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ABSTRACT
Recent successes of deep learning have been largely driven
by the ability to train large models on vast amounts of data.
We believe that High Performance Computing (HPC) will
play an increasingly important role in helping deep learning
achieve the next level of innovation fueled by neural network
models that are orders of magnitude larger and trained on
commensurately more training data. We are targeting the
unique capabilities of both current and upcoming HPC sys-
tems to train massive neural networks and are developing the
Livermore Big Artificial Neural Network (LBANN) toolkit
to exploit both model and data parallelism optimized for
large scale HPC resources. This paper presents our prelimi-
nary results in scaling the size of model that can be trained
with the LBANN toolkit.

1. INTRODUCTION
Deep learning systems have extended state-of-the-art per-

formance on a broad range of applications including un-
supervised feature learning [13], object recognition in im-
ages [11, 18], speech recognition [8, 2, 16, 7], and video action
classification [10]. These recent successes in deep learning
have been enabled by the ability to train deep and/or wide
neural networks with many parameters on vast amounts of
training data. From a statistical machine learning perspec-
tive, large and deep models make it possible to achieve very
low bias, while the large amounts of training data serve to
help minimize the variance. Other empirical studies have
further corroborated the notion that bigger models trained
on larger datasets can drastically improve classification ac-
curacy [5, 12].

For our work, we are particularly motivated by the poten-
tial of deep unsupervised feature learning for automatically
discovering useful features from vast amounts of unlabeled
data. As new scientific instruments and sensors are devel-
oped and begin collecting data at rates that exceed the abil-
ity of humans to hand-annotate, unsupervised feature learn-
ing becomes more important. Furthermore, since such data
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may be in forms other than images, having flexible “uni-
versal function estimators” will become equally important.
Hornik [9] proved“that standard [fully-connected] multilayer
feed-forward networks with as few as one hidden layer using
arbitrary squashing functions are capable of approximating
any Borel measurable function from one finite dimensional
space to another to any desired degree of accuracy, provided
sufficiently many hidden units are available.”

For these reasons, we are developing the Livermore Big
Artificial Neural Network (LBANN) toolkit for accelerat-
ing the training of large fully-connected neural networks.
The LBANN toolkit takes advantage of the unique capabil-
ities of modern HPC systems to enable efficiently scalable
neural network training. LBANN uses the Elemental [15]
high-performance, parallel, distributed matrix library for ef-
ficiently distributing the matrix-matrix and matrix-vector
computations necessary for training neural networks. This
paper describes our implementation of LBANN and demon-
strates LBANN’s strong and weak scaling efficiency on an
autoencoding task.

2. RELATED WORK
The benefits of large models for both supervised and un-

supervised learning tasks have prompted other notable ef-
forts in large-scale neural network training. The “DistBe-
lief” framework and accompanying “DownPour” solver, pre-
sented in [13, 6], enables model- and data-parallelism as well
as asynchronous stochastic gradient descent (SGD). Model
parallelism is achieved both within a machine via multi-
threading and across machines via message passing. Data
parallelism is supported with multiple replicas of a model
used to optimize a single objective. The authors demon-
strate training of networks with over a billion parameters
on a cluster with 1,000 machines (16,000 cores) in a few
days.

More recent work by Coates et al. [4] also bears similarity
to our efforts and has paved the path for large-scale unsu-
pervised neural network training with HPC resources. Here
the authors present a large-scale model-parallel training sys-
tem for deep neural networks as developed for commercial
off-the-shelf (COTS) HPC computing infrastructure. They
use a cluster of GPU servers with Infiniband interconnects
and MPI to train 1 billion parameter networks on just 3
machines (12 GPUs) in a couple of days. They also demon-
strate scaling to networks with over 11 billion parameters
trained using 16 machines (64 GPUs).

This work was extended by us in [14] to demonstrate even
larger scaling. Using a similar framework, we have trained



the largest unsupervised neural network on 99.7 million im-
ages from the YFCC100M dataset [19], effectively repeating
the work in [4] with 10× more training data and 1.5× more
network parameters.

3. AUTOENCODER MODELS
For most machine learning tasks, the choice of input fea-

ture representation is as important (and sometimes more
important) as the learning algorithm used. For this reason,
much effort has gone into discovering or designing good fea-
tures in a number of application domains, including audio,
video, and images. Recent work in unsupervised feature
learning [13] has demonstrated the benefit of autoencoder
neural networks for learning good feature representations,
in particular for the case of images. An autoencoder seeks
to learn an efficient, distributed representation for a set of
data by first defining a reconstruction r(x) = g(h(x)) of
some input x from the composition of an encoder, h(·), and
a decoder, g(·). In its neural network construction, r(x)
is the output of a one-hidden layer network with h(x) being
the non-linear output of the hidden layer. Training proceeds
via standard back-propagation to minimize the average of
the reconstruction errors, L(r(x), x)) = ||r(x) − x||2. The
learned features of one autoencoder can be used as the in-
put for another autoencoder, as part of a procedure referred
to as greedy layer-wise training [3]. This results in a stacked
autoencoder that can learn highly nonlinear transformations
for hierarchical—and often interpretable—feature represen-
tations (e.g., edges, curves, and faces in image data).

The use of autoencoders is appealing for multiple reasons.
First, as an unsupervised approach, autoencoders do not rely
on labeled data, which is typically in short supply in the spe-
cific application areas of interest to us. The complexity of
our data and restrictions to access often make large-scale
labeling approaches such as Amazon Mechanical Turk un-
feasible. Second, the interpretability of the learned features
helps in the interaction between the machine learning system
and the human analyst, who is often a subject matter ex-
pert, but not an experienced machine learning practitioner.
Lastly, the back-propagation training of autoencoders pro-
vides a very efficient way to learn these unsupervised feature
representations.

4. LBANN
We are developing the Livermore Big Artificial Neural

Network (LBANN) Toolkit to train very large models on
very large data sets. It is a distributed memory algorithm
that is optimized for the distinct characteristics of high per-
formance computing systems. The toolkit is designed as a
MPI+Threads framework, exploiting distributed processing
and communication, as well as node-local thread-level par-
allelism through its BLAS library. The training algorithm’s
current implementation is primarily optimized for exploiting
model parallelism, with very large distributed neural net-
work models, and modest data parallelism. The key charac-
teristics of upcoming HPC systems are:

• low latency interconnect

• high power CPUs

• node-local storage

• tightly-coupled GPUs

• highly-optimized communication libraries
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Figure 1: LBANN Distributed neural network
model with parallel fetch from Lustre PFS

These characteristics make scientific HPC systems well
suited for large scale, distributed mathematics that allow
us to parallelize the training of a single model over many
nodes. Another characteristic of our scientific supercomput-
ing environment that impacts distributed algorithm design
is dedicated job scheduling. Exclusive access to our nodes,
as well as highly reliable links allows us to avoid many of
the implementation overheads that were necessary in prior
work, such as the Google DownPour system [6]. Specifi-
cally, multi-tenant, scale-out compute environments require
significant effort and code devoted to recovering individual
tasks.
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Figure 2: Distributing mini-batches

4.1 Distributed Matrices + Model Parallelism
The core data structure for LBANN neural network mod-

els is the distributed matrix structure that allows the neural
network model to span multiple HPC nodes. LBANN is
built upon the open source Elemental parallel, distributed,
matrix math library by Poulson et al.[15]. Elemental pro-
vides a C++ framework for controlling data distribution
and uses MPI for parallelization and communication. This
framework provides us with an efficient mechanism for ex-
ploiting model parallelism when training the neural network.
As the model is distributed across the system (Figure 1), the
aggregate CPU and memory resources used to train a single
model increase. Section 5.2 provides preliminary results for
strong scaling the model.

4.2 Data Parallelism
The new generation of data-intensive HPC systems are in-

corporating node-local Non-Volatile Random Access Mem-
ory (NVRAM) into the compute node architecture. We use
the node-local NVRAM to provide local data staging, im-
proved bandwidth, and reduced latency for processing the
input data set. Figure 1 illustrates how data is loaded in
parallel from the parallel file system to node-local NVRAM,
and Figures 2(a) and 2(b) illustrates how data is iteratively
served from NVRAM into the model for each mini-batch.



Section 5.3 and Figure 8 compares the performance of using
node-local NVRAM versus directly fetching hot data from
the parallel file system, when it is cached in OST and router
nodes.

4.3 Challenges to scaling
Seide et al. [17] performed both an analytical and empir-

ical analysis of model and data parallelism for dense, deep
neural networks targeting speech encoding. They observed
significant challenges in scaling their training efficiently be-
yond a small number of GPUs within a single host. One pri-
mary challenge noted was the limited bandwidth within the
host, compared to the arithmetic intensity of the NVIDIA
GPUs. Additionally, they note that while large scale CPU-
only systems will have more favorable arithmetic intensity
to bandwidth ratios, their relative performance to GPUs
makes them unfavorable. It is important to recognize that
the context of this evaluation was a relatively small model,
with only 46M parameters and an estimated size of 0.17GB
(assuming single precision floating point representation). As
we experiment with model sizes that are orders of magnitude
larger than this, the scaling characteristics are much more
favorable, especially for future HPC architectures.

5. EXPERIMENTS
To test the scaling characteristics of LBANN over several

axis we trained a single layer autoencoder using part of the
ImageNet 2012 (ILSVRC2012) training data set. The goal
for our experiments was not to achieve the lowest reconstruc-
tion nor classification performance. Rather the goal was
to test the strong and weak scaling properties of LBANN.
Specifically, most of these experiments were designed to test
the amount of wall clock time required to finish a fixed
amount of training. We conducted these tests on the LLNL
Catalyst HPC system [1], which consists of 324 nodes with
24 Xeon EP X5660 cores, 128 GB DRAM, and 800GB of
node-local NVRAM. Catalyst has a aggregate bandwidth of
24-32 GB/s to a Lustre parallel file system.

The neural network topology that we used was ∼197K −
X − ∼197K, where X is the number of neurons in a fully
connected hidden layer. The input and output layers are full
sized images from ILSVRC2012 and so are actually 256 ×
256 × 3 = 196, 608. Our test suite includes 50K, 100K,
400K neuron models, which corresponds to approximately
9.8B, 19.7B, 78.6B parameters. Using double precision
floating point values, the total size for each model is propor-
tional to the size of the autoencoder’s weight matrix (73GB,
147GB, 293GB), for layer sizes 50K, 100K, 400K, respec-
tively. For each test we specify how many MPI ranks (pro-
cesses) execute on each node, and the remaining available
cores are used by the multi-threaded BLAS library. In all
cases, LBANN effectively uses the 48 Hyper-Threaded cores
per node. Unless otherwise specified all tests had an Ele-
mental block size of 256, 12 ranks per node, and was trained
on the first 1200 images of ILSVRC2012.

5.1 Single-layer autoencoders
Unsupervised feature learning relies on greedy, layer-wise

training to teach each layer of the autoencoder how to best
represent the input data. Quality of the autoencoder’s learn-
ing is measured with reconstruction error, comparing the
original image to the output of the autoencoder layer. Tra-
ditionally, for image processing tasks, early layers use local

receptive fields that limit a neuron’s scope of view and teach
the layer to learn Gabor filters. When using a fully con-
nected, dense layer, neurons are able to learn much more
complex representations of the image. Figure 3 shows how
well single layer autoencoders are able to reconstruct a train-
ing image after 100 epochs when using hidden layers of 10K,
50K, and 400K neurons. Note that the mini batch size is 40
images and the learning rate is 0.0001. Figure 4 plots the
reconstruction error versus the number of training epochs.

(a) 10K (b) 50K (c) 400K (d) Original

Figure 3: Reconstructed images using a single-layer
autoencoder with X neurons after 100 epochs.
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Figure 4: Reconstruction error of a single-layer au-
toencoder with ImageNet.

5.2 Exploiting model parallelism
As a single model is distributed over multiple nodes there

are two ways to improve performance, solve a fixed sized
model faster (strong scaling) and solve a larger problem in
“fixed” amount of time (weak scaling). To explore how well
LBANN strong scales we used a single layer autoencoder
with 50K hidden units. The tests were run with 8 - 128
nodes, 12 ranks per node, and mini-batch sizes from 8 -
1024 images. Figure 5 shows the runtime on the y-axis as
the number of nodes is increased. LBANN is able to achieve
good strong scaling for the 50K neuron model from 8 - 32
nodes, but improvements taper off at 64 to 128 nodes as I/O
begins to dominate the communication/computation perfor-
mance tradeoff. As part of future studies we will profile the
performance of LBANN with even larger models and more
nodes.

The next experiment demonstrates how LBANN weak
scales, solving a larger problem with more resources. For
this experiment we doubled the size of the of the model and
number of nodes at each point tested. Ideally, the time to
train should remain constant as the problem size increases.
Figure 6 shows that the performance is relatively flat, indi-
cating efficient weak scaling.

5.3 Exploiting data parallelism
To process larger data sets, it is necessary to ingest and

train on data faster. Currently, LBANN uses two tech-
niques that provide modest amounts of data parallelism:
large mini-batches, and parallel data movement. Increas-
ing the mini-batch has two effects on performance, first it
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Figure 5: Strong scaling 50K neuron hidden layer:
per mini-batch training time vs. number of nodes.
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Figure 6: Weak scaling the number of neurons from
50K to 400K on 8 nodes to 64 nodes, respectively.

allows more data to be processed in parallel, and second
it reduces the number of synchronization steps. Increasing
the amount of work is important for this kind of distributed
algorithm because it improves the efficiency of the blocked
matrix multiplications. Reducing the number of synchro-
nization steps helps minimize the amount of communication.
Figure 7 shows how the performance improves as we increase
the size of the mini-batch.

The second part of the experiment is to parallelize the
data movement. LBANN is designed so that each node han-
dles a single mini-batch: reading it from NVRAM or par-
allel file system (PFS), copying it into local memory, and
then distributing it to all of the nodes in the job. LBANN
parallelize the most time consuming part of this sequence,
reading the mini-batch from NVRAM or PFS. As many MPI
ranks as possible in the LBANN job will read in mini-batches
concurrently and then distribute them round-robin as indi-
cated in Figure 2. Figure 8 illustrates how the I/O time
is effectively amortized away as more ranks are allowed to
fetch data in parallel. Tests were conducted with the train-
ing data residing in node-local NVRAM and read directly
from the Lustre parallel file system (PFS). For the node-
local NVRAM, the page cache was flushed between each
test; however, for the Lustre PFS the data was being cached
in DRAM within the Lustre system.

5.4 Tuning Elemental Library
The last set of experiments vary the block size of the dis-

tributed matrix within the Elemental library and the num-
ber of ranks per node versus the amount of thread-level
parallelism available to the Intel BLAS library. The first
experiment, shown in Figure 9 plots the runtime versus Ele-
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Figure 7: Strong scaling mini-batch size to exploit
data parallelism (50K neuron hidden layer): total
training time vs. size of mini-batch.
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Figure 8: # parallel I/O streams fetching each mini-
batch versus the total I/O time to load all images
into memory. All tests were executed on 32 nodes
and had a hidden layer with 50K neurons.

mental libraries’ block size. Note that for the smallest block
size (32) the performance is about 11% slower than the av-
erage of the larger block sizes. For our test neural network
of 400K hidden units, there is not significant advantage to
varying the block size beyond 64. Further exploration of this
parameter will be the subject of future work.
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Figure 9: Tuning Elemental’s distributed block size.

While the Elemental library package is parallelized via
MPI, the Intel BLAS library that we use for on-node matrix
manipulation is multi-threaded. As a result, LBANN is an
MPI+Threads implementation. This last experiment trades
off the balance of independent ranks per node versus avail-
able threads. As noted earlier there are 24 cores per node



and 48 threads available with Hyper-Threading. Figure 10
shows that as long as the number of ranks per node evenly
divides the number of Hyper-Threaded cores, then LBANN
achieves good utilization of all of the compute resources.
Only the case with 18 ranks per node performs significantly
worse; its runtime is 32% higher than the average runtime
for the other configurations.
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Figure 10: MPI ranks per node versus the number
of threads available to Intel BLAS library.

6. CONCLUSIONS
We are developing the Livermore Big Artificial Neural

Network toolkit to provide a vehicle for training very large
Deep Neural Network models on very large data sets. We
have targeted HPC systems, building on the Elemental li-
brary for distributed dense linear algebra. Our first steps
on this project have been to add support for model parallel
training of very large autoencoders. In this work we have
demonstrated that the fundamental framework for LBANN
provides a scalable platform, providing both good strong
and weak scaling. Additionally, we have performed prelim-
inary exploration of parallel I/O techniques and tuning the
Elemental and Intel BLAS libraries. Future work will in-
clude continuing our scaling studies to larger models, and
deeper models. Additionally, we are currently working on
support for additional network layers, supervised training,
and integrating support for distributed GPUs.
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