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Abstract. The National Ignition Facility (NIF) relies on a suite of nuclear diagnostics to
measure the ncutronic output of experiments. Neutron time-of-flight (NTOF) and neutron
activation diagnostics (NAD) provide performance metrics of abselute neutron yield and
neutron spectral content: spectral width and non-thermal content, from which implosion
physical quantities of temperature and scattering mass are inferred. Spatially-distributed fange-
mounted NADs (FNAD) measure, with nearly identical systematic uncertainties, primary DT
neutron emission (o infer.a whole-sky neutron ficld. An automated FNAD sysiem is being
developed. A magnetic recoil spectrometer (MRS) shares few systematics with comparable
NTOF and NAD devices, and as such is deployed {or independent measurement of the primary
neutronic quantities. The gas-Cherenkov Gamma Reaction History (GRH) instrument records
four energy channels of time-reselved gamma emission to measure nuclear bang time and burn
width, as well as to infer carbon arcal density in experiments wiilizing plastic or diamond
capsules. A neutron imaging system (NIS) takes two images of the neutron source, typically
gated to create coregistered 13-15 MeV primary and 6-12 MeV downscaitered images. The
radiochemical analysis of gaseous samples (RAGS) instrument pumps target chamber gas to a
chemical reaction and iractionation sysiem configured with gamma counters, allowing
measurement of radionuclides with half-lives as short as 8 seconds. Solid radiochemisiry
collectors (SRC) with backing NAD foils collect target debris, where activated materials from
the targel assembly are used as indicators of neutron spectrum content, and also serve as the
primary diagnostic for nuclear forensic science experiments. Particle time-of-flight (PTOF)
measures compression-bang time using DT- or DD-neutrons, as well as shock bang-time using
D*He-protons for implosions with lower x-ray background. In concert, these diagnostics serve
to measure the basic and advanced quantities required to understand NIF experimental results,



1. NIF Nuclear Diagnostics

The National Ignition Facility (NIF) relies on a suite of nuclear diagnostics to measure the neutronic
output of experiments in inertial confinement fusion, high energy density physics, and fundamental
sciences, These instruments are essential to understanding complex stagnation physics. The NIF
Conceptual Design Review provided the framework for laser diagnostics [1] and target diagnostics [2],
including substantial conceptual design of nuclear diagnostics [3], well in advance of anticipated full-
scale fusion experiments. After commissioning, the NIF Execution Plan allowed for refinement of
design [4],[5]. Subsequent full-scale ignition experiments [6] utilized these and became the physics
and experiential basis [7] for the development described herein. New simulations have better
diagnostic output capability [8], so better relation can be made between measurements and underlying
physical quantities. Substantial evolution in capability is required to understand high convergence
implosions: plasma conditions, signatures of alpha heating, and artifacts of fundamentally-3D effects.

1.1. Newtron Time-of-Flight (NTOF)

Neutron time-of-flight (NTOF) measures the capsule neutron spectrum from three unique directions,
with a fourth under construction [9], by amplifying the light output of a bibenzy! scintillator [10]. The
physical quantities of plasma temperature and scattering mass are inferred from the measured neutron
spectrum: width and non-thermal content. To cover the widest range of yields and neutron energies,
both precision collimated [11] and robust radiation-hard designs [12] were implemented [13].
Precision and yield ranges are being substantially improved [14]. Improved analysis capabilities
include absolute timing, advanced spectrum fitting [15], and spectral moment analysis {16].

1.2 Neutron Activation Diagnostics (NADs)

Neutron activation diagnostics (NADs) provide the basic performance metric of absolute neutron yield
[17).[18),[19]. Additionally, spatially-distributed flange-mounted NADs (FNADs) measure, with
nearly identical systematic uncertainties, primary DT neutron emission to infer a whole-sky neutron
field [20]. Real-time NADs, based on a lanthanum bromide scintillator and compact gamma
spectrometer installed in the target bay, are being developed to provide immediate postshot readout of
vield in a modular and expandable integrated system design [21]. This system will have additional
physics capability to measure multiple DT neutron reactions [22] and other neutron source terms [23].

1.3. Magnetic Recoil Spectrometer (MRS)

A magnetic recoil spectrometer (MRS) shares few systematics with NTOF and NADs, and as such is
deployed as an independent measurement of the primary neutronic quantities [24],[25]. A deuterated
plastic foil converts neutrons to deuterons, and subsequent magnetic fields bend particles to CR39
plastic detectors. Particle tracks are developed by etching and are analyzed for number and size to
unfold the source neutron spectrum. The MRS measures fuel and ablator areal density (oR) of the
implosion [26], as well as detecting signatures of non-3D effects, such as bulk neutron velocity [27].

1.4. Gamma Reaction Histary (GRH)

The gas-Cherenkov Gamma Reaction History (GRH) instrument [28],[29],[30] records four energy
channels of time-resolved gamma emission to measure nuclear bang time and bum width [31], as well
as infer carbon areal density [32] in experiments utilizing plastic or diamond capsules. GRH utilizes
Cherenkov radiation emission from Compton-converted electrons to detect high-energy gamma rays of
nuclear origin. Forward-fit of the signal [33],[34] provides burn-averaged observables, including total
DT fusion yield [35], total pR, ablator pR, and fuel pR [36],{37). A Mach-Zehnder recording system
(38] meets the need for measurement of ultra-fast optical pulses [39] over large physical areas [40]
necessitated by the NIF physical expanse and complicated target bay geometry. A new instrument with
lowest-energy threshold at 1.8 MeV and high sensitivity, currently known as Super GCD (or GCD-3 at
OMEGA), is being developed for use at OMEGA and NIF [4]]. The Gamma-to-Electron Magnetic
Spectrometer (GEMS) [42],[43] is designed to measure prompt y-ray spectra during high-yield



deuterium-tritium implosions when implemented [44], and will be capable of detecting the diagnostic
signatures of alpha heating [45].

1.5. Neutron Imaging System (NIS) and Coregistered Neutron and X-ray Imaging (CNXI)

NIS takes two highly-resolved images of the neutron source, typically gated to create coregistered
primary (13-15 MeV) and downscattered (6-12 MeV) images [46],[47] after single-image
reconstruction [48]. A second neutron imaging system is being built to enable multiple views and
eventually full 3D neutron source reconstruction [49]. CNXI measures neutrons and x rays on a
common line of sight using an image plate stack with interstitial n-p converter foils [50].

1.6. Radiochemical Analysis of Gaseous Samples (RAGS)

RAGS pumps target chamber gas to a chemical reaction and fractionation system designed with pulse-
counting gamma spectrometers, allowing measurement of radionuclides with half-lives as short as 8
seconds [51],[52]. Operation of the system takes place automatically after a NIF shot to collect,
concentrate, and analyze noble gas samples for radioactive isotopic composition with efficiencies of
80-100%. Additionally, stable samples may be retrieved for mass spectroscopy. Measurements of
fission product yields support nuclear forensic science experiments [53]. Capsule tracer studies may
also be performed, probing ablator/fuel mix [54] and plasma stopping power [55].

1.7. Solid Radiochemistry Collectors (SRC)

SRCs with backing NAD monitor foils collect target debris [56). Activated gold from the hohlraum is
collected, chemically leached from collectors [57], and the ratio of '""Au (low-energy capture) to '*Au
(high-energy n,2n) is used as a spatially-averaged measure of fuel and ablator pR [58),[59]. They also
serve as the primary diagnostic for nuclear forensic science experiments [60],[61]. Additionally, the
backing NADs are used as a diagnostic of neutrons above the primary DT neutron energy created by
reactions of upscattered D and T in flight [62],[63].

1.8. Particle Time-of-Flight (PTOF)

PTOF uses a CVD diamond detector to measure the compression bang time using DT- or DD-neutrons
[64],[65]. It also measures shock bang time using D’He-protons [66] and pR evolution [67] in
implosions with lower x-ray background. A shielded detector using a bending magnet allows
interrogation of more meaningful surrogate reactions [68].
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