
LLNL-CONF-676530

Data Abstraction and
Organization in Multiphysics
Codes

P. B. Robinson, J. Keasler

August 25, 2015

HPCOR
Bethesda, MD, United States
September 14, 2015 through September 17, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Data	Abstraction	and	Organization	in	Multiphysics	Codes
Peter	Robinson	and	Jeff	Keasler,	 Lawrence	Livermore	National	Laboratory
HPCOR,	Bethesda,	MD,	September	15th-17th

Data and algorithm organization in physics codes

A typical problem modeled by ASC codes is decomposed and distributed across compute
nodes on a parallel HPC platform. Each compute node is considered a distributed
memory “locale” to which some number of MPI processes is assigned. A data structure,
often called a “domain”, owns a description of part of the mesh and the field data for that
mesh part. Each domain is owned by exactly one MPI process and each process may own
multiple domains. The basic elements of a domain structure are illustrated in Figure	1.
Data on a domain is disjoint from data on other domains, and often maps to a “coherence
domain” for caching purposes. A domain is also a “locality context”, typically
representing the finest level of data partitioning in a code. Each mesh field in a domain is
associated with a topological centering on the mesh, such as finite-element or vertex
centered, and the data for each field is held in a distinct array.

Field arrays are 1-dimensional computer science structures regardless of the underlying
problem dimension. Fields are typically registered in a centralized data store, making it
easy to map Fields to the peculiarities of the underlying memory subsystem from a single
source code location. Also, there usually exists other metadata on a domain, for example
to map materials to elements, as well as non-mesh data, such as tables of physical data
(e.g., material properties, equation of state, etc.) shared by domains on a compute node.

The mesh topology defines the organization of elements and vertices on the mesh.
Generally, there are two fundamental mesh configurations, structured and unstructured. A
structured mesh uses an N-dimensional Cartesian index space, which defines uniform
element-to-vertex connectivity and a single element geometry. Structured mesh
algorithms often use nested loops to traverse logically rectangular regions on a mesh.
Such operations rely on zero-overhead implicit relationships between mesh entities, and
allow a high level of compile-time optimization due to stride-1 data access patterns. An
unstructured mesh is composed of arbitrarily connected vertex points that define the
elements they surround; thus, an unstructured mesh admits arbitrary element geometries.
Due to the irregular connectivity, relationships between unstructured mesh entities are
defined using lists of array indices. For example, eight vertices define each element on a
three-dimensional hexahedral mesh, so eight nodal-array indices are stored to access
nodal field data for each element. Use of indirection arrays to manage relationships
among mesh entities requires additional memory traffic, involves a much higher ratio of
integer to floating point operations, and precludes many compiler optimizations.
Regardless of the underlying mesh topology, most ASC physics codes employ algorithms
involving regular, stride-1 memory accesses as well as those requiring indirection arrays.
So, efficient implementations of both types of operations are important to every code.

Mesh data is often organized into a hierarchy of contexts, typically, where a context
represents a relationship between the mesh and data on the mesh. There will be multiple

topological contexts, one for vertex-centered quantities, one for element-centered
quantities, face-centered quantities, etc. An element context will have child contexts that
each enumerate the elements associated with a given material region. Often, material
region contexts are further partitioned into clean elements (single material) and “mixed”
elements (containing multiple materials). When contexts are nested, local indices are
typically used within a child context to index into arrays associated with a parent context.

The context hierarchy in an ASC code is designed to map the conceptual organization of
physics operations to the underlying data structures and memory subsystem. Most
physics operations are encoded in loops; a large code will have tens of thousands of
loops, typically. However, within a given code, there are relative few loop patterns.
Common loop patterns involve:

 Simple traversal within a context (e.g., loop over all elements, vertices, etc.).
 “Parent-child” interactions within a topological context (e.g., loop over all

elements containing material “A” and update values for some field defined over
all elements).

 Relations between fields in different topological contexts (e.g., difference stencils
involving vertex- and element-centered quantities).

Other operations may involve more elaborate data dependencies, but are less common.

Leveraging Data Abstraction to Enable Performance Portability

A host of architecture-specific issues related to data allocation and data motion are
critical to performant code. These include, but are not limited to, data locality, data
alignment, number of memory spaces (typically more than one in heterogeneous
environments, and ways exploit parallelism in the memory subsystem (OpenMP tasks,
CUDA streams).
ASC codes that leverage centralized data stores used across multiple physics packages
can then leverage strategies to address these issues that are implemented in the data store.
For instance, allocation routines in the data store can ensure that all field data is aligned
in a way that's appropriate for a target architecture. A data store that supports domain
overloading (multiple domains per process) will enable an application to assign
appropriate independent sets of data to coarse levels of parallelism such as OpenMP tasks
or CUDA Streams. The data store can track pointers to field data in CPU memory spaces
and GPU memory spaces, as well as support an API that allows intelligent copying
between the two spaces, reducing memory motion. The data store could also support an
API that provides index sets that enable lock free computations for loops that involve
relations between fields in different topological contexts.
Once an application is coded to consistently use such an abstraction for data storage, all
of the above strategies are implementable, testable, and tunable without significant code
changes in the host application, especially when coupled with a loop abstraction layer
such as RAJA. (see white paper submission by Jeff Keasler).

Prepared by LLNL under Contract DE-AC52-07NA27344.

Figure 1. Basic organization of a typical domain structure in a mesh-based physics code.

