
LLNL-CONF-676576

Performance and Portability in
the Ares Multi-Physics Code

B. S. Ryujin

August 24, 2015

DOE High Performance Computing Operational Review
(HPCOR) on Scientific Software Architecture for Portability and
Performance
Gaithersburg, MD, United States
September 15, 2015 through September 17, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Performance and Portability in the Ares Multi-Physics Code
Brian Ryujin, ryujin1@llnl.gov, Lawrence Livermore National Laboratory

Code Overview
 Ares is a multi-block structured ALE-AMR multi-physics code. It supports an array of physics, such as
hydrodynamics, radiation, lasers, high explosive models, magneto hydrodynamics (MHD), thermonuclear
burn, material strength and constitutive models, and multi-phase particle physics. It is used to model a
variety of experiments, such as high explosive characterizations, munitions modeling, ICF and other laser
driven experiments, explosive pulse power, Z-pinch, and hydrodynamic instability experiments.

Code Development
 Development on the Ares code began in 1996 under the ASCI program at Lawrence Livermore National
Laboratory and continues today under the ASC program. It currently has a development team consisting of
13 co-located LLNL employees. The team has 7 code physicists and 6 computer scientists. The code
physicists usually have backgrounds in math, physics or engineering, and are generally responsible for
models, methodologies and numerical properties of the physics packages. The computer scientists are
primarily responsible for code infrastructure, performance and scaling. These are only starting points in
responsibilities, since any developer can work on any part of the code. In addition, the code includes roughly
30 libraries, many of which are developed at LLNL. Some of these library developers also contribute code to
Ares that interfaces with their libraries.
 Ares without libraries consists of roughly 700,000 lines of code. It is primarily using MPI for parallelism,
but also supports coarse grained threading over an over-decomposed mesh. The physics kernels are primarily
written in C, and the code infrastructure is a mix of C and C++. Ares production runs have a wide range of
cluster usage. 1D problems are often run in serial, 2D problems are generally run with 32-512 MPI tasks and
3D runs are generally run with 1024-4096 tasks. Capability simulations can be run with 100,000+ tasks.
Production runs are most commonly done on Intel based Linux clusters and IBM's BG/Q architecture.

Data Structures
 Ares maintains very simple data structures for its field variables. Each variable generally has a simple
double pointer assigned to it and due to the block structured nature of the code, most of the traversal is
implied by its position in the array. When more complicated data structures are needed, simple structs or
arrays of structs are most commonly used. Higher level data structures for infrastructure that does not scale
with problem size are often C++ class objects.

Code Portability
 Ares must maintain the ability to build and run on all of the NNSA supercomputers. It is regularly built with
a variety of compilers to ensure that non-portable code is not introduced. Any non-portable code, such as
system calls, are hidden behind functions, macros or header files.

Abstractions for Coarse Grained Parallelism
 In addition to MPI, Ares has also supported parallelism using threading since 1998. Since threads have been
very expensive to start, these threads were always over large pieces of the mesh. The code over-decomposes
the problem, so that each process would have multiple independent pieces of the mesh, called domains, and
each thread would be assigned one of these. To minimize architecture specific code, the threading directives
were put into a single header file, which had all of the logic to spawn appropriate threads over the domains.
This file contained all of the architecture dependent code in it as was needed over the years. Now that
OpenMP support in compilers is more available, the file has simplified greatly, but still allows for altering all
of the domain level loops simultaneously. This approach allowed the developers to reuse all of the domain
specific code and was a very simple and understandable approach from the common developer's point of
view.

Abstractions for Fine Grained Parallelism
 With the increased emphasis on GPU and MIC based supercomputers, it has become a necessity to exploit
fine grained parallelism in the code. The approach the Ares team is currently working towards is the use of
the RAJA programming model. RAJA abstracts the loop iteration from the loop body, which allows for more
flexibility for where the loop body is actually run. Combined with C++11 lambdas, this can lead to a
minimal perturbation to the existing style of programming in the physics kernels.
 There was a port in Ares of a single physics package (Lagrangian hydro) to an early version of RAJA as a
proof of concept in 2013. At the time, there were only Intel and BG/Q based architectures available for
testing. It was found that rewriting the loops in the RAJA style did not adversely effect overall performance,
and in some cases, improved it. The majority of the effort in the conversion to RAJA involved re-scoping
local variables for thread safety. This problem was largely due to the older style of C that the majority of the
physics kernels had used. There is ongoing development in the ROSE compiler to create a tool to automate
this step in the conversion process. Using RAJA, all of the loop body code could be reused. However, in a
few instances, the iteration pattern was changed behind the scenes to enable the usage of loop level
parallelism.

Abstractions for Data Layout
 RAJA can facilitate data layout transformations such as reordering the mesh's zones. The other common
data structure in Ares is an array of structs. For one of these data structures, there have been experiments on
abstracting the data access away from the backing memory. This data structure is essentially a runtime
configurable struct, which uses data identifier handles to the members of that struct to access data. With
operator overloading, the code looks reasonably similar to the original struct based code. This abstraction
enables Ares to toggle the data layout between the 'array of structs' and the 'struct of arrays' at compile time
with no change to the code using the data structure.

Code Performance Across Architectures
 In the past, the focus has generally been on scaling across architectures. The algorithms have been generally
scalable across architectures. For single node performance, occasionally there have been rewrites of some
code to be more amenable to the most restrictive architecture, but it has not been a major focus in the past.
There is currently a shift in this thinking due to having more GPU and MIC based architectures in the near
future, but not enough work has been done yet to have reportable results. The main focus will continue to be
to have reasonable performance with maintainable code, and to avoid having multiple architecture dependent
versions of the same routine when possible. In addition, the code's overall performance is spread out across
numerous packages, so optimizing a single function rarely has a large impact on the overall runtime of the
code.

Other Abstraction Considerations
 We rejected any programming model that required the model to have ownership of the data. This was
deemed to be much too invasive, and would require too much manpower to complete. Such an approach
would also prohibit an incremental approach of transforming the code, which would be problematic since it
is still an actively used and developed code. The leading programming model of this type was Sandia's
Kokkos.

Future Concerns
 The greatest risks involved in our approach revolve around the compilers we need to support them. As an
example, we are planning to make heavy use of lambdas, and are relying on the compilers to optimize
through them and to use them properly. These language techniques are required for writing maintainable and
portable code that are reasonably small perturbations to the current look and feel of the code. Fortunately,
there are currently staff at LLNL working regularly with compiler vendors to ensure that our needs are met.

Prepared by LLNL under Contract DE-AC52-07NA27344.

