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Abstract 
We present phonon properties of plutonium metal obtained from a combination of 

density-functional-theory (DFT) electronic structure and the recently developed 

compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT 

total energies of several hundreds of quasi-random atomic configurations for best 

possible accuracy of the phonon properties. The calculated phonon dispersions compare 

better with experiment than earlier results from dynamical mean-field theory. The 

density-functional model of the electronic structure consists of disordered magnetic 

moments that are treated fully relativistic with explicit orbital-orbital correlations. The 

magnetic disorder is accomplished in two ways: (i) a special quasi-random structure and 

(ii) the disordered-local-moment (DLM) method within the coherent potential 

approximation. Magnetism in plutonium has been debated intensely, but the magnetic 

approach for plutonium is validated by the close agreement between the predicted 

magnetic form factor and that of recent neutron-scatter experiments.  

  



Introduction 

The properties of plutonium metal are rather extraordinary with perhaps the most striking 

being its ambient pressure phase diagram [1]. The fact that on one hand the material exist 

in a very low symmetry and high density phase, the monoclinic α phase, and on the other, 

in a high symmetry and low density cubic δ phase, is remarkable and unlike any other 

condensed matter system. To make plutonium even more intriguing, there are four more 

phases (β, γ, δ’, and ε) before melt that we illustrate in Figure 1. 

 The plutonium phase diagram is of course a challenge for theory; consider its 

lighter friend cerium and its one isostructural phase transition (α to γ) that is still a focus 

of debate, experiment, and modeling [2].  Nonetheless, the Letter by Söderlind and 

Sadigh [3] clearly showed that the main features of the plutonium phase diagram could be 

understood in terms of itinerant (delocalized) 5f electrons that support formation of 

magnetic moments. In a series of papers [3-6] the authors explain that the magnetic 

moments must be disordered in the δ phase because any magnetic order is mechanically 

destabilizing. This conclusion naturally resolves why δ-plutonium does not exist at lower 

temperatures below the magnetic ordering temperature. Another piece of the puzzle was 

added when it was realized [7, 8] that the spin and orbital moments cancel each other, 

rendering δ-Pu effectively nonmagnetic, while the electronic structure agrees very well 

with photo emission spectra [9]. 

 There has been some criticism [10] leveled against the DFT because of its 

prediction of magnetic moments in plutonium. It was pointed out that neutron scattering 

data showed no evidence of ordered or disordered moments and the case was made that 

the magnetic moments are completely absent in plutonium [10].  Because of a new 

development in experimental measurements on plutonium we will return to this issue 

below. 

 In spite of the critique regarding plutonium magnetism, it is clear from the phase-

diagram energetics [3] and elastic-constant calculations [11] that the DFT total energies 

are accurate and reliable for plutonium metal. Hence, we are here taking advantage of this 

in an advanced scheme to compute plutonium lattice dynamics from first-principles 

theory. The compressive sensing lattice dynamics (CSLD) method determines force 



constants and lattice dynamics and it combines well with total-energy calculations [12]. 

We utilize the robust and mathematically rigorous framework of compressive sensing 

(CS), a new technique in the field of information science for recovering sparse solutions 

from incomplete data [13], to resolve which harmonic and/or anharmonic terms are 

important and find their values simultaneously. From CSLD we calculate phonon 

dispersions for δ-plutonium for two separate implementations of DFT that we describe in 

the modeling section below. The most important difference between them is their 

treatment of magnetic disorder that is modeled by either a special quasi-random structure 

(SQS) or the disordered-local-moment method within the coherent-potential 

approximation (CPA). The latter approach can easily be extended to also model solid 

solutions of δ-Pu-Ga or other alloys.        

 In the modeling section below we detail the electronic-structure calculations as 

well as aspects of our lattice-dynamics approach for the δ-Pu phonons. The results 

section show calculated phonon dispersions and make contact with existing experimental 

data and other theoretical modeling. Lastly, in the discussion section, we return to the 

issue of magnetism in plutonium and compare the previously calculated magnetic form 

factor with that obtained very recently from neutron scattering. 

 

Modeling 
Within the density-functional theory approach one important and necessary assumption is 

that of the electron exchange and correlation energy and potential. Because of the success 

of the generalized-gradient approximation (GGA) for actinide metals in general [14] it is 

applied here generally for the δ-plutonium electronic structure. We are employing two 

distinct implementations of DFT-GGA for the calculations of the total energies required 

for the CSLD. First, we employ the full-potential linear muffin-tin orbital method 

(FPLMTO) [15] for best possible accuracy of energetics related to atomic displacements. 

Second, the exact muffin-tin orbitals (EMTO) methodology [16] is applied similarly, but 

with a somewhat less accuracy with respect to atomic displacements, EMTO has the 

advantage, however, to exploit the CPA for modeling of magnetic as well as atomic 

disorder. 



The FPLMTO method has been tested thoroughly for plutonium metal [3, 11] and 

most of the details of the present calculations replicate that of Söderlind and Sadigh [3]. 

The magnetic disorder for δ-Pu in [3] was accomplished by an eight atom special quasi-

random structure while here we are applying a 32-atom cell for this purpose, similar to 

what was used for paramagnetic face-centered-cubic iron in the report by Körmann et al. 

[17]. Spin-orbit interaction and orbital polarization are here exactly as earlier [3] except 

that the orbital polarization correction is only acting on the 5f states (not also the 6d 

states). This difference is less important because the orbital moments from the 6d states 

are small (~ 0.1 µB). Because of the application of random displacements of the atoms, 

necessary for the CSLD, the crystal has no symmetry and a total of 32 k points are 

applied for the electronic structure in the full Brillouin zone. Finally, the FPLMTO 

calculations are carried out at the theoretical equilibrium lattice constant (4.635 Å) that is 

very close to established handbook data (4.637 Å) [18]. 

 The details of the EMTO computations are identical to those presented in an 

earlier report [19]. Here they are performed for a 64-atom supercell for the EMTO 

equilibrium lattice constant (4.669 Å). The Brillouin zone is sampled on a 3×3×3 

Monkhorst-Pack grid. The Green’s function has been calculated for 40 complex energy 

points distributed exponentially on a semicircle with a 1.9 Ry diameter enclosing the 

occupied states. Notably, spin-orbit coupling is not included while the spin disorder is 

that of a paramagnetic disordered-local-moment model [20]. This state uses a random 

mixture of two distinct magnetic states (spin up and down) on the same atomic species.  

 To train the CSLD model and compute harmonic force constants for δ-Pu, total-

energy calculations are performed for supercells with (1) random atomic displacements 

between 0.05–0.26 Å and (2) a few select frozen-phonon configurations. The total 

number of configurations is rather large and about 250 and 150 for FPLMTO and EMTO, 

respectively. 

For the FPLMTO-SQS configurations, we apply relatively large displacements to 

avoid the mechanical instability that may occur for any particular SQS arrangement. The 

second (harmonic), third, and fourth order force constants of the lattice are taken into 

account in the CSLD fitting, resulting in 109 independent parameters after considering 

constraints on the forces due to crystal symmetry and translational invariance [12]. By 



considering the anharmonic (third and fourth) order force constants the fit is accurate 

even though the displacements are relatively large. We divide the training data into a 

fitting and a prediction (validation) subset, obtaining CSLD force constants with the 

fitting data and then computing the prediction error on the prediction subset at a given µ 

parameter [12, 21]. An average is then calculated by repeating the above procedure 10 

times. Finally, the optimal force constants are obtained by minimizing the prediction 

error (~ 6%) over µ. 

 

Results 

Assuming that the Taylor expansion [12] that is fitted to the total energies in the CSLD 

scheme is converged, we calculate the lattice dynamics corresponding to our two DFT 

approaches, FPLMTO and EMTO. Because the former method provides a more accurate 

electronic structure, with the caveat that magnetic disorder may be better modeled within 

EMTO, we focus first on the results from FPLMTO. 

 In Figure 2 we show the FPLMTO-CSLD phonon dispersions for δ-Pu together 

with experimental data from Wong et al. [22] and dynamical mean-field theory (DMFT) 

[23]. Our result (solid line) generally agrees quite well with inelastic x-ray scattering 

[22], particularly all longitudinal branches. The Γ-X [001] longitudinal (L) and transverse 

(T) branches slope at the Γ point correspond to the c11 and c44 elastic moduli, while 

similarly the T1 slope at Γ-X [011] relates to c’ = ½(c11-c12).  A close inspection of Figure 

2 reveals that our calculations slightly overestimate c11 and c’, while c44 and c12 are in 

good accord with experiment. That is also the conclusions from our previous 

investigation of the elastic moduli for δ-plutonium [11]. Furthermore, in Figure 2, we are 

able to compare our DFT result (solid line) with that of DMFT (dashed line) [23]. The 

authors of [23] state that DFT “have limited applicability” but in reality the DFT result 

agrees better with the experimental data [22] than DMFT does. 

 Next, in Figure 3, we show the lattice dynamics obtained from EMTO total 

energies combined with CSLD. The EMTO method predicts somewhat larger zone-

boundary phonons than FPLMTO [18] and for a closer comparison we scale the EMTO 

phonon frequencies so that their L-point L phonon coincides. The high-energy phonons 



agree very well between the two methods but for some of the softer transverse phonons 

there are differences. It is also for these softer phonons where both FPLMTO and DMFT 

diverge from the experimental phonons by Wong et al.  One reason for this discrepancy 

may be that the sample used for the inelastic x-ray scattering was a δ-Pu-Ga alloy, while 

all theory so far models unalloyed δ-Pu. A sophisticated investigation of the δ-Pu-Ga 

alloy system, applying the EMTO-CPA and CSLD methods, is forthcoming. 

  

Discussion 
We have shown that combining a new efficient scheme for lattice dynamics with density-

functional-theory gives quite good phonon properties for δ-plutonium that agree better 

with inelastic x-ray scattering then that of the dynamical mean-field theory.  The DFT-

CSLD methodology has distinct advantages over the DMFT in that it is entirely 

parameter free and it easily couples to advanced modeling of alloys by the CPA. 

 The critique against DFT for plutonium has generally been that no magnetic 

moments exist in plutonium contradicting the theory. The belief that magnetic moments 

are absent in plutonium is reasonable based on the body of experimental evidence against 

its existence [10] while it is equally reasonable to argue that the complex magnetism 

predicted by DFT has been too illusive or complex to discover. Certainly, the magnetic 

disorder and cancellation of spin and orbital moments make the magnetism obscure for 

most experimental probes. Lander [24] agrees that anti-parallel spin and orbital moments 

is a more complex situation but explains [10] that even in the complete cancellation 

scenario, where the total magnetic moment is equal to zero, “the difference in their [spin 

and orbital] spatial extent would still allow a measureable signal to be seen in neutron 

scattering”.  Apparently, no such signal was detected in neutron-scattering work up to 

that point. 

It is actually rather straightforward to calculate the magnetic form factor, at least 

within the dipole approximation. From the band-structure computation one obtains spin- 

and orbital-moment densities and the magnetic form factor (magnetic scattering 

amplitude) from a Fourier transform of the magnetization density 

F(Q) = ∫ M(r) eiQ
⋅
r, 



 

where Q is the scattering vector. In the dipole approximation [25] it can be expressed as 

 

F(Q) = [ <j0>sµs + <j0 + j2>lµl ]. 

 

Here Q = |Q| and <jn> are averages of Bessel functions over the plutonium-atom spin 

density and µs and µl are magnetic spin and orbital moments, respectively. In the 

cancellation model [8] both these moments are anti-parallel with the same magnitude so 

that µs + µl = 0. In this special case, F reduces to a scaled j2 function and one therefore 

expects the magnetic form factor to behave like j2 with a shoulder at finite Q vector and 

vanish as Q approaches zero. This behavior has also been observed for α-Sm where there 

is a very close magnetic cancellation [26].  

 In Figure 4 we show the DFT prediction [8] of the magnetic form factor (full line) 

that shows the behavior of the j2 Bessel function. In this figure we also plot very recent 

magnetic form factor data for δ-Pu obtained from neutron-spectroscopy experiments with 

two incident neutron energies (250 and 500 meV) [27]. Most error bars on the 

experimental data in the original plot (Fig. 2 in [27]) are small and here removed for 

clarity. There is obviously a very good agreement between the measurement and the 

prediction from DFT made some years ago [8]. One important feature of both the DFT 

and the experimental data is that both have a shoulder close to Q ~ 0.25-0.3 and 

approaches zero for smaller Q values. This behavior indicates a very efficient destruction 

of the net total magnetic moment in δ-Pu because the Q = 0 value corresponds to the 

magnetic moment integrated over the full crystal. The DMFT model [27] agrees 

relatively well with the neutron-spectroscopy data but seems to lack the correct functional 

form for small Q.  

Janoschek et al. make the point that spin moments exist in δ-Pu, contrary to the 

conclusion by Lashey et al. [10], and they are fluctuating by means of valence 

fluctuations. This conclusion is consistent with DFT because magnetic disorder simply 

represents a frozen (static) state of the fluctuations. One important difference in the 

DMFT interpretation of the measurements [27] and the present theory lies in the 

description of the 5f electrons. The DMFT [27] characterization is a superposition of 



localized 5f wave functions with screened magnetic moments while DFT describes the 5f 

electrons as itinerant with spin and orbital moments effectively cancelling each other. 

The delocalization of the 5f electrons not only explains the atomic volume for the δ phase 

but also the volumes for all the other phases as well [3]. The DMFT interpretation, on the 

other hand, cannot explain the lattice constant for δ-Pu (or any other phases) because here 

the localized 5f electrons do not provide sufficient bonding. This has been shown by spin 

polarized and strongly correlated (GGA + Hubbard U) calculations that severely 

overestimate the atomic volume for δ-Pu [28, 29]. 
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Figure Captions 

Figure 1. The experimental phase diagram for plutonium metal. Redrawn after [1]. 

Figure 2. FPLMTO-CSLD (full line), DMFT (dashed line) [23], and experimental [22] 

phonons for δ-plutonium. 

Figure 3. FPLMTO-CSLD (full line), EMTO-CSLD (red line), and experimental [22] 

phonons for δ-plutonium. 

Figure 4. DFT (full line) [8], neutron-spectroscopy (solid symbols) [27], and DMFT 

(dashed line) [27] magnetic form factor for δ-plutonium. 
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