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High Flux Model (HFM): Spheres vs. Hohlraums

Spheres: HFM was born out of 2006 OMEGA Au spheres:
- DCA NLTE atomic physics
- f = 0.15 (≈ non-local) matches x-ray emission                 (vs. usual f = 0.05 )

- 2013 Thomson Scatter(TS)  Te(r,t): partial agreement with HFM

Hohlraums (HRs): HFM applied to NIF HRs: 
- Fit ‘09 empties; gas-filled SRS spectrum, levels; (also ‘13 NVH drive)

- But source multipliers needed for many gas-filled drive
Using f=0.05 or 2-stream (f=0.015) can help avoid multipliers

Consistency ?: Two branches of logic:
- f =0.05: Inhibition source possibly B fields around individual beams

- NIF HR beams individualize vs. Au sphere beams overlap/smooth 
- “2-Stream”: Ion Acoustic Turbulence scatters heat-transporting electrons

- This same scattering can enhance (= “anomalous”) absorption (AA)
- Applied to Au sphere near n-crit, AA can help agree with TS data

In this talk we explore this speculative “AA” branch of logic
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The 2 stream model operates when Z Te / Ti >>1, 
and then f = 0.015 

This phenomenon has been discussed in the literature for > 40 years…

Heat carrying electrons stream one way, & return current carrying electrons 
stream the other

- These 2 streams have “free energy” to drive an instability

Ion acoustic turbulence (IAT) ensues

- Acts like an effective scatterer to inhibit the heat flux

- That same scattering can enhance collisional absorption
- but not in the model, as implemented into the hydro codes

For an Au sphere Z Te / Ti ~ 400, so 2-stream should be operative there 

For the low Z gas in the hohlraum, may depend on when collisions raise Ti
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The 2-stream-induced ion-acoustic turbulence 
(“IAT”) can enhance absorption

Based on this, we first tried to model this by IB x 3.
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Enhancing absorption in 2-stream model by multiplying 
inverse bremsstrahlung x 3 does not agree with TS data

f = 0.15

f = 0.05

f = 0.015, or 2-stream 

radius 

f = 0.015, I.B. x 3

At t = 1 ns 5.0 1014 W/cm2 

Non-local

f = 0.05 , I.B. x 3

Te vs.
radius 

Emission
vs. time

time
IL = 1.0 1015 W/cm2 

Range 
of  
data 

f = 0.15

f = 0.015 w. IBx3

f = 0.05 w. IBx3

f = 0.05

f = 0.015

I.B. x 3 model enhances absorption in the low density corona, which does not radiate 
efficiently, and thus gets too hot vs. Au sphere TS Te data

time Radius (cm)
0 1   ns 0.05 0.10

1.6 TW/Sr
keV
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Given the failure of the IBx3 attempt, we propose a new 
model that localizes the IAT enhanced absorption near nc

In practical terms:
Use the hydro-code’s machinery for Resonance Absorption:

Do a “dump-all” (absorb 99%) of the laser energy that manages to 
propagate and to reach above 90% of the critical density.

…or, maybe it is actually Resonance Absorption?

Localize the 2-stream-induced IAT near 
the steep heat front, near ncrit

- Enhance the (“anomalous”) 
absorption (AA) only there

XSN f=0.05!
!
!
DCA non-local!

Te (keV) and n/nc vs. radius!

Radius (cm)!

1.0!

0.1!

ne/nc

Te
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Enhanced absorption/2-stream Au sphere ≈ 
agrees with data 

Emission
vs. time

time

IL = 5.0 1014 W/cm2 

Range 
of  
data 

f = 0.15

f = 0.015 w. AA

f = 0.05 w. AA

Te vs.
radius 

radius 

At t = 1 ns, 5.0 1014 W/cm2 

f = 0.15

f = 0.015 w. AA

f = 0.05 w. AA

Emission
vs. time

time

IL = 1.0 1015 W/cm2 

Range 
of  
data 

f = 0.15

f = 0.015 w. AA

f = 0.05 w. AA

f = 0.15

Te vs.
radius 

radius 

At t = 1 ns 1.0 1015 W/cm2 

f = 0.015 w. AA

f = 0.05 w. AA

IL = 5.0 1014 W/cm2

IL = 1.0 1015 W/cm2

time radius
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 The nominal absorption model,  (along with DCA and 
2-stream (~ f=0.015)), when applied to a hohlraum, 
does not need to invoke source multipliers 

 In general*, the localized AA model, does not change 
the answers,(e.g. Dante drive, bang-times, implosion 
symmetry) compared to the nominal absorption model

 Laser beams have long paths in the hohlraum
— 100s of m in the Au sphere corona
— vs. millimeters in hohlraums. 

• Thus, in HR laser’s absorbed well before it reaches ncrit

How does this localized AA model do, when 
applied to hohlraums?

Thus, this same “AA” model can be applied to spheres and to hohlraums

*shot N120205, CH NIC, 0.96 mg/cc fill (b.t.: 22.7 ns) & also tested for “672 0.6 mg/cc fill happy hohlraum”, & NVH HDCs
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 Can we probe the Au sphere nearer the surface?
— Refraction issues of the probe beam?
— X-ray Thomson Scatter

• Could we see the turbulence ?
– Would it affect the ne, Te,  profiles? conversion efficiency ?

 Can we illuminate everywhere but the surface? See post deadline poster: Y. Frank et al*

 Repeat for a flat plate or other geometry?
— Further analyze previous Ross/Froula data from Omega on a flat Au plate

 Explore other inhibition mechanisms
— B fields
— Azimuthal / axial quad splitting to enhance beam uniformity on the wall of a NIF HR

Also: Theoretically, what is the “right” enhanced absorption model to use ?

How can we further study this issue?

Your ideas would be most welcome !

*The influence of the atomic modeling on integrated simulations of laser produced Au plasmas Y. Frank, E. Raicher, M. Frankel, D. Shvarts et al.
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 The 2-stream inhibition model operates in hohlraum’s Au bubble as f = 0.015
— Can lower radiation drive - Helps obviate “Source Multipliers”
— Can raise Te in Au bubble - Helps inner beam propagation in the NVHs

 The 2-stream model partially operates in the fill gas
— May still have sufficiently low Te to agree with SRS spectra and levels

 The 2 stream model, with AA via “I.B. x 3”, did not match Au sphere’s radiative output 
nor the TS  Te(r,t) measurements.

 But, localizing the AA, by a “dump-all” near the critical surface:
— Can ≈ match all of the Te(r,t) data
— Can ≈ match the absorption / emission levels.
— Keeps the hohlraum calculation ≈ same as a non-AA-enhanced model

• Because light gets absorbed by ≈ 0.1 critical
• Thus, this model that can be applied to both Au spheres and to hohlraums

Summary

We may have identified a way to ≈ reconcile Au spheres with a 2 stream model
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Back-ups start here
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Starting in 2013, Thomson Scattering data gave 
us information on T(r,t) in Omega Au spheres

LLNL-CONF-645620!

4w probe 
H2 Stalk

Thomson volume 
(60x100 um2) 

TS1

TS2

• > 5 um Au, DU, Ag coating on
CH mandrels, 1 mm OD!

XRPHC Image 1E14! LASER DRIVE: 59 beams (+4w TS probe) 

1014     W.cm-2 / 1 ns square,   50 J/beam 

5x1014 W.cm-2 / 1 ns square, 250 J/beam 

1015     W.cm-2 / 1 ns square, 500 J/beam 
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TS spectra vs time!
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Au spheres shot on Omega: HFM successes:

TS: ZBTe (keV) vs. time (ns)

For Au at r = + 200 m

& IL = 5. 1014 W/cm2

XSN f = 0.05

Data
DCA non-local
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Series3

Emission levels matched 
by f=0.15, (or non-local ) 

- More restricted f: 
absorbs less, & 
converts less to x-rays

Time (ns)
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Au spheres shot on Omega: HFM not consistent 
with some TS data

ZBTe (keV) vs. time (ns)

For Au at r = + 100 m

& IL = 1. 1015 W/cm2

XSN f = 0.05
Data

DCA non-local
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For Au at r = + 100 m

For IL = 5. 1014 W/cm2

( ZTe data also disagrees with HFM at r = + 200 m for IL = 1. 1015 W/cm2 ) 

Data hotter closer to surface

Time (ns)

Time (ns)
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Hohlraum modeling deficiencies (“source multipliers”) have 
led to a re-examination of the HFM

Year
Sphere

f

Hohlraum 
f

Comments References

‘10-’12 .15 .15 Until the view-factor* 
experiments were done, 
could argue late “bang 
times” due to ablator issues

- M. D. Rosen, H. A. Scott, D. E. 
Hinkel et al HEDP 7,180 (2011);
- M. D. Rosen, in “Laser Plasma 
Interactions & Applications” Ch. 8, 
185-220, Springer Press (2013), P. 
McKenna et al, eds.
Scottish Graduate Series.

‘13-’14 .15 .05 Argued that in hohlraum, 
beams separate into single 
beams, not smooth

- M. D. Rosen, H. A. Scott, D. A. 
Callahan et al Proceedings of the 
EPS Plasma Physics Meeting, 
Berlin, 2014, LLNL-PROC-655722 
6/24/14 paper # O2.206

’14-’15 .15 .015 Two-stream-model option, 
(ignores sphere results), 
being tested widely vs. data

C. Thomas, work in 
progress

‘15 .015 ? .015 This talk

* S. A. MacLaren, M. B. Schneider, K. Widmann et al PRL 112, 105003 (2014) 
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DCA + 2-stream hohlraum model ~ agrees with 
data 

Drive vs. modeling variations Implosions’ peak emission time vs. data

- 20 eV 

10: Flux-limited DCA

1: Standard candle

2: small Δt & more zones
3: Lagrange to rise
4: Lagrange to peak
5: Lagrange to end
6: modern EOS 
7: modern DCA
8: modern ei

9: hot electron model

Thomas 

Simulation of N120122 LF Peak Tr Time of peak emission measured - simulated

t  
(ns) 

0.032 and 0.6 mg/cm3 1.6 mg/cc 

HF CH LF CH HDC 

Laser Pulse Length

0.96 mg/cc 

HDC 

Thomas 

Flux-limited DCA

Standard candle

There are 2 key elements: Zoning/Re-zoning methods, & a 2-stream flux limiter
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Te (0-5 keV contours) at 18 ns (middle of main pulse) for:

The HFM applied to an ignition scale hohlraum

XSN vs. DCA, and its interplay with “ f ” are major effects for Te

The non-local model is Shurtz et al 
adapted by Harte, Zimmerman et al

DCA f = 0.15DCA Non-local

XSN f = 0.05 DCA f = 0.05

0

5

For DCA f=0.05 
vs

DCA f=0.15,
Te higher only 
by ~ ½ keV at 

“2 O’clock” 
SRS position

Old Model 
vs, HFM:
Te higher 
by ~ 2.5 
keV at “2 
O’clock” 

SRS 
position

N091204  
1 MJ gas filled
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Te (0-4 keV contours) in 1 MJ hohlraum at 18 ns (middle of main pulse)  (All with DCA)

N091204  1 MJ gas filled hohlraum

The 2-Stream inhibitor looks like f = 0.015 where it is operative

f = 0.152-
Stream

f = 0.015 f = 0.05

2-stream inhibitor is operative 
when ZTe/Ti is large: So 

depends on how Ti varies 
within the hohlraum

0

4

For DCA f=0.05 vs
DCA f=0.15,

Te higher only by ~ ½ keV 
at “2 O’clock” SRS 

position

0

4
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Te (0-4 keV contours) in 1 MJ hohlraum at 18 ns (middle of main pulse)  (with DCA)

N091204  1 MJ gas filled hohlraum: 2 stream model

Collisional dynamics within the hohlraum partially turns off 2 stream in the internal gas, 
at some times, and at some places

TiTe

2-stream inhibitor is operative when ZTe/Ti is large: So 
depends on how Ti varies within the hohlraum

4

0 0

1.
8


