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Abstract 
Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light 
beams from ground-based laser systems may find applications in space-debris cleaning. The propagation 
of such powerful laser beams through the atmosphere reveals many novel and interesting features 
compared to traditional light self-focusing. We demonstrate here that for the relevant laser parameters, 
when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), 
the beam transit through the atmosphere in lowest order produces phase distortion only.  This means that 
by using adaptive optics it may be possible to eliminate completely the impact on the laser beam of self-
focusing effects in the atmosphere. The area of applicability of the proposed “thin window” model is 
broader than the specific physical problem considered here. For instance, it might find applications in 
femtosecond laser materials processing. 
 
Keywords: laser, self-focusing, space debris 
 
Introduction 
A ground-based pulsed laser system is a promising way to mitigate the growing space debris problem [1]. 
Following decades of space exploration, an ever-growing cloud of more than twenty-two thousand pieces 
of space debris is now orbiting the Earth, posing a serious treat to satellites and corresponding 
technologies and services. A debris-removal laser system with an ultra-long reach (on the scale of the 
distance to the orbit) must exploit ultra-high power beams with a power exceeding the self-focusing 
threshold by more than three orders of magnitude. The propagation of a pre-focused (spatial pre-chirping) 
high-power laser beam through the atmosphere is very different from studies of conventional self-
focusing and filamentation in air or gases. The important new feature is that such a pre-focused beam may 
be free of filamentation even for very high input power [1, 2]. Recently it was demonstrated that for the 
typical parameters of a laser pulse, self-focusing in the atmosphere can impair the laser beam quality, 
decreasing the laser intensity on the debris and degrading the system performance [2]. To some extent, 
the effect of the self-focusing can be compensated by pre-defocusing of the initial beam. However, the 
optimization of the pre-focusing requires complex and time-consuming modeling. 
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Here we demonstrate that the situation can be accurately modeled within the “thin window” (TW) 
approximation [3]. When the thickness of the atmosphere is much smaller than the focusing length, 
propagation through the atmosphere results in phase distortion only.  Due to the exponential decay of the 
nonlinear effects, the remaining propagation (beyond the atmosphere) is effectively linear, greatly 
simplifying modeling. Effectively this can be treated as split-step approach with just one nonlinear step 
and one linear step to model beam propagation. We show here that the TW model prediction is in 
excellent agreement with solutions of the exact nonlinear Schrödinger equation (NLSE). Using the TW 
model we are able to calculate the optimal focusing conditions to compensate maximally the aberration 
produced by self-focusing in the atmosphere. We have also calculated the reduction in the peak intensity 
at the focal plane due to the non-compensated aberrations and the displacement of the focal point.  
 
The high accuracy of the TW model has an important practical application. Using adaptive optics one can 
apply an initial phase pre-distortion, which compensates the nonlinear phase changes. We will 
demonstrate that as a result one can have an almost perfect Gaussian beam at the atmospheric exit, and 
the detrimental effects of self-focusing can be eliminated to a great extent. 
 
For most of the applications considered here, it is sufficient to know only the intensity in the spot center 
and the spot size [1] (effectively, it suffices to know just the ratio of these values for an aberrated beam 
compared to the ideal Gaussian one). We present simple analytical expressions for these important 
practical parameters based on the TW model and verify their applicability through numerical modeling 
using the NLSE.  
 
The operation of the complex laser system considered here depends on numerous parameters, such as 
pulse energy, focusing mirror size, focal distance, laser system altitude, and others. As a result, the direct 
system optimization, although possible, requires much time-consuming effort. Our model indicates that 
there exists a scaling in the problem, determined by a combination of the key parameters. This scaling 
makes it possible to relate the results for different sets of parameters and greatly reduces the optimization 
efforts. 

 
Materials and Methods 
 
Thin Window (TW) model 
 
The analysis of the ground-based laser system for space debris cleaning indicates that the laser power 
must greatly exceed, by a factor of 1000-5000, the critical power crP  for self-focusing in the atmosphere 
[2, 4]. The self-focusing length in this situation is much longer than the atmospheric thickness, and 
nonlinear effects produce only phase aberrations, which during the ensuing long (about 1000 km) free 
propagation to the debris can greatly modify the beam (see Fig. 1). One can see that as a result of the 
nonlinear focusing in the atmosphere, the intensity peak moves back to the ground, and at high power 
when filamentation becomes important, the transverse beam shape is far from Gaussian. Let us consider 
the problem in more detail. 
 
The propagation of the laser beam is described by the nonlinear Schrodinger equation [2, 4], i.e. 
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where ⊥∆ is the two-dimensional Laplacian operator. The analysis in [4] demonstrates that the optimal 
pulse length, based on physics and engineering considerations, is on the order of a few nanoseconds. For 
this order of pulse length, temporal dispersion can be neglected in the main order of the considered effects. 
The inhomogeneity of the density must be taken into account in the nonlinearity only [1, 2, 4]. 
 
Here we consider a laser beam propagating vertically (relative to the ground). This is not very different 
from the optimal angle for the interaction with debris, which is about 30 degrees from the vertical [4]. 
The assumption of perpendicular propagation is not critically important, but it simplifies the presentation. 
It is customary to introduce dimensionless variables via: 

),,()','( 2
0

0 rzA
R
P

rz =Ψ   

where DLzz /'=  and 0/' Rrr = . Here we have taken: 
2 2

0 0 0 0 0 02 4 / ,DL n k R n Rπ λ= =  0 02 / ,k π λ=  0 1.06 μm,λ =  1
0 5.93 μm ,k −=  0 1.0,n =  

,/Wcm102.4)0( 219
2

−×=n    
with 0=z corresponding to sea level. We assume the commonly used exponential density dependence 
with the atmosphere height km,60 =Z  0( ') / (0) exp( '/ ).n z n z Z= −  The nonlinear effects decay with height 
as 2 2 0( ') (0) exp( '/ )n z n z Z= ⋅ − [1,2]. Here a normalization parameter 0R  corresponds to the initial radius 
of the beam. The power is normalized by the value ))0(8/( 20

22
00 nnP πλ= . The debris is located at the 

distance L. The resulting normalized equation has the form:  
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where ./0 DLZh =  For m10 =R  and the parameters given above, we have km,11855=DL  

GW339.00 =P and GW258.44 0 == PPcr π  for a Gaussian input beam.  
  
It is possible to show that the fastest growing perturbations resulting in filamentation are axisymmetric [5], 
and that filamentation, at least initially, breaks the beam into ring-like structures. The formation and 
break-up of the ring structure is the well-documented pathway to Gaussian beam filamentation [6], and 
beam propagation can be described in the main order within the axisymmetric version of Eq. (1). 
 
The problem is characterized by three dimensionless parameters: the ratio crin PP / of the input beam 
power inP  to the critical power, the initial beam pre-focusing parameter C (see below), and a parameter h  
characterizing decay of the nonlinear effects with distance, typically .1<<h  Let us consider the 
propagation of an initially Gaussian laser beam. On the surface at 0=z : 
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Here inP  is the normalized input power of the laser beam, the dimensionless parameter 
2

0 0 / / 2DC k R F L F= ⋅ =  is the initial beam pre-focusing parameter, and 
./4])[/(][)0,0( 00 crinin PPWPWPII === π  F has the meaning of a focal distance that in this case is a 

debris height L. Therefore, the dimensional initial pre-focusing is given by  
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We would like to stress that the problem under consideration, though similar in terms of the basic 
equations to numerous self-focusing studies (see e.g. [3, 7] and references therein), is rather different in 
terms of underlying physics. The nonlinearity decays exponentially with propagation. Therefore, the 
system is strongly inhomogeneous with spatially decreasing nonlinear effects.  Our laser beam has a 
much larger spot size (over 1m). The self-focusing length 1// −∝ crinDSF PPLL  is much longer than the 
thickness of the atmosphere. This displaces the self-focusing (beam collapse) point far beyond the 
atmosphere. In other words, we consider here light propagation over a finite distance (the thickness of the 
nonlinear layer), with the focusing point located beyond this region, where the propagation is linear. In 
this case the self-focusing effect compresses the beam, but without the catastrophic collapse of all the 
energy into a small volume. Numerical modeling [2] strongly indicates that for the problem examined 
here, even for input powers well above the critical power for self-focusing, the beam can maintain its 
integrity and is focused as a whole. 
 
Let us now apply in this context the thin window model, following [3,7-9]. We replace the numerical 
calculation of the propagation described by Eq. (1) by just one an effective nonlinear step and ensuing 
linear propagation. After propagation of the short distance z1 the impact of the nonlinear term in Eq. (1) 
can be formally written as: 
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When the beam propagates up to atmospheric boundaries, the impact of the diffraction can be estimated 
as ~ 1z  ~ h ~ DLZ /0 ~ 310− <<1, and the effect of the nonlinearity can be estimated as ,/ crin PhP  which can 
be larger than unity. As the nonlinearity is decaying exponentially, the initial propagation stage is the 
most important and after it, propagation is linear with a modified phase. Our approach is based on the 
observation that during propagation through the atmosphere, with high accuracy we can disregard the 
mutual impact of the nonlinearity and diffraction. Taking into account only the phase distortion due to 
nonlinearity, the laser field after propagation through the atmosphere is given by Eq. (2). 
 
For a Gaussian initial beam we have the explicit description of the field: 
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where ),exp( 2rb −×=Φ  )],/exp(1[ 10 hzhIb −−=  ./4])[/(][)0,0( 00 crinin PPWPWPII === π  The 
parameter b has the meaning of the nonlinear phase shift scale. As we will show below, it is important for 
understanding the ensuing linear dynamics. 
 
The value of z1 that is certainly a critical parameter of the model is approximately several times h; the 
optimal choice of z1 will be further discussed below, after comparison with numerical modeling results. It 
is clear that there must exist an optimal value of z1, since for small z1 we cut out the part of the 
atmospheric propagation, and when z1 is too large the free propagation will modify the solution (the 
window is no longer thin). Due to the exponential dependence on z1 in (3), the optimal value is about a 
few atmospheric thicknesses. Let us make some estimates. We require the maximal phase deviation at z = 
z1 to be different from that at infinite z by less than α radians. In this case, z1 is given by 

1 0/ ln( / ).z h I h α= Due to the logarithmic dependence, z1 depends only weakly on the laser power and the 
choice of α. For α = 0.01, z1 in dimensional units increases from 36 km to 45 km when the power changes 
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from P = 1000 Pcr to 5000 Pcr, and the choice of z1 does not strongly affect the results. The following 
results will be presented for some particular z1 values, and the impact of the choice of z1 on the results 
obtained by the TW model will be discussed in detail in Appendix I below.  
 
After the beam exits the atmosphere, it undergoes almost free linear propagation (see Fig. 2). From Eq. 
(3) we see that the phase is not quadratic, and the ensuing beam propagation is not described by the 
simple formula available for the focused Gaussian input. The curvature of the phase corresponds to an 
additional focusing, and the atmosphere serves as a focusing astigmatic lens. As a result, the maximal 
field intensity is reached before the linear focal plane. By varying the pre-focusing parameter C (or even 
adjusting the initial beam phase to compensate more accurately for the nonlinear phase aberration using 
adaptive optics) we can partially compensate for the propagation through the atmosphere [2]. 
 
To evaluate the field in the focal plane, consider the solution of the linear problem [Eq. (1) without 
nonlinear term]:  

A
z
Ai ⊥∆−=∂
∂   (4) 

 
The solution of Eq. (4) at a distance z can be expressed using a well-known Green’s function in terms of 
the field at z = 0z , ),(),,( 10 yxAzzyxA == , namely:  
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Assuming that the beam at z = 0z  to satisfies Eq. (3), we can write down explicitly the focusing part: 
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Substitution of this expression into Eq. (5) yields 
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We see that at the focal plane z = z0+L, the Fresnel quadratic terms are cancelled and the electric field is 
proportional to the Fourier transform of the field on the boundary [4]. 
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We focus in what follows only on the axisymmetric beam propagation. The general solution of the linear 
problem (5) for the axisymmetric case can be transformed to the form:  
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Applying the explicit extraction of the focusing factor

2
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see that again in the focal plane z = z0+L the Fresnel terms are cancelled and the electric field at the focal 
plane is proportional to the Fourier transform of the field at the boundary. To keep a focal point at the 
same distance z = L, we can either account for the effective linear phase change during the propagation 
from z = 0 to z = 1z  or consider linear propagation from z = 0 with a phase modified due to nonlinear 
effects – an effective split step method with just one nonlinear and one linear steps. Here, for simplicity, 
we use the latter (use 00 =z ) and demonstrate excellent agreement between this simplified TW approach 
and the full numerical modelling of the NLS equation. 
 
As a matter of fact, in practical applications, one  usually needs only a subset of this full field description, 
namely, information about the intensity on the target. Specifically, one needs the intensity in the spot 
center and the average spot size. Therefore, the description can be further simplified. 
 

Assuming that the field at z = 0z  is 
2

0( , ) ( ) exp[ ]
4
irA r z U r

L
= − , the electric field on the target in the focal 

plane can be presented as a Fourier transform of that in Eq. (8) [10]. Specifically, the field in the spot 
center is given by the expression: 
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It is customary to use the Strehl ratio S, the ratio of the intensity in the center to that produced by the 
linear evolution of the Gaussian beam (1a): 
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Recalling that 
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The integral estimate of the square of the spot size on the target can be calculated in a similar way as 
follows:  
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Similarly, it is convenient to calculate analytically the beam quality parameter M2, the ratio spot size 
squared (9) to the value calculated for the Gaussian beam: 
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Results and Discussion 
 
Comparison with the direct numerical modelling 
 
Figures 3-7 demonstrate that the results obtained by using the simple TW model are in good agreement 
with the direct NLSE simulations. In Fig. 3 we present the peak intensity distribution along z for the TW 
model of Eq. (3) and the corresponding NLSE solution. Here h = 0.000506, LRkC /2

00=  =5.93, L = 1000 
km, 0R  = 1 m, λ0 = 1.06 μm and Pin/Pcr = 1500 and 5000, with the corresponding factor nonlinear phase 
shift b = 3.02 or b = 10.05, respectively. Here and below (unless other values are mentioned specifically), 
the parameter 1z  in the TW model is 30 km. In the numerical modelling we use (3) as the boundary 
condition for the linear propagation starting at z0= 0.  
 
Figure 3 shows an excellent agreement between the TW model and the full numerical simulations based 
on the NLS equation, both for evolution of the peak intensity with distance and for the radial beam 
intensity distribution. One can see that the TW model approximates well the exact solution of the NLSE 
even in the situation with well-developed filamentation (see Fig. 1b), with the field distribution being 
very far from the Gaussian beam. Note that in the TW model the solution depends on the dimensionless 
parameter )]/exp(1[ 10 hzhIb −−= only, which simplifies the system optimization. 
 
Let us discuss the calculations of the Strehl ratio. For the TW model (3), S can be calculated analytically 
[Eq. (9a)]. The results are not sensitive to the value of z1 The comparison of the Strehl ratio computed 
with the NLSE solution (1) and the TW model (9a) is plotted in Fig. 4(a). We see that the TW model is 
very close to the NLSE solution, reproducing even non-monotonic S behavior. Let us stress again that the 
TW model is accurate for the calculation of intensity in spot center even at large b, when the beam is far 
from Gaussian. 
 
The calculations of beam quality (M2) are presented in Fig. 4 (b). Within the TW model Eq. (3), M2 can 
be calculated analytically [Eq. (11)]. It is important to note that this result is valid for beams quite 
different from Gaussian. We see that the TW model provides an excellent description at modest b and 
slightly overestimates beam quality for large b, when the beam is already destroyed. 
 
As we discussed above, the detrimental effects of self-focusing can be partially compensated by 
additional defocusing the beam by the quadratic (in radius) phase pre-distortion with the modified chirp. 
Mathematically, this means that instead of the previous chirp parameter C we use the modified Copt. 
Analytically, the optimal focusing parameter Copt is a function of b. The optimal chirp gives the maximum 
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intensity at the destination point L = 1000 km. The graph of the optimal Copt as a function of b is 
presented in Fig. 5 (a). Here C = k0R0

2/L = 5.93, corresponding to a focal point L.  The peak intensity at 
the initial focal point L corresponding to the initial chirp C and optimal chirp Copt is presented in Fig. 5 
(b). Figure 5 (c) demonstrates that the TW model gives very accurate predictions for the shifted focal 
points F. Self-focusing changes the peak intensity, with the result depending on b as shown in Fig. 5 (d). 
We see that the initial defocusing can noticeably increase the Strehl ratio (see Fig. 5 (b)), and that the TW 
model is good for predicting the optimal focusing parameters.  

 
Compensation of atmospheric aberrations by adaptive optics 
 
The initial phase pre-distortion can be used to compensate the nonlinear phase changes. As a result, one 
can have an almost perfect Gaussian beam at the atmospheric exit, and detrimental effects of self-
focusing can be eliminated to a great extent. The new initial condition with corrected phase are: 
 

2 2

0( ,0) exp[ ( )],
2 2
r CrA r I i= − − + Φ  (13) 

where ),exp( 2rb −=Φ  )],/exp(1[ 10 hzhIb −−=  0 (0,0) 4 / .crI I P P= =  Here z1 = 30 km. 
 
       
We compare the solution of the NLSE (1) with the initial condition (1a) and chirp C = 5.93 which 
corresponds to linear focusing at L = 1000 km; the solution of the same problem with optimal chirp Copt = 
0.81C0 ; and the solution of the NLSE (1) with a pre-imposed phase, phase (13); and the solution of the 
linear problem (4) with initial condition (1a). The result is presented in Fig. 6. We see that the initial 
phase modification compensates nonlinear effects, and the solution of the NLSE is very close to the linear 
one. Note that, as expected, the solution of the NLSE with pre-imposed phase correction (13) preserves 
the Gaussian shape in the transverse directions.  
 
We have demonstrated that the nonlinear effect of self-focusing in the atmosphere for space debris 
cleaning can be described with good accuracy within the thin window model. Within this model, the 
nonlinearity produces phase front distortion, serving as a high aberration focusing lens. Optical phase 
distortion results in displacement of the focusing point and beam filamentation, degrading the system 
performance. The former effect can be compensated partially by defocusing the initial beam. The TW 
model yields semi-analytical expressions for the calculation of peak intensity on debris (Strehl number) 
and beam quality M2. 
 
Typically, the nonlinear evolution of self-focusing can be approximated as a fixed shape beam 
propagation with slowly varying parameters. The equations for these parameters can be derived from the 
Talanov virial theorem or from the a variational principle [11,12]. Attempts to use this approach for the 
specific problem considered above failed due to beam filamentation and destruction. On the other hand, 
the TW model describes beam focusing with strong aberrations, with field distributions in the focal plane 
far from Gaussian. The pattern of the laser field is determined by a single dimensionless parameter b, 
similar to the B integral used in laser design to control the self-phase modulation. The dependence on 
only one parameter greatly simplifies the optimization of the beam pre-focusing arrangements. 
 
The description of linear propagation after exit from the atmosphere can be simplified using the fact that 
the field in the focal plane is proportional to the Fourier transform of the field exiting the atmosphere. As 
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a result, we obtained simple expressions for the peak intensity (Strehl ratio) and beam quality M2 which 
can be calculated in term of the exiting field.  
 
Because of the high accuracy of the TW model, one can compensate for self-focusing in the atmosphere 
by a pre-imposed phase distribution which will cancel the nonlinear phase acquired during propagation in 
the atmosphere. Our modeling demonstrates that the detrimental effects off self-focusing can be almost 
completely eliminated by a pre-imposed phase calculated within the TW model. 
 
Conclusions 

Removal of space debris is a global issue that is becoming increasingly important. Methods of active de-
orbiting defunct satellites are costly and technically demanding. Therefore, new approaches to efficient 
and effective cleanup of space debris are highly desirable.  The nonlinear effect of high-power laser 
propagation in the atmosphere causes restrictions on ground-based laser systems for space debris cleaning. 
We have demonstrated that the thin window model provides high accuracy for light propagation and 
accurately predicts the phase distortion at the atmospheric edge. Thus it can be very efficient in multi-
parametric optimization of ground systems. Initial phase distortion can compensate the deviations 
produced by self-focusing, and can almost completely remove the detrimental effects of self-focusing. A 
similar approach can be used to compensate for the detrimental effects of self-focusing in femtosecond 
material processing. 

 
Appendix I 
In this section we will discuss the accuracy of modeling using the TW model. We then check the accuracy 
of the model by comparison of the field in the center of the beam in the initial focal plane,  

| |
( ) 100%NLSE TW

NLSE

S S
error S

S
−

= × ,
 

the displacement of the focal spot, 
| |

( ) 100%NLSE TW
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F F
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and the intensity maximum, 
 

| (0, ) (0, ) |
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I F I F
error I F

I F
−

= × , 

calculated with the exact NLSE and the TW model. 

 
In Fig. 7 we present the error calculations for different beam powers. In Fig. 7(a, b) we present the results 
for P/Pcr = 1000 and 5000 as a function of z1. We see that, as was discussed in the text, the error is 
minimal for z1 ~ 30 km, justifying the choice of z1 used in the main text. We see that before the 
filamentation starts, for modest values of b the accuracy is good. For high intensity, P/Pcr >5000, the 
accuracy decreases but is still reasonable even for a completely filamented beam. 
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Figure 1. The normalized intensity distribution I(r, z)/I(0, 0) [with ( 2|),(|),( zrAzrI = )].  
(a) crin PP / = 100, C = 5.93.  (b) crin PP /  = 5000 (b), C = 5.93. These conditions correspond to a focusing 
distance L = 1000 km for the linear propagation. 
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Figure 2. Illustration of the thin window model. 
 

 
 
Figure 3. Comparison of the solution of the NLSE (1) with the TW model (3) for 1z  = 30 km.  
(a) The peak intensity distribution along z. 
(b) The radial intensity profile at the initial focal point L = 1000 km.  
Black line: NLSE, crin PP /  = 1500. Red line: TW, crin PP /  = 1500. 
Green line: NLSE, crin PP /  = 5000. Blue line: TW, crin PP /  = 5000.  
 
 
 

 
 

Figure 4. (a) Comparison of Strehl ratio computed from the TW model (9a) and the NLSE (1).  
(b) Comparison of the beam quality parameter M2 from formula (11) with results of direct modeling 
using the NLSE. Black line: NLSE. Red line: TW for z1 = 30 km.  
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Figure 5.  (a) The optimal chirp Copt normalized by the initial chirp C as a function of b.  
(b) The normalized intensity at the initial focal point L = 1000 km depending on b for the initial and 
optimal chirps.  
(c) New focusing length F/L depending on b for the initial and optimal chirps. 
(d) The normalized intensity at new focal points I(0, F) = max[I(r,z)] depending on b for the initial and 
optimal chirps.  The maximum value of b corresponds to crin PP /  = 5000. 
Black line: NLSE, C . Red line: TW, C .  
Green line: NLSE, Copt. Blue line: TW, Copt.  
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Figure 6 (a) Intensity distribution along z. (b) Radial distribution at the initial focal point L = 1000 km. 

crin PP / = 5000. Black line: NLSE with C = 5.93 corresponding to beam linear focusing at z = L. Green 
line: NLSE with C = Copt. Red line: NLSE with C = 6.93 and pre-imposed phase (13).  Blue line: 
Propagation of Gaussian beam in the linear case. (Why blue line is not peaked at L=1000 (z1?) 
 
 

 
 
Figure 7 Determination of the optimal z1. C = 5.93. 
(a) error (F) and error [I(0, F)] depending on z1. Plot points correspond to different values of z1 from 10 to 
80 km. From point to point z1 varies with an increment step of 2 km.   
(b) error(S) depending on z1. 
Blue line: crin PP / = 1000. Red line: crin PP / = 5000.  
 


