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Data and algorithm organization in physics codes

A typical problem modeled by ASC codes is decomposed and distributed across compute 
nodes on a parallel HPC platform. Each compute node is considered a distributed 
memory “locale” to which some number of MPI processes is assigned. A data structure, 
often called a “domain”, owns a description of part of the mesh and the field data for that 
mesh part. Each domain is owned by exactly one MPI process and each process may own 
multiple domains. The basic elements of a domain structure are illustrated in Figure	1. 
Data on a domain is disjoint from data on other domains, and often maps to a “coherence 
domain” for caching purposes.  A domain is also a “locality context”, typically 
representing the finest level of data partitioning in a code. Each mesh field in a domain is 
associated with a topological centering on the mesh, such as finite-element or vertex 
centered, and the data for each field is held in a distinct array. 

Field arrays are 1-dimensional computer science structures regardless of the underlying 
problem dimension. Fields are typically registered in a centralized data store, making it 
easy to map Fields to the peculiarities of the underlying memory subsystem from a single 
source code location. Also, there usually exists other metadata on a domain, for example 
to map materials to elements, as well as non-mesh data, such as tables of physical data 
(e.g., material properties, equation of state, etc.) shared by domains on a compute node.

The mesh topology defines the organization of elements and vertices on the mesh. 
Generally, there are two fundamental mesh configurations, structured and unstructured. A 
structured mesh uses an N-dimensional Cartesian index space, which defines uniform 
element-to-vertex connectivity and a single element geometry. Structured mesh 
algorithms often use nested loops to traverse logically rectangular regions on a mesh. 
Such operations rely on zero-overhead implicit relationships between mesh entities, and 
allow a high level of compile-time optimization due to stride-1 data access patterns. An 
unstructured mesh is composed of arbitrarily connected vertex points that define the 
elements they surround; thus, an unstructured mesh admits arbitrary element geometries. 
Due to the irregular connectivity, relationships between unstructured mesh entities are 
defined using lists of array indices. For example, eight vertices define each element on a 
three-dimensional hexahedral mesh, so eight nodal-array indices are stored to access 
nodal field data for each element. Use of indirection arrays to manage relationships 
among mesh entities requires additional memory traffic, involves a much higher ratio of 
integer to floating point operations, and precludes many compiler optimizations. 
Regardless of the underlying mesh topology, most ASC physics codes employ algorithms 
involving regular, stride-1 memory accesses as well as those requiring indirection arrays. 
So, efficient implementations of both types of operations are important to every code. 

Mesh data is often organized into a hierarchy of contexts, typically, where a context 
represents a relationship between the mesh and data on the mesh. There will be multiple



topological contexts, one for vertex-centered quantities, one for element-centered 
quantities, face-centered quantities, etc. An element context will have child contexts that 
each enumerate the elements associated with a given material region. Often, material 
region contexts are further partitioned into clean elements (single material) and “mixed” 
elements (containing multiple materials). When contexts are nested, local indices are 
typically used within a child context to index into arrays associated with a parent context.

The context hierarchy in an ASC code is designed to map the conceptual organization of 
physics operations to the underlying data structures and memory subsystem. Most 
physics operations are encoded in loops; a large code will have tens of thousands of 
loops, typically. However, within a given code, there are relative few loop patterns. 
Common loop patterns involve:

 Simple traversal within a context (e.g., loop over all elements, vertices, etc.).
 “Parent-child” interactions within a topological context (e.g., loop over all

elements containing material “A” and update values for some field defined over
all elements).

 Relations between fields in different topological contexts (e.g., difference stencils
involving vertex- and element-centered quantities).

Other operations may involve more elaborate data dependencies, but are less common.

Leveraging Data Abstraction to Enable Performance Portability

A host of architecture-specific issues related to data allocation and data motion are 
critical to performant code. These include, but are not limited to, data locality, data 
alignment, number of memory spaces (typically more than one in heterogeneous 
environments, and ways exploit parallelism in the memory subsystem (OpenMP tasks, 
CUDA streams). 
ASC codes that leverage centralized data stores used across multiple physics packages 
can then leverage strategies to address these issues that are implemented in the data store. 
For instance, allocation routines in the data store can ensure that all field data is aligned 
in a way that's appropriate for a target architecture. A data store that supports domain 
overloading (multiple domains per process) will enable an application to assign 
appropriate independent sets of data to coarse levels of parallelism such as OpenMP tasks 
or CUDA Streams.  The data store can track pointers to field data in CPU memory spaces 
and GPU memory spaces, as well as support an API that allows intelligent copying 
between the two spaces, reducing memory motion.  The data store  could also support an 
API that provides index sets that enable lock free computations for loops that involve 
relations between fields in different topological contexts. 
Once an application is coded to consistently use such an abstraction for data storage, all 
of the above strategies are implementable, testable, and tunable without significant code 
changes in the host application, especially when coupled with a loop abstraction layer 
such as RAJA. (see white paper submission by Jeff Keasler). 
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Figure 1. Basic organization of a typical domain structure in a mesh-based physics code.


