a challenge for specifying data
sharing attributes and data mapping. Clauses to support reductions, variable pri-
vatization, and perhaps most notably data mapping for device constructs rely
on the user listing variables explicitly as part of the construct. Because OpenMP
constructs use pre-processor directives, they cannot exploit base language mech-
anisms for passing information like reduction variables or map-types through a
language abstraction like a lambda. Further, C++ lambdas and C blocks are
intentionally opaque objects so the code that they are passed cannot inspect
their details in order to glean the information.

Traditional OpenMP parallelization works well for simple examples such as
that in Figure 1. Implicit data sharing rules easily combine with the base lan-
guage code passing mechanism to handle most use cases correctly. Variable pri-
vatization for example is provided by declaring a local variable inside the scope
of the block, and sharing provided by simply using the captured value. Issues
can arise with reductions or more complicated decisions for features such as loop
schedules but the required information is usually needed for the base language
abstraction. OpenMP 4.0 device constructs and their support for mapping array
sections create new challenges. The code in Figure 2 shows a desirable abstrac-
tion using a C++11 lambda with templates to abstract over a target region
in OpenMP or OpenACC [2]. However, neither of these parallelization mecha-
nisms have mechanisms to make the arrays available on the device within the
abstraction. As noted in the comment, the arrays must be explicitly listed in
map clauses, which is impossible since the variables effectively do not exist where
they must be listed.

Supporting Indirect Data Mapping in OpenMP 3

1 template<typename FunT, typename It>

2 void target_forall(It begin, It end, FunT fun){

3 #if defined(USE_OMP)

4 #pragma omp target teams distribute parallel for

5 // need to list map(tofrom: a[0:end]) map(to: b[0:end])

6 // unfortunately, they do not exist here

7 #elif defined(USE_OPENACC)

8 #pragma acc kernels loop

9 // need to list copy(a[0:end]) copyin(b[0:end])

10 #endif

11 for(It i = begin; i < end; ++i){

12 fun(i);

13 } }

14 void add_arrays(double *a, double *b, size_t N){

15 target_forall(0, N,

16 [&](size_t i) {

17 a[i] += b[i];

18 });

19 }

Fig. 2. An example target loop function using C++ lambdas

With the growing popularity of these abstraction models, OpenMP needs
mechanisms to pass information through base language constructs. Otherwise,
each instance that uses one of the abstractions must be anticipate the paral-
lelization mechanism within the abstraction, thus breaking the advantages that
it offers. This paper explores the challenges of supporting the new OpenMP
4.0 device constructs in the presence of lambdas, proposes adjustments and ex-
tensions to OpenMP to support abstraction of target regions, and discusses
extensions that generally support the abstraction models.

The remainder of the paper is structured as follows. Section 2 provides back-
ground on the behavior of the map clause and the device data environment in
OpenMP 4.0. Section 3 proposes adjustments to the handling of map clauses to
support abstraction better. Section 4 presents a preliminary design for a general
mechanism to pass OpenMP information through base language mechanisms.

2 The OpenMP 4.0 Data Environment

OpenMP 4.0 introduces the concept of target devices and their associated data
environments into the programming model. While those data environments may
share storage with host memory, they can also be completely disjoint. Thus,
OpenMP now supports a limited form of potentially distributed memory pro-
gramming that expands the requirements and functionality of its data sharing
and data motion constructs substantially. The original data sharing attributes,
such as private, shared, are still available within device environments but pro-
grams must map data into the device data environment. While default mapping

4 Authors Suppressed Due to Excessive Length

map([map-type:] list-item[, list-item...])

map-type: alloc | to | from | tofrom

list-item: <variable-name>[array-section]

array-section: [<start>:]<length>

Fig. 3. The options and syntax of the map clause

rules support many implicit mappings, dynamic arrays or other pointer-based
structures require explicit mappings. This section details the OpenMP 4.0 mem-
ory mapping interface, its use, defaults, and interactions.

2.1 Mapping Syntax

The map clause of the target and target data constructs maps data from the
host data environment, which is the system memory space as viewed from the
encountering thread, into the device data environment, which is the memory
space that is visible on the target device. In other environments, copy-based
constructs are common for this task, but OpenMP has carefully specified that the
operation does not require copying, which allows systems in which the host and
device share memory to avoid unnecessary allocations and copies. Nonetheless,
mapping requires a concept of directionality to ensure that data can be copied
for environments that do not support a shared memory between the host and
the target device. Figure 6 shows the syntax of the map clause.

Despite its few options, the map syntax can specify a wide variety of cases.
The map-type specifies which direction a value should be copied in if copies are
necessary. Specifically alloc specifies that no copies are ever necessary, to copies
to the device at the beginning of the region, from copies back from the device
at the end of the region and tofrom copies in both directions. Each list item
specifies the variable to be mapped and, if it is an array section, the offset and
number of elements to map. For C and C++, OpenMP 4.0 includes array section
syntax that lists the element from which to begin the mapping and how many
elements to make available starting from that point. For Fortran, OpenMP uses
the base language syntax. Any variable listed without an array section is treated
as a scalar, and the default behavior for any variable accessed in a device region
that is not specified in a map clause is to treat it as though it had been listed as
a scalar with a map type of tofrom. For C and C++, the mapping of dynamic
arrays or their sections is composed of two parts. A pointer is mapped into the
device data environment with map-type alloc and an array of the specified
size is mapped in with the map-type specified. The new pointer in the device
data environment is then set to point to the mapped array. These steps allow
manipulation of the pointer on the device and multiple disjoint mappings of an
array.

Figure 4 shows a simple mapping example, which explicitly specifies two
mappings. The map clause maps the array arr as an array section and len as a
scalar. The construct results in four separate mappings occur, with two implicit

Supporting Indirect Data Mapping in OpenMP 5

1 void omp4_foo(double *arr, int len, double arg){

2 #pragma omp target map(from: arr[0:len]) \

3 map(to:len)

4 // map(alloc: arr)

5 // map(tofrom: arg)

6 {

7 // arr = arr_data_array;

8 arr[len - 1] = arg * arg;

9 len = 5;

10 }

11 }

Fig. 4. A simple example of data mapping

mappings shown in comments. The array arr has an implicitly mapped pointer
at global scope to hold a pointer to the device data that the first map clause
explicitly maps. The mapping will copy the elements between 0 and len − 1 of
arr in the device data environment back to the host, if necessary. Both len and
arg are mapped as scalars. The value of len is explicitly mapped to the device
data environment so it will be the same value as in the host data environment at
the start of the region. The assignment to lenin the target region makes its value
in the host data environment unspecified after the target region executes since
it may share storage with the version with the device environment version. The
scalar value of arg is implicitly mapped tofrom the device data environment
since it is not listed in a map clause.

2.2 Presence

If the host and device environments share storage then mapping has no cost.
However, if they do not share storage then it can entail a significant allocation
and copying costs. Thus, applications require a method to reduce the frequency
of mapping. The target data construct adds variables to the device data envi-
ronment across a region of host code. That region can include target regions,
which use the already mapped data rather than transferring it repeatedly. Effec-
tively, mapped variables are added to a presence table that is consulted whenever
a variable is mapped, re-using the existing version if one is found. Thus, a vari-
able can be logically mapped at each code location that requires it while allowing
it to be transferred only once in an outer scope.

The presence table semantically lists mappings between host variables and
their device-side counterparts. It is not as simple as a hash table or direct-
mapped array because applications can map multiple sub-arrays of larger arrays
through different pointers. Thus, implementations must perform a range-based
search over the table to support all features of OpenMP 4.0. Nonetheless, a
user model of a table that maps the address of a variable to its device-side
counterpart if one exists generally suffices. For scalars, a presence check is that
simple. However, array sections are handled in two phases. First, the address of

6 Authors Suppressed Due to Excessive Length

1 void init_arrays(double *a, double *b, size_t N){

2 #pragma omp target enter data map(to: a[0:N])\

3 map(to: b[0:N])

4 }

5 void release_arrays(double *a, double *b, size_t N){

6 #pragma omp target exit data map(from: a[0:N])\

7 map(release: b[0:N])

8 }

9 void add_arrays_inlined(double *a, double *b, size_t N){

10 init_arrays(a,b,N);

11 double * inner_a = a, *inner_b = b;

12 #pragma omp target teams distribute parallel for

13 for(size_t i = 0; i < N; ++i){

14 inner_a[i] += inner_b[i];

15 }

16 release_arrays(a,b,N);

17 }

Fig. 5. Unstructured data mapping example

the host pointer, &arr in the example above, is checked for presence and then the
address of the array, arr, is searched then assigned into the device side pointer
found or allocated in the first part.

3 Map Refinements

OpenMP needs to provide mechanisms that allow the user to map the data
elements used inside abstractions such as the lambda expression in Figure 2.
The mechanism must support type abstraction but must not require the variable
name within the lambda expression in order to be consistent with the base
language construct. At first thought, the target data construct seems to provide
a solution. However, annotating the lexical scope that contains the use of the
abstraction may be difficult or impossible. Thus, these abstraction mechanisms
require the TR3 unstructured data mapping constructs, target enter data and
target exit data, that map data without requiring an enclosing lexical scope.
Since they can map data for dynamically encountered target regions and reduce
the number of times items are mapped, they may seem like an ideal solution.
Unfortunately, the mechanism does not solve the problem due to the mapping
defaults and how the presence table mechanism is specified.

Figure 5 shows unstructured data mapping of the data that the abstraction
layer in Figure 2 requires, after inlining of the template code and the lambda
function. The example may appear correct since both a and b are appropriately
mapped by the target enter data region and i is automatically privatized
by the target construct. Unfortunately, as discussed in Section 2, the default
mapping for variables not listed in a map clause is equivalent to listing them in
map(tofrom: <var>). Thus, the variables will be mapped to and from the device

Supporting Indirect Data Mapping in OpenMP 7

data environment as desired. However, all unlisted variables are treated as scalars
rather than array sections or references. Since array sections are mapped in two
parts, and the presence check works on each of them independently, the desired
behavior would result if the addresses of the pointers, in this case &inner_a

and &inner_b, matched those of the originally mapped pointers, &a and &b.
Since inlining typically uses temporaries, the host pointers would be mapped
instead of finding the already mapped array sections. If the host and device data
environments do not share memory, then memory errors or segmentation faults
are likely when the array accesses are performed. Thus, we propose two changes
for OpenMP variable mapping. The first adjusts the presence check used for
array sections. In the second, the default mapping depends on the type of the
variable. We detail both changes in the following subsections.

3.1 Data Only Array Sections

Since array sections are mapped in two parts, a presence check can fail for an
array section even if it is present when it is accessed through a copy of the pointer
other than the one used to map it. This issue may seem minor, except that C and
C++ pass function parameters by value. Thus, a target data construct used in
a function does not map the variable of the calling function. Thus, init_arrays
does not map the variables of add_arrays_inlined. Thus, unstructured data
constructs can map function parameters and stack-based local variables to the
device. The device copies can then become unreachable when the host variables
cease to exist. Further, passing another function a pointer to mapped data as
an argument creates a new copy of that pointer, and the presence check inside
the sub-function fails. The second phase of the presence check can rectify the
situation if the array section is explicitly mapped. However, that solution again
requires the variable name within the abstraction.

We propose one step mapping semantics for array sections. These semantics
do not implicitly map the pointer variable or add it to the presence table. Instead,
they only add the base address of the array section and its associated offset and
length to the presence table. An application must explicitly map the pointer in
order to modify it on the device. Thus, the presence check for a function called
with an array argument will find the array. These semantics have the potentially
beneficial side-effect of allowing pointers to array sections to be passed as pa-
rameters to kernel function implementations of target regions in programming
models such as CUDA and OpenCL. Alternatively, we could retain the double
presence check for pointer and reference types, but reverse the order such that
the value of the pointer is first checked for presence, and its address is checked
only if that fails. While this option is heavier-weight, it is closer to the current
semantics. Neither of these solutions addresses the implicit behavior, which we
require since the abstraction mechanism prevents naming the variable explicitly.

8 Authors Suppressed Due to Excessive Length

3.2 Type-Based Implicit Mappings

The default tofrom mapping has the closest semantics to the shared data shar-
ing attribute, which is the default for most variables for other OpenMP con-
structs. The tofrom map-type ensures that the device data environment has the
host value initially and that changes in the target region are propagated back.
However, the additional implicit behavior that treats pointers, as well as other
scalars, as value types causes problems for nested mappings of array sections. We
propose that the default be split between two different groups of variable types,
the value types and the reference types. The reference type class includes pointers
and C++ references. The value type class includes scalars and structures.

We then can specify that the default for any reference type is a minimal array
section including the address pointed to by the variable. The explicit equivalent
would be map(alloc:<var>[:0]). These semantics essentially assume that im-
plicit mappings of reference types follow a previous explicit mapping of an array
section that the variable references. Thus, these semantics are closest to those for
Fortran array types, given that C and C++ lack the dope vectors that support
implicit array mapping. These semantics ensure that pointers and references are
always checked for presence by the address that they hold rather than their own
address, unless they are explicitly mapped as value types. Combining this change
with the adjustment to the mapping of array sections allows the code in Figure 5
to work as expected without explicitly annotating the target region.

We can also consider whether the existing default is appropriate for value
types. As previously mentioned, tofrom is the closest to the shared data sharing
attribute. However, OpenMP includes a range of implicit and predetermined
data sharing attributes that reflect the expected use of variables. For example,
loop iteration variables of loop constructs are private. The tofrom mapping can
imply significant overhead for value types. For example, allocating and initiating
a small variable in the global memory space of some devices, such as GPUs,
entails significant overhead, which the current default requires since the variables
must have globally modifiable state between all threads on the target. Semantics
similar to firstprivate could entail lower overhead and provide similar benefits
to our proposed array section changes. Overall, we suggest the specification of
default mapping attributes based on the expected use of the variable similarly to
the predetermined and implicitly determined data sharing attributes. A default

clause for device constructs could also be useful.

4 Clause Grouping and Binding

Our proposed solutions in the previous section address issues with mapping data
for abstraction layers. However, they do not directly address the general issues of
replication of clauses across constructs and of passing information to OpenMP
through base language abstractions. In this section, we propose a general solution
that can declare re-usable groups of clauses and methods for binding those groups
to constructs. This extension to the OpenMP name space that currently supports

Supporting Indirect Data Mapping in OpenMP 9

#pragma omp declare group <binding clause> [<binding clause>...]\

[<general clause>...]

clause: name(<group name>)

bind_all(<construct name>)

bind_type(<variable type>)

general clause: any valid OpenMP clause

New general clauses: bind_groups([<action>:]<group name>[,<group name>...])

bind_types(<type or var>[,<type or var>])

action: merge (default) | inherit | exclude | override

Fig. 6. The options and syntax of the declare group construct

user-defined reductions would better support abstraction within OpenMP, thus
reducing its verbosity.

The basic construct provides an OpenMP-visible name to a group of related
clauses. This standalone construct, which we call declare group, can specify any
number of clauses and accepts any clause that can be specified on any construct
in OpenMP. The only clauses that apply to it, however, are the name, bind_all
and bind_type clauses. The bind_all clause of the declare group construct
takes a list of construct types, such as target, parallel or target teams distribute.
The declared clauses are then applied to every instance of the listed construct
types that are in the same lexical scope as the declare group construct, or
a sub-scope thereof.The name clause creates a name for that group of clauses
that can be referenced later to control the inclusion, or exclusion, of the clause
group with a bind_group clause. The <type> argument to bind_group specifies
how clauses are incorporated from the group: merge pulls in all clauses from
the group, and merges them with those specified on the construct, two conflict-
ing clauses will result in an error; inherit pulls in all clauses from the group,
but allows them to be overridden by clauses specified directly on the construct;
exclude causes a group to be excluded from the construct even if it would have
been bound to the construct by a bind_all on the group’s definition; finally
override includes all clauses, but allows the clauses in the group to override
clauses specified directly on the construct. For cases where override precedence
is required, it is defined be in simple left-to-right order of the specification in the
clause list of the construct. If any of the clauses do not apply that construct, then
the behavior is unspecified. For order-dependent clauses, the order is preserved
from the original declare group construct.

Figure 7 provides an example of applying clause groups to simplify a complex
set of constructs. The first declare group construct has only one clause, but
it is a voluminous list of variables that should be firstprivate on several
constructs, but not on all. While ideally this usage would never be necessary, it
is not uncommon to see many constructs with such long lists repeatedly specified
in a code. Our proposal provides a convenient shorthand. While one could argue
that C99 macros, if fully supported, implement the same functionality, the second
declare group offers more. Since it is inside the function, and is specified to bind
to all parallel regions, it applies to all of the regions in that function, except

10 Authors Suppressed Due to Excessive Length

1 #pragma omp declare group name(privs)\

2 firstprivate(a,b,c,d,e,f,g,a1,b1,c1...)

3 void foo(){

4 #pragma omp declare group bind_all(parallel) name(par) \

5 default(none) if(use_threads)

6 #pragma omp parallel bind_group(privs)

7 ...

8 #pragma omp parallel bind_group(privs)

9 ...

10 #pragma omp parallel

11 ...

12 #pragma omp parallel bind_group(privs)

13 ...

14 #pragma omp parallel bind_group(exclude: par)

15 ...

16 }

Fig. 7. Group binding

the last from which it is specifically excluded, factoring out the specification of
the conditional clause and default data sharing.

This relatively simple extension addresses many issues of clause duplication.
However, it does not help with abstraction layers directly. To address issues that
arise with abstraction layers, we provide an additional clause for a wide range of
OpenMP constructs, similar to the bind_group clause. This bind_types clause
allows the declare group construct to bind clause groups to variable types,
either by being placed in their type definition or as an extra clause that modifies
an existing type. Thus, we can use the type system of the base language to pass
information to OpenMP. Figure 8 shows an example of our preliminary proposal
for this functionality.

Conceptually, the declare group construct inside the ReducSum type an-
notates the type with the necessary information for OpenMP to generate the
proper reduction for the wrapped code. Thus, nearly any OpenMP information
could be passed as part of aggregate types, and have that information passed by
existing base language mechanisms. The challenge is to declare a cross-language
mechanism to handle this process. In the example we use C++ because it sup-
ports definition of an abstract function that not only takes arbitrary types, but
can identify the types independently of out-of-bound information, something C
variadic functions cannot do. We are continuing to explore this direction for a
broader solution in future work.

5 Conclusion

This paper has explored the challenges inherent in supporting lambda or block
based abstractions in OpenMP. We find that as currently specified, many of the

Supporting Indirect Data Mapping in OpenMP 11

1 template<type T>

2 struct ReducSum{

3 T inner;

4 #pragma omp declare group reduction(+:this)

5 // ...

6 };

7 template<typename FunT, typename It, class ... Types>

8 void target_forall(It begin, It end, FunT fun, Types ... args){

9 #pragma omp parallel for bind_types(args...)

10 for(It i = begin; i < end; ++i){

11 fun(i, args...);

12 } }

13 void add_arrays(double *a, double *b, size_t N){

14 double checksum;

15 target_forall(0, N,

16 [&](size_t i, double c_inner) {

17 c_inner += a[i] + b[i];

18 }, ReducSum<double>{checksum});

19 }

Fig. 8. Binding a clause group to a type

important features of the newest standard, notably device constructs, do not
support interfaces that such abstraction layers can use. The map interface in
particular poses a significant challenge. We propose adjustments to mapping se-
mantics and defaults that will both address this issue and simplify existing code.
Beyond the mapping support, we also explore the issue of reducing clause dupli-
cation in OpenMP code and passing of clauses through native mechanisms. The
ability to define clause groups along with binding specifications could eliminate
significant duplication required in OpenMP applications currently. Attaching the
same information to the type system of the base language would allow OpenMP
information to be passed through abstraction layers for a more general solution
to the abstraction support problem.

References

1. Kokkos. http://trilinos.org/packages/kokkos/.
2. OpenACC 2.0 Application Programming Interface Specification. http://www.

openacc.org/sites/default/files/OpenACC%202%200.pdf, June 2013.
3. R. Hornung and J. Keasler. The RAJA portability layer: Overview and status.

Technical report, Lawrence Livermore National Laboratory (LLNL), Livermore, CA,
2014.

4. ISO/IEC. Iso international standard iso/iec 14882:2011 - information technol-
ogy – programming langugages – c++. http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=50372, 2011.

5. ISO/IEC. Iso international standard iso/iec 14882:2014 - information technol-
ogy – programming langugages – c++. http://www.iso.org/iso/home/store/

catalogue_ics/catalogue_detail_ics.htm?csnumber=64029, 2011.

12 Authors Suppressed Due to Excessive Length

6. OpenMP ARB. OpenMP 4.0 Specification. http://www.openmp.org/

mp-documents/OpenMP4.0.0.pdf, June 2013.
7. K. Sakamoto and T. Furumoto. Grand central dispatch. In Pro Multithreading and

Memory Management for iOS and OS X, pages 139–145. Springer, 2012.

bledsoe2
Typewritten Text
Prepared by LLNL under Contract DE-AC52-07NA27344.

