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ABSTRACT 

To adequately predict the behavior of a hydrodyamic system involving condensed phase 

detonation phenomena requires fine local zoning to resolve the reaction zone. Current computing 

power is not sufficient to provide a solution of this problem for many conventional high 

explosives. Adaptive mesh refinement (AMR) is a possibility, but its implementation is usually 

not trivial. The detonation shock dynamics (DSD) derives a relationship between detonation 

front velocity, curvature, and acceleration, and can be used to predict the front in space-time 

efficiently, with a front tracking (or capturing) method. Several DSD codes have been 

implemented. However the characterization with DSD for HE materials needs to be adequately 

obtained for these DSD codes to be useful in practice. 

The traditional way to parameterize DSD is through experimental front geometry data.  For 

many materials this data is not available, but reactive burn direct numerical simulation (DNS) 

models have been established that match experimental detonation velocity size effect and other 

experimental data. A common description of DSD characterization includes a   ( ) curve for a 

range of curvatures, and a boundary intersection angle. Generally the   ( ) relation is a property 

for the HE material away from boundary, but the boundary angle is a property of both the 

explosive and the confinement. A DSD algorithm can be accurate for description of detonation 

fronts and costs little compared to spatially resolved DNS with a reactive flow model. Therefore 

the DSD characterization of HE materials (coupled with confinements) is valuable for numerical 

simulation of material interaction involving detonation phenomena.  

We describe a mathematical approach to obtain the DSD characterization from bare rate-stick 

experiments or copper lined cylinder expansion tests.. With the result of our DSD calibration, 

and utilizing our particle based DSD tracker (called SDOT, which stands for surface-dynamical-

operation-tool), we are able to closely reproduce the detonation fronts generated from DNS in 

cylinder tests and other detonation problems. 

DSD models are not traditionally applied to converging geometries.  We describe a physically 

motivated modeling framework for DSD in converging geometries, based on the approximate 

size scaling of a spherical implosion. 

 



PROCEDURE OUTLINE: 

We take LX-17 as an example explosive material for this study. For many HE materials 

experimental data for direct experimental calibration of DSD are insufficient and difficult to 

obtain. However, DNS data is relatively easy to obtain for many insensitive high explosives with 

established reactive burn models.  In this case we desire only that the DSD model be able to 

match the performance of DNS.    

We first obtain the data from direct simulations with CHEETAH / ARES and the LLNL HE 

Validation Suite for a given material and propose a format for the DSD evolution equation (a 

relation between detonation shock velocity, front curvature and acceleration). We integrate the 

proposed evolution equation to match the DNS results by adjusting parameters using an 

optimization method. We use an efficient DSD tracker to compute a numerical front and match 

the DNS result, thus confirming that our DSD calibration is useful in practice. 

 

SOME ISSUES WITH DSD APPLICATION 

The   ( ) curve, its turning points at the critical curvatures 

With the best of our knowledge, the DSD governing equations used in existing DSD codes are 

all of the format      ( ), i.e. the detonation velocity    is a function of the detonation front 

curvature κ . In theory, for an explosive material with large activation energy, such a   ( ) 

relation has turning points and the curvature is bounded between a pair of critical curvatures. In 

(fig. 1), the turning point on the bottom stands for a radius of curvature necessary for ignition; 

the right-most turning point is at the failure curvature; finally, the turning point in the region of 

negative curvature means that a detonation is impossible to be steady if the curvature is too big. 

The   ( ) curve described above does not take the acceleration of the detonation front with 

respect to time into account. We will show that such a DSD law is sometimes insufficient in 

practice. 



 

Figure 1. Demonstration of a   ( ) curve that describe a quasi-steady detonation for an 

explosive of large activation energy. The effect of front-acceleration is ignored. 

Acceleration vs. no acceleration 

In a front-tracking simulation, there is no guarantee that a numerically generated detonation front 

has a curvature everywhere in the valid range at all time. A common practice is to manipulate a 

  ( ) curvature and assign special values for velocity when the curvature is out of range. We 

believe this is not a natural treatment. We propose a DSD evolution equation for LX-17 with a 

relationship that involves not only the detonation velocity and curvature, but also the detonation 

acceleration. As a result, in the case the magnitude of curvature exceeds the valid range of a 

steady   ( ) relation somewhere in the front, the acceleration effect would flatten the front, and 

there is no cut-off velocity values required. We consider our treatment to be more natural than 

the other one. 

A converging detonation front 

The DSD theory is derived under the assumption that a sonic point exists in the reaction zone, 

where the thermicity parameter and sonic parameter must both vanish. This condition sets a 

constraint to the evolution equation. This so called generalized CJ condition usually only holds 

for a diverging detonation, i.e. the front curvature is positive. The behavior of a converging 

detonation has not been well investigated. From the literature we see a common treatment in the 

case of negative curvature is to extrapolate a     ( ) curve for positive curvature in to the region 

of negative curvature. Although the assumption of completion of reaction at the sonic point gives 

the conclusion of another turning point in the region of negative curvature, our direct numerical 



simulation with CHEETAH has shown that such a single   ( ) is not adequate for the case of a 

spherically converging detonation wave.  However after the acceleration effect is employed, the 

front tracking with our calibrated DSD evolution equation produces results in agreement with 

DNS. Therefore we believe the acceleration term in a DSD evolution equation is necessary to 

describe the behavior of a detonation front with locally negative curvature. 

The critical curvature and the failure velocity 

With a rate-stick experiment, the front geometry and velocity can be observed (fig. 2). In 

principle because the data contains velocity and curvature information, a   ( ) curvature can be 

obtained directly from experimental data. However, a set of rate-stick data covers only a small 

range of curvature for a limited set of experimental conditions. The current rate-stick data base 

for LX-17 is not sufficient to obtain a   ( ) curve for a sufficiently large range of curvatures (or 

temperature, density…). Especially, the measurement of data close to boundary (where curvature 

is relatively large) is difficult to obtain. As a result, we lack experimental   ( ) data in the 

region of large front curvature, thus the right-most turning point on the   ( ) can not be 

obtained from rate-stick experiments (for LX-17 in this case, see fig. 2). However we may argue 

that in a corner-turning experiment, at the contact point when a detonation front just starts to turn 

the corner, the curvature is theoretically positive infinity. The trace of the high curvature ‘cusp’ 

defines the boundary of a dead-zone.  This point must move with the failure velocity in the front 

normal direction because of continuity of velocity. Numerical simulation with our particle based 

DSD tracking package SDOT has shown the size and shape of a dead-zone in a corner-turning 

experiment with PBX-9502 can be obtained reasonably well by employing a proper    ( ) law 

and failure velocity. The geometry of a numerically produced dead-zone seems not depend on 

the exact value of a critical curvature (because the time takes to exceed any preset critical 

curvature is very much ignorable). The geometry of dead-zone is in fact very insensitive to the 

input value of the critical curvature. We conclude that a proper failure velocity, not a critical 

curvature, together with a   ( ), defines the boundary of a dead-zone in our front tracking 

calculation. The failure velocity can be determined from the size effect with rate-stick 

experiments reasonably well. For LX-17, we choose to set the value of its failure velocity to 0.72 

(     ) based on data from the LLNL HE Reference Guide [1]. 

We conclude that the actual value of critical curvature is not important in a corner-turning dead-

zone simulation with DSD wave tracking. 



                      

Figure 2. The experimental front geometries for a 12.7 mm radius rate-stick, including data of 

LX-17. 

The Rate-Stick: A study of a steady diverging detonation 

An HE rate-stick burn (bare or confined) is the most studied experiment. It has a steady state, 

independent of the initial detonation front geometry, with a constant traveling speed. Our DNS of 

rate stick is performed with CHEETAH / ARES. An effective DSD front-tracker should be able 

to reproduce the front geometry given a proper DSD front evolution equation in the format    

  (    ̇). For the purpose of this study we ignore the acceleration term   ̇ and calibrate a 

relation between the detonation front velocity and curvature that fits DNS data.  

The geometry of a rate-stick is axisymmetric and is defined by the radius of the rate-stick. We set 

the axis of symmetry at      where   is the radius. The detonation front is moving up and 

forms a preset angle   at the boundary, which is a property of the coupling of the HE and the 

confinement (fig. 3). 



 

Fig.3. The rate stick geometry:  ( ) is the steady-state detonation front;   is the steady-state 

velocity;    is normal velocity;   is the boundary intersection angle.       (    
 ). 

A least-squared local fitting to obtain an initial guess of   ( ) 

We take the detonation front geometry from the CHEETAH/ARES simulation of a cylinder-test 

for LX-17 with Cu confinement. The DNS data contains the steady state velocity U, the rate-

stick radius R, and the shock arrival times at a set of points distributed on the radius at a selected 

position. The front geometry is conveniently computed as the product of the shock arrival time 

and the steady state front velocity. Using a least-squared quadratic local smoothing method, one 

is able to compute the front slope and curvature data pairs for the region away from boundary. 

We pick a search length 𝒔 much smaller than the rate-stick radius 𝑹, but greater than the distance 

between data points. At a given 𝒓, we fit a least-squared quadratic curve for the curvature and 

slope. From the front slope and the steady travelling speed, the normal detonation velocity is 

obtained. By varying 𝒓 from 0 to 𝑹, we obtain a set of ( ,  ) data pairs. The data points are 

coarse and we take 10 points or so to perform each local fitting. At a point near the boundary, 

since there is no data outside of the boundary, the quality of fitting is not reliable. Therefore we 

choose to discard fitting results close to the boundary. Near the symmetrical axis a reflection of 

the data provides support to the least-squared fitting. Because the steady-state front velocity is 

provided with the DNS, we can convert slope to normal front velocity directly and obtain Dn (κ) 

pairs for a range of curvature by varying the point at which the fitting is performed.  

The exact shape of   ( ) in the region of high curvature is difficult to determine. However, we 

have discussed previously that only the failure velocity is important (at least in the case of 

corner-turning) because the time-space window for high curvature to live is so tiny that the exact 

value of curvature at the failure point takes almost no effect in a front-tracking simulation.  



   

4(a). Front speed = 0.7556 (cm / s).  4(b). Front speed = 0.7593 (cm / s).  

 

   

4(c). Front speed = 0.7629 (cm / s).  4(d). Front speed = 0.7673 (cm / s). 

 

Figure 4. The rate-stick steady front geometries obtained from DNS with CHEETAH / ARES for 

various radii: (a) r = 1.2 cm; (b) r = 1.8 cm; (c). r = 2.5 cm; (d) r = 5.0 cm. 

 

The CJ velocity, the size effect, and the failure velocity of LX-17 

To construct a   ( ) formula for LX-17, some mandatory constraints need to be satisfied. For 

example, at the point of zero-curvature, one must have Dn equal to the CJ velocity. It is 



impossible to observe the CJ velocity because a detonation front is never truly flat in a steady 

state experiment. The assumption is that DCJ = 0.7734 (cm / s) [13], based on extrapolation of 

the detonation velocity to infinite diameter. For the CHEETAH model, the infinite diameter 

detonation velocity has been calibrated to this value.  However, the exact value of DCJ used does 

affect our optimization scheme for calibration of DSD parameters here.  

The failure velocity of LX-17 can be checked out from tables in the LLNL. It is observed at 

about 0.72 (cm / s) with small variations depending on experimental conditions. With a rate-

stick test, the smaller is the radius, the slower is the front velocity. Our DNS simulations with 

very slender rate sticks do not show a smooth drop of front velocity, probably because of an 

existing resolution issue. In our calibration, data for thicker rate-sticks are employed. 

  

          

Figure 5. The   ( ) data obtained form local least-squared fitting of rate-stick front geometries. 

Four sets of data are used for rate-stick radius of 50(mm), 25(mm), 18(mm) and 12(mm). The 

steady   ( )for PBX-9502 by Aslam, Hill and Bdzil [9] is also plotted for reference. 

 

The rate-stick ODE 

With the rate-stick geometry, one is able to convert the partial differential front governing 

equation into an ordinary differential equation of first order with the front slope as the 

independent variable. Numerical integration of the ODE over the range of radius using a given 



mathematical   ( ) relation provides geometry of a numerical front, by minimizing the 

difference between this numerical front and the given DNS data, one is able to determine the 

parameters in the mathematical   ( )form for a calibrated solution of the detonation velocity-

curvature relation for a given HE material, LX-17 in this case.  

The DSD governing equation is a PDE in the form 
  

  
           

For convenience we assume a mathematical form of the velocity-curvature relation that   

     (  )                                          (1) 

We may take      (   ), then in the r-z coordinate the above PDE can be written as:  

       ( ) (    
 )

 

             (2) 

Here the function       is the front position at time t and radius r. When the steady state is 

achieved, one has       ( ) where c is the steady state propagation velocity, then the above 

equation becomes 

       ( )(    
 )        (3) 

This is an obvious geometrical relation because     is the front slope. 

In the axisymmetrical geometry the front-curvature can be written as the following: 
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Then by substituting eq. (3) into it, the   ( ) relation (1) becomes eq. (5) 

   
   

(    
 )

 
 

 
  

 (    
 )

 
 

   
 

(    
 )

 
 

      (5) 

By setting      being the slope of the front and the above equation becomes  
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or equivalently 
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Thus the above equation is an ODE that governs the front geometry of the steady-state in a rate-

stick problem (and we call it the rate-stick ODE).  In the case of planar 2D geometry, the term 

s/r is dropped out and an explicit first integral can be evaluated for certain choices (say linear) of 

the function K.  

The choice of the mathematical form of the   ( ) curve for LX-17 is not arbitrary but is not 

unique. We have performed an optimization for linear form of   ( ) curve and it works rather 

well for individual tests. However we consider a global   ( ) curve that has a turning point at 

the failure velocity and propose the following form for the   ( ) relation for LX-17.  

    (   (  )   ), where    (  )  (        )
 

 (         )
 
    (7) 

With DCJ is set to 0.7734 (cm/s) and       set to 0.72 (cm/s),    , and   are free parameters. 

This curve has a bell shape and a turning point exists at           

 

        

Figure 6. The proposed bell-shape   ( )curve with a turning point at       for LX-17.  Only the 

portion of positive curvature (i.e. for a diverging detonation) is shown in the figure. 

Optimization for DSD characterization of LX-17 

The slope      of a rate-stick detonation front at any given r can be computed with a numerical 

integration of eq. (6). Then the front geometry can also be determined by integration in the r-

direction. If the   ( ) curve is correctly given, the integrated front geometry should match the 

input front geometry. By minimizing the difference between the two front geometries, the 

coefficients that determine the   ( ) curve can be determined.  



Now we start our calibration for DSD characterization of LX-17. The target function for 

minimization is defined as 

   (     )  
 

 
 (  

          
   

     )
 
   (8) 

Where   
          

stands for position of the front from numerical integration of the rate-stick 

ODE at data point ‘i’,   
     

 is the input data shown in fig. 4 at the same point. We use a Runge-

Kutta 4
th

 order scheme to integrate the rate-stick ODE. All the input data point gets an equal 

weight and all the four sets of rate-stick data are used.  

Because of the highly nonlinear format of (eq. 7), a bad initial guess constantly results in non-

convergence. We used a carpet search to obtain a set of reasonable initial guess (        ) for 

the   ( ) coefficients. For simplicity we first tried not to compute multi-dimensional derivatives 

of the function K, but to walk in one-dimension at a time and alternating directions (the 

coordinate-descent method).  

Starting from k = 0, at step k we perform the following operations: 

In the alpha-direction: 

Fixing       , compute three values  (           )  (        )  (           )    then 

fit a quadratic            . Then find the minimization point            . This is a 

third order approximation in the -direction. 

In the beta-direction: 

Fixing        , compute three target values  (             )  (          )  (        

     )    then fit a quadratic            . Then find the minimization point      

      . This is a third order approximation in the -direction. 

In the gamma direction: 

Fixing          , compute three values  (                 )  (          )  (          

     )    then fit a quadratic            . Then find the minimization point      

      . This is a third order approximation in the -direction. 

Let k be increased by 1, repeating the above operations till convergence. In the region of 

curvature in a given rate-stick problem, there is no turning point on the   ( ) curve, thus three 

control parameters (     ) are likely sufficient for a good DSD characterization in a relatively 

small region. These control parameters are equivalent to a set of control points with the number 

of points equal to the number of control parameters. With more data from rate-stick tests, it is 

possible to locate more control points for higher curvature region. These control points shall 

define the   ( ) curve for a wider range of curvatures. The boundary intersecting angle, which 



is assume a constant for a pair of HE/confinement coupling. If this is true, we should be able to 

obtain similar values of    with rate-stick tests of different diameters for a certain 

HE/confinement coupling. 

The calibrated solution with the above optimization scheme is obtained as the following 

𝜶=𝟎.𝟎𝟐𝟗𝟖𝟒𝟐 (𝟏/𝒄𝒎),  =𝟏𝟐𝟒𝟔.𝟏(𝝁𝒔/𝒄𝒎)𝟐,  𝜸=𝟐,      =𝟎.𝟕𝟏𝟗𝟗𝟔𝟑 (𝒄𝒎/𝝁𝒔)   for LX-17. 

Numerical fronts obtained with rate-stick ODE integration compared to input DNS data  

          

Figure (7a). the 12 (mm) rate-stick.    Figure (7b). the 18 (mm) rate-stick. 

    

Figure (7c). the 25 (mm) rate-stick.   Figure (7a). the 50 (mm) rate-stick. 

Spherical Imploding Detonation: A study of converging detonation waves 

A   ( ) relation has been shown to be able to predict the motion of a diverging detonation that 

has a positive curvature. A detonation can be converging in certain configurations. In this case, a 

quasi-steady detonation cannot be mathematically determined by the generalized CJ condition 

because the thermicity condition would not vanish with a positive detonation curvature. In the 

literature a common treatment is a simple extrapolation of the steady   ( ) curve for a diverging 



detonation into the region of positive curvature. Forcing the completion of a detonation occurs at 

the sonic locus indicates that a third turning point must exist in the region of negative curvature 

[12]. However there has been no experimental result to support this conclusion. The issue of 

using DSD to predict the motion of front with negative front curvature has not been well 

addressed. In this study we performed DNS simulations for a spherically converging detonation 

with various initial detonation sphere radii. The results show that a steady   ( ) does not 

explain the size effect. However we observed approximately a unique solution that depends on 

the relative radius. Under the assumption that the motion of the wave front of a spherical 

converging detonation can be described by a surface evolution law, we propose a relation 

between curvature and acceleration in the case of an over-driven detonation. 

The DNS result for a spherically converging LX-17 detonation 

A series runs of one dimensionally spherically converging detonation of LX-17 was performed 

with ARES runs using the Ignition and Growth reactive burn model. The Ignition and Growth 

model was chosen since it is well-tested for a large variety of problems.  A fine resolution of 64 

zones/mm was chosen to ensure convergence of the results.  The front-velocity is plotted against 

radius with the initial radii 10 mm, 20 mm, 40 mm, and 80 mm in fig. 8. 

 

Figure 8. Front velocity vs. radius plot for DNS simulation of a spherically converging LX-17 

detonation for initial radii of 10 mm, 20 mm, 40 mm, and 80 mm. 

Because the front curvature is twice the inverse of the radius, the above plot is equivalent to a Dn 

(κ) plot. Since curves do not converge to a single one, this result means a converging spherical 

detonation cannot be described by a steady   ( ) relation. 

However, let the initial radius be  , we observed a unique curve that all solutions converge after 

shock initiation has finished in the space of the non-dimensional length variable    , shown in 

fig. 9. 



   

 

Figure 9.  Front velocities vs. relative radius plot for the DNS simulation of a spherically 

converging LX-17 detonation. R is the position of the detonation front, and R0 is the initial 

position of the detonation front.  Except the part near initial radius where the detonation is being 

initialized, all the curves collapse to a single one. 

A velocity-curvature-acceleration front evolution law for LX-17 

To describe a spherically converging detonation, we propose a velocity-curvature-acceleration 

relationship as the follows 

  ̇   
 

 
    (  )      (9)  

Where the curvature   can be expressed with (-2 / r), the front velocity     
  

  
,  the negative 

sign is for the detonation is moving inward. This relation has the dimensional scaling 

demonstrated in fig. 8: if the system size is doubled (thereby halving ), the acceleration of Dn is 

halved.  Applying the chain rule we have   ̇   
   

  
     

 

 (  ) is a material-dependent function. Therefore from the proposed mathematical form in  

(eq. 9), one arrives at 
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 (  )
    ( )     (10) 

 



We have employed the form  (  )  
(    ) 

 
  for LX-17 and derived an explicit solution: 
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  is the initial detonation radius.  ,  ,   are constants that can be determined with fitting of the 

shock arrival time. We define a least-squared target function for optimization that 
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 ,    (12) 

where k is an integer iterating through all the data sets from the DNS results. With a quasi-

newton method using numerical derivatives, we obtain the solution of optimization that 

           (
  

  
)                        (

  

  
) for LX-17. 

The solution is plotted below 

 

 

Figure 10. Input data vs. the solution with optimization for a spherically converging detonation. 

The red curve is lower than the green one because some of the data points are from initialization 

(the points with velocity below the CJ value (r/R > 0.8). DSD is effective after the initialization. 

 

A combined velocity-curvature-acceleration model 

 

We have calibrated a    ( ) for positive curvature that fits the rate-stick data from DNS.   

     (  )   (   (  )   )  

 

   (  )  (        )
 

 (         )
 
   (13) 



 

We have also calibrated a    ̇(    ) for negative curvature with spherically converging wave 

data from DNS 

    ̇   
 

 
    (  )   

   (  )   (    )       (14) 

 

We hope to combine them with a mathematical form that works in both the diverging and the 

converging cases.  Our proposed formula is the follows 

    ̇   
 

 
(   (  ))   (  )    (15) 

For the steady state in a rate-stick test, acceleration is small and the above formula is reduced to 

    (  )             (16) 

Then our previously obtained    ( ) for a diverging detonation is recovered. 

One can also verify that for an over-driven wave, an asymptotic line  ( 𝑛 ) = −  is there, and   

is a high order term (ℎ.𝑜. .) compared to the magnitude of curvature (2/ ) in the other case of the 

spherically converging tests as r goes to zero. Again, the formula is reduced to 

    ̇  
 

 
    (  )            (17) 

Therefore, our previously obtained   ̇(    ) for a converging detonation is recovered. Our 

proposed formula reduces to the correct formula at both limits. 

 

Fitting the DNS data with the combined velocity-curvature-acceleration relation 

 

We have observed ignorable acceleration when the steady state front is formed in our SDOT 

simulations of rate-stick tests, therefore we do not bother to change the parameters in  (  )   

In the other case, since  (  ) becomes a small curvature correction plus an exponentially 

decaying term as    goes above     , we argue that the only complexity comes from the 

constant added to the curvature term. Luckily we again can explicitly integrate the combined 

velocity-curvature-acceleration equation. By fitting the input DNS data for a spherically 

converging LX-17 detonation once more, we obtained slightly different parameters with 

  (  )  
(    ) 

 
, where a = 0.989 is a scalar, c = 0.403624 (cm / s), which is very close 

to the sound speed of LX-17. The new fitting is plotted below 

 



     

Figure 11. Figure on left: detonation velocity vs. radius. Red curve is a fit with the combined 

velocity-curvature-acceleration relation, the greed dots are DNS data. The right figure shows the 

acceleration contours of the calibrated     ̇(    ) ,  red curve is the steady    ( ) (   ̇   ). 

 

Introduction of the package SDOT (surface-dynamical-operation-tool) 

SDOT (Surface Dynamical Operation Tool) is a compact numerical package that contains a 

particle DSD tracker, in development at LLNL. The following table roughly explains the 

meaning of the name of this package. 

Character(s) Stands for Meaning 

S First character of 

surface 

Surface 

DOT Time rate  (d/dt) Dynamical evolution 

DOT Points (or particles) Point (particle) based algorithms 

SDOT 𝑆̇ (time rate of surface) Surface dynamical Evolution 

SDOT 𝑆̇ = ds/dt => DSDT Detonation Shock Dynamical Tracker 

SDOT Initial characters for Surface Dynamical Operation Tool 

SDOT performs the following numerical operation with high accuracy / efficiency and low cost: 

geometrical intersection/inclusion; front tracking that takes arbitrary boundary; HE modelling, 

interface reconstruction; and mesh relaxation / smoothing.  

With a    ( ) function obtained from optimization and a boundary angle from the input data, the 

DSD tracker in SDOT is able to accurately recover the rate-stick front geometry. 

The marked particle DSD tracker in SDOT 



A detonation front is expressed by marked particles with this tracker. The motion of the particles 

is governed by a set of ODEs converted from the original partial differential DSD evolution 

equation [12] and can be integrated with 3
rd

 order spatial accuracy. The positions of the moving 

particles at a given time define the numerical detonation front. Because at any given time, only 

the particle positions and boundary geometry need to be carried, the information needs to be 

dealt with at a time step is small. The tracker is accurate, compact, efficient, flexible front 

tracker.  

Some of other features of SDOT tracking include the following. It uses control points and a 

geometry rule to express the HE boundary, thus it takes an arbitrary boundary and the boundary 

information is small (see figures. 8a, 8b). It also keep sharpness of profile (because intersection 

is used to deal with front intersection, see fig. 8b) when detonation fronts impact. It admits 

arbitrary initial front geometries as well. In addition, this particle tracker has the unique 

capability to simulate dead-zones in corner-turning tests. 

The spatial complexity of a DSD tracking problem is down by a dimension. A whole problem is 

reduced to moving the particles on a detonation front at a given time. The SDOT DSD tracking is 

efficient. It also takes very small memory space compared to other DSD implementations. 

Parallization may not be necessary in 2D for even a rather large problem. If necessary, a 

parallelization can be performed with ease because the algorithm depends on locality. 

Numerical examples with the SDOT DSD tracking 

Some of SDOT DSD tracking front plots (time-contours) are shown on next page (figure 12a, 

12b). The first one has a curved star-fish boundary geometry that is expressed by only 10 control 

points. The second one has a planar zig-zag boundary defined by only 12 points. Compared to a 

HE boundary with a PDE solving algorithm that requires many cell faces, even interface 

reconstruction to represent material boundaries, SDOT carries only the minimum required 

boundary information and can easily admit an arbitrary boundary geometry. This is clearly an 

advantage with SDOT. A major reason is that the SDOT boundary data can be shared by all 

processors in the case that parallelization is needed.  The SDOT tracking is also uniquely capable 

of simulating a dead-zone in a corner-turning test. It turns out that a dead-zone is a geometrical 

necessity with forcing an acute DSD angle, under the assumption that a failure curvature exists 

with a certain failure speed of a given explosive material of large activation-energy. 

 



   

Figure 12a. This boundary is defined by  Figure 12b. This boundary is defined with 

10 points and the rule of a cubic spline.   12 points and planar boundary faces.          

A detonation point source is at the left foot.   There are three detonation point sources. 

 

Figure 13 is a demonstration of dead-zone simulation with a simple corner-turning test. A linear  

   ( ) is used to governing the motion of the initially flat front. The boundary intersection angle 

is set to ( / 3).  

Simulation of dead-zones in a corner turning  

The DSD theory predicts that when the detonation front curvature exceeds a critical value, the 

detonation speed arrives at a failure value and the corresponding detonation will not propagate. 

In a corner-turning test, a high curvature cusp appears at the corner and a dead zone is defined by 

the trace of the cusp. The cusp moves in the normal direction with the failure velocity for 

continuity of the speed. Tracing this cusp after the front has just passed the corner; a clear dead-

zone structure appears (fig. 9). The mathematical reason for the cusp to touch down the boundary 



again is that it moves slower than the particles away from it in the same front. Then the front 

normal naturally makes turn toward the boundary.  

Comparison with LANL corner-turning experiments and DNS 

We take a reasonable    ( ) for PBX-9502 [8] and applied the SDOT DSD tracker.  The 

simulated dead-zone structure is found to be in agreement to the LANL impact chamber 

experiment and direct numerical simulations [10]. We set the boundary intersection angle 

between front and the boundary to ( / 3). We also picked a failure velocity with which the time 

contours in [10] are roughly matched. It is possible to fine tune the DSD parameters to obtain a 

better match but it is not the focus in this paper. The dead zone boundary moves outwards once it 

is formed because of higher pressure in center pushed the dead-zone. There for at a later time, a 

snap shot of the dead zone will deform. This is consistent with the SDOT DSD tracking. In fig. 

10, the density plot of the DNS result, the SDOT DSD tracking, and a series of snap shots of 

DNS at different times are shown. Since the purpose of our study is to obtain a DNS quality 

solution with a simple wave tracking, this result is encouraging.  

 

   

Figure 14. From left to right: DNS density plot at a single time;  the SDOT time contours; the 

snap shot of DNS result at different times, all for the experimental set up in [10]. 

SDOT  rate-stick tests with  our combined velocity-curvature-acceleration model 

With the    ( ) function obtained from optimization and a boundary angle from the input data, 

our DSD tracker in SDOT accurately recovers the front geometry. Figure 15 shows the 

comparison of the front geometry by SDOT tracking with our calibrated Dn (κ)relation for LX-

17 and by the DNS using CHEETAH / ARES. 

 



      

Figure 15 (a, b). A linear fit for the 50 (mm) rate-stick velocity-curvature pair, and comparison 

between front geometries by the SDOT  tracking (dashed-blue curve) and DNS data (red curve). 

 

Difference between numerical tracking using a DSD law with or without acceleration 

With either the quasi-steady   ( ) relation or the unsteady   ̇(    ) relation calibrated for LX-17 

previously, the steady state with a rate-stick test can be obtained with the SDOT DSD tracking method. 

We compared numerical results from applying the two different evolution laws with a zig-zag initial 

profile, and observed numerical differences. 

First of all, the initial front is a zig-zag one that has high value of curvatures.  With the 

steady    ( ), one has to assign cut off values of the detonation velocity when curvature is out 

of the valid range.  In the other hand, with the unsteady    ̇(    ), a large curvature would be 

responded by a large acceleration against the increasing of curvature thus will quickly flatten 

high curvature. There is no need to assign any cut-off velocities in this case. Secondly, we 

observed that with the steady     ( ),  the front takes longer to reach the steady state than with 

the unsteady    ̇(    ). Furthermore, their final states do not overlap in time (figure 16). This 

raises the question that which DSD evolution law is closer to reality. We have not yet performed 

DNS for comparison. However, we believe that the acceleration effect must exist in reality. 

Besides, the unsteady    ̇(    ) does not need special treatment in the case that curvature is out 

of range, therefore is easier to implement. Furthermore we have shown that a converging 

detonation cannot be described with a steady   ( ) . Therefore we prefer the 

unsteady    ̇(    ) over the steady     ( ) , because adding the acceleration makes more sense 

physically and is easier to deal with numerically. However, as far as we know, none of the 

existing DSD packages utilize a DSD front evolution law that includes acceleration, calibrated 

for a practical HE material. Since we are able to calibrate a velocity, curvature, acceleration 



relation for LX-17 with this work, we would like to see the acceleration effect can be 

implemented in existing DSD packages with calibration of various explosives. 

Figure 16 (a, b, c). The comparison between SDOT front-tracking solution of a 50 (mm) rate-stick test, 

with the steady   ( ) (front expressed by green circles) and with the unsteady   ̇(    ) (front 

expressed by red dots). 

CONCLUSION 

Accurate detonation front geometry can be predicted to the quality of DNS with an intrinsic 

velocity-curvature-acceleration relation. We have demonstrated this with LX-17 with a 

calibrated explicit formula, for both diverging and converging waves in certain cases. Our 

approach is purely numerical and can probably be applied to other HE materials. 
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