
LLNL-CONF-676935

DOE HPCOR - ARDRA Project
Overview

A. J. Kunen

September 4, 2015

DOE HPCOR - ARDRA Project Overview
Gaithersburg, MD, United States
September 15, 2015 through September 17, 2015



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



DOE HPCOR – ARDRA Project Overview 
Adam J. Kunen kunen1@llnl.gov 

September 15, 2015 

 

Physics Domain 
Deterministic (Sn) Particle Transport (Neutrons and Gamma Rays) on structured grids.  We discretize and 

solve the Linear Boltzmann Transport Equation using the Discrete Ordinates method. Used for solving 

criticality, shielding and time-dependent problems.   

Project Structure 
4 Full-time developers, and 1 postdoc (all located at LLNL): 

 Adam Kunen – Lead Computer Scientist 

 Teresa Bailey – Nuclear Engineer 

 Peter Brown – Mathematician 

 Bujar Tagani – Computer Scientist 

 Peter Maginot – Postdoc/Nuclear Engineer 

~200k LOC, Mostly C++, some Fortran 

~25 external library dependencies (ex. BLAS, LAPACK, Boost, HYPRE, Silo, Sundials, …) 

Mini App / Proxy App  Activities 
Since the ARDRA source code is Export Controlled, we developed an unrestricted proxy, KRIPKE.  This 

has been valuable for external collaboration, both with student interns and with Sierra Center-of-

Excellence. 

Primary Methods 
Numerical methods: 

 Fully “upwind” parallel sweep algorithm – Sn transport specific 

 Diffusion-Synthetic-Acceleration (DSA) uses HYPRE to solve large diffusion problems 

 Power Iteration and Krylov solvers 

 CFEM’s and DFEM’s for spatial discretizations 

 Crank-Nicholson for time integration 

Resources Typically Used 
The range of interesting problems range from simple 1D problems running on 1 processor, all the way 

up to large complex 3D problems running on 1.5M cores of Sequioa (LLNL BG/Q machine). 



Typically we run a lot of 16-core to 256-core problems on commodity x86-64 Linux clusters. 

Exascale Preparation and Choices Made 
At LLNL, we have had ongoing research into programming models to help provide performance 

portability.  Most of this work has been done with the RAJA model, which allows for incremental 

refactoring of existing code bases with minimal code impact.   

A major effort for ARDRA is to refactor its data structures to make it more amenable to RAJA-like 

abstractions.  This includes making algorithms thread-safe, and transitioning from complex iterator-

based data structures to array-based data. 

We expect to be transitioning ARDRA from hand-coded C++ to the use of RAJA over the next year. 

A major concern has been implementing efficient transport sweep algorithms on heavily threaded chips 

like the Intel Phi and the NVidia GPU’s.  Over that last year, we have had the Sierra COE aid in making 

transport sweeps efficient on a GPU in CUDA.  This collaboration has been quite productive, and we now 

have a clear path forward on these platforms.   Further work is needed to evaluate the ability of 

programming models to abstract the algorithms that were devised under this COE work. 

In the past, we had a lot of success porting to the Sequoia machine.  This presented us with a huge out-

scaling problem.  We were able to run a deterministic calculation on 37 trillion unknowns and 1.5M MPI 

ranks.  This required us to resolve a number of solver and setup scalability issues.   We are hoping that 

the work we are doing for Sierrra, combined with the work we did with Sequoia, will enable us to move 

forward to an Exascale machine (assuming it looks like Sierra+Sequoia). 

 

Major Issues with Software Stack 
We continually have issues with software support. 

Compiler optimizations have been a major impediment for programming model performance.  Nvidia 

nvcc compiler support for C++ Lambda expressions is still very immature, and is needed for many of the 

abstractions we have examined (ex. RAJA and Kokkos). 

Good debugging and profiling tools.  We have current success with small scale (<256 MPI ranks) 

debugging with TotalView.  We can do large scale debugging with LLNL’s STAT tool.   

NVidia has an excellent profiling tool “nvvp”.  We would love a tool like nvvp for CPU’s.  Also, debugging 

code written with programming model abstractions can be very difficult. 

Tools for understanding memory and threads for CPUs are missing.  For example, understanding how 

threads are being pinned to cores and how memory is pinned (or not) is important.  Having better tools 

for understanding the memory access patterns for OpenMP codes is virtually non-existant. It can be very 

difficult to determine what a threaded code is actually doing at the hardware level.  Most performance 

analysis that can be done is at a gross-level, and many assumptions or guesses must be made.  

bledsoe2
Typewritten Text
Prepared by LLNL under Contract DE-AC52-07NA27344

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text




