EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-680812

Performance Analysis, Modeling
and Scaling of HPC Applications
and Tools

A. Bhatele

January 13, 2016



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



B Lawrence Livermore
= LLNL-TR-680812
National Laboratory ALCC 2015-2016 Q2 Report

PERFORMANCE ANALYSIS, MODELING AND SCALING OF
HPC APPLICATIONS AND TOOLS

Principal Investigator: Abhinav Bhatele

Project Summary

Efficient use of supercomputers at DOE centers is vital for maximizing system throughput, mini-
mizing energy costs and enabling science breakthroughs faster. This requires complementary efforts
along several directions to optimize the performance of scientific simulation codes and the under-
lying runtimes and software stacks. This in turn requires providing scalable performance analysis
tools and modeling techniques that can provide feedback to physicists and computer scientists
developing the simulation codes and runtimes respectively.

The PAMS project is using time allocations on supercomputers at ALCF, NERSC and OLCF to
further the goals described above by performing research along the following fronts: 1. Scaling Study
of HPC applications; 2. Evaluation of Programming Models; 3. Hardening of Performance Tools;
4. Performance Modeling of Irregular Codes; and 5. Statistical Analysis of Historical Performance
Data.

We are a team of computer and computational scientists funded by both DOE/NNSA and DOE/
ASCR programs such as ECRP, XStack (Traleika Glacier, PIPER), ExaOSR (ARGO), SDMAV II
(MONA) and PSAAP II (XPACC). This allocation will enable us to study big data issues when
analyzing performance on leadership computing class systems and to assist the HPC community in
making the most effective use of these resources.

1 Project Milestones and Accomplishments

Scaling of OpenAtom We have been doing performance and scaling runs for the OpenAtom code
from the University of Illinois at Urbana-Champaign. OpenAtom is a parallel simulation software
for studying atomic and molecular systems based on quantum chemical principles. In contrast
to classical computational molecular dynamics based on Newtonian mechanics, it uses the Car-
Parrinello Ab Initio Molecular Dynamics (CPAIMD) and Born Openheimer Molecular Dynamics
(BOMD) approaches. Instead of using an empirical force function, the CPAIMD and BOMD
algorithms compute the forces acting on each atom as the summation of multiple terms derived
from plane-wave density functional theory. This allows OpenAtom to study complex atomic and
electronic physics in semiconductor, metallic, biological and other molecular systems.

We are using our allocation on Titan and Mira to better understand the communication patterns
in OpenAtom and to improve its performance. In addition, we are also running OpenAtom with
multiple beads. We are analyzing how well OpenAtom scales when we run it with a large number
of beads. In the future, we plan to integrate tempering and spins as well in our application which
would require even more computational resources.



1. We made significant advances in incorporating multi-instance method support in OpenAtom.
There are 4 kinds of multi-instance methods: (1) Path Integrals (or Beads), (2) k-points, (3)
Tempering and (4) Spins. We fully implemented and tested the Beads in OpenAtom. We
achieved strong scaling results on BG/Q (Mira and Vulcan) and BlueWaters. We have also
fully implemented k-points and Tempering and are currently in the process of doing the scaling
runs for these. As far as spin is concerned, we are not yet done with its implementation.

2. We have made OpenAtom interoperable with MPI. In this way, OpenAtom can now ben-
efit from MPI libraries. Currently, we are using ScaLAPACK MPI library for computing
eigenvalues and eigenvectors of some matrices in OpenAtom.

3. Current OpenAtom code is based on a quantum mechanical theory called DFT (density
functional theory). We are now extending OpenAtom to also include another method called
Hartree-Fock Self-Consistent Field method. We have implemented the first phase of this
method in which the outerproduct of wavefunction is calculated.

In the recent paper that we submitted (which is being reviewed), we scaled single bead of OpenAtom
for MOF dataset (with 819 states) upto 32,768 cores. For multiple-bead method, we showed strong
scaling upto 262,144 cores on BG/Q.

Charm++ version of ROSS Mira has been used to show concrete performance improvements when
running ROSS on top of Charm++ instead of MPI. Weve demonstrated these performance gains
by running two models built on top of ROSS: PHOLD and Dragonfly. In doing so we are able to
show improvements in a variety of communication patterns and work-loads by taking advantage
of Charm++s over decomposition and message-driven scheduling. Now that all of the basic func-
tionality of ROSS has been ported to the Charm++ version we will focus on adding new features
such as automatic load balancing and asynchronous GVT support, both of which are enabled by
Charm—++

Charm-+ version of Kripke Kripke is a proxy application for Sn deterministic particle transport.
We have ported Kripke to Charm-++4, and we are analyzing the performance of our parallel sweeps
with respect to overdecomposition, load balancing, and mapping decisions to better inform our
understanding of different programming models.

TraceR simulation framework Using the TraceR simulation framework, we have conducted studies to
compare different networks on Titan. These simulations have been performed for three commonly
used networks - torus, dragonfly, and fat-tree, each with 46K nodes and 3 million MPI ranks in
the prototype systems. Five mini-applications and communication kernels have been used to test
various mappings and find the best performing configuration for each of the network. Results
from these experiments have been presented as part of a PhD thesis defense and will be used in a
manuscript currently being prepared.

Development and testing of TAU Our usage of the ALCC time has primarily focused on development
and testing of the TAU performance analysis system. An area of particular effort has been testing
and improving our support for analysis of GPU accelerated code on Titan. Full support of the
software stack and underlying hardware resources by TAU will facilitate our future investigation
of the performance properties of various software projects on these platforms as well as hardware
benchmarking. Continuing effort in these areas has yielded improvements to TAU with respect
to both the hardware and software systems in use under these allocations, enabling more effective
performance analytics.



Modeling the performance of linear solvers We have initiated our study for modeling the performance
of scientific applications based on sparse linear algebra. Optimizing resource usage requires knowl-
edge of how applications will behave on the given input. This is challenging for real applications
and important for performance. To enable the optimal execution of applications that rely on linear
system abstractions or that are built on top of modules relying on such abstractions, we develop
a model to predict, given the input data, the performance of a linear solver together with a pre-
conditioner, which are common components in many scientific applications. There exist multiple
choices available for the components. We plan to predict the best choice for handling the given
input. Application modules can benefit from this in choosing the optimal components for the input
passed from other modules.

Modeling application performance We are working on using program paths as a method for ap-
plication modeling. It is both time-consuming and difficult to develop models that account for
communication-computation overlap, imbalance, and irregularity. Critical path analysis is a promis-
ing technique for developing such models because paths capture the computational sequences, ex-
cluding as much communication as possible, that determine execution time. To make critical path
analysis practical, it is necessary to make paths easier to collect (unlike a profile, it is necessary
to retain edges) and digest (because they are very long). We are developing a tool that forms
path-based models by collecting near critical paths, where paths are formed from program tasks,
and where key tasks are modeled.

Inter-job Interference Predictable performance is important for understanding and alleviating ap-
plication performance issues; quantifying the effects of source code, compiler, or system soft-
ware changes; estimating the time required for batch jobs; and determining the allocation re-
quests for proposals. Our experiments show that on a Cray XE system, the execution time of a
communication-heavy parallel application ranges from 28% faster to 41% slower than the average
observed performance. Blue Gene systems, on the other hand, demonstrate no noticeable run-to-
run variability. In this project, we focus on Cray machines and investigate potential causes for
performance variability such as OS jitter, shape of the allocated partition, and interference from
other jobs sharing the same network links [I]. Reducing such variability could improve overall
throughput at a computer center and save energy costs.

Scaling of pF3D Scaling studies on Edison and Titan will look at the impact of irregular placement of
MPI processes on the interconnect. Our expectation is that the dragonfly interconnect on Edison
will perform better than the shared 3D torus on Titan. We may also run the scaling study on
Sequoia if a system software issue on Mira continues to “gobble up” so much memory that we are
unable to run with more than one MPI process per core.

This work will measure checkpoint rates at full system scale on Mira, Titan, Edison, and Sequoia.
There are no known architectural problems that would prevent pF3D from achieving good 1/0
rates at these scales. We intend to run a test problem with a fixed number of zones per process on
these systems. We will also run with a higher zone count on Titan to reflect the increased work per
process we will use when pF3D is able to exploit GPUs. The I/O package has tuning parameters
and we will report on the best choices for each system and attempt to correlate the differences
between the file systems.

2 Project Productivity



2.1 Publications and Presentations

OpenAtom Update: A paper has been submitted for multi-instance method support in OpenAtom
project and is currently under review.

ROSS Update: A paper will be submitted to SIGSIM PADS 2016 describing the improvements
from porting ROSS, a highly scalable PDES engine written in MPI, to Charm++4, an adaptive
message-driven runtime system.

TraceR Update: Results collected on Titan have been used in the PhD thesis of Nikhil Jain, which
will be publicly available in February. Also a manuscript is being prepared for submission later this
month.

2.2  Other

We released a new version of the TAU performance analysis suite. Improvements and bug fixes
were informed in part by testing and feedback from our performance tuning efforts using target
codes on ALCC systems.

3 Center Feedback

4 Code Description and Characterization

NAMD NAMD is a highly scalable parallel molecular dynamics simulation code used for protein
folding and drug discovery at scales ranging from a few thousand to millions of atoms [2]. NAMD
is built on top of the Charm++ runtime system and is used widely at NSF and DOE centers.
WE plan to evaluate and improve the performance of NAMD for various molecular system sizes on
various platforms to support its wide user base.

OpenAtom OpenAtom is implemented on top of Charm++, which is an over-decomposition based
parallel programming framework that provides support for message-driven execution of migratable
entities empowered by an adaptive runtime system. Charm++ encourages decomposition of parallel
computation using units that are natural to the application domain, instead of dividing data into
as many pieces as processors. In particular, OpenAtom decomposes the data and the computation
across a number of chare objects, whose type and/or number only depend on the AIMD algorithm
and the desired grainsize. This allows OpenAtom to exploit the underlying mathematics via a
seamless mix of both data and functional decompositions resulting in greater expressed parallelism,
and several overlapping phases of computation combined with a longer critical path of dependent
computations. The current implementation of OpenAtom in Charm—++ is highly scalable, and has
exhibited portable performance across three generations of the IBM Blue Gene family and Cray
systems, apart from other supercomputing platforms. In OpenAtom, we heavily use the FFTW
library. We also use acml.

OpenAtom is now interoperable with MPI and uses the following libraries: BLAS, BLACS, LA-
PACK and ScaLAPACK. We are also working to incorporate another library called ELPA (Eigen-
value SoLvers for Petaflop-Applications) in OpenAtom but it has not yet been completed.

We have been using our allocation on Titan and Mira to do simulations on primarily 2 datasets,
water (256 molecules with 70 Ry cutoff) and mof (with 1000 states). For running the simulation
for 1 bead, we typically use 128 nodes (on both Titan and Mira). For scientific studies, we need to
run OpenAtom with 64 beads, which require 8192 nodes (128*%64). Once we integrate tempering



and spins into OpenAtom, we would need to do very large simulations which can easily take up the
entire machine.

pF3D pF3D [3) 4, 5] simulates laser-plasma interactions in experiments at the National Ignition
Facility (NIF) and other laser facilities. Simulating the full path of the four laser beams in one
“quad” in a NTF experiment requires over 50 billion zones and simulating the beams in three quads
requires 0.2-1.0 trillion zones. Due to the size of these simulations, scalability is a key concern
during the development of pF3D.

pF3D makes a paraxial approximation (all light is assumed to propagate at small angles relative to
the laser direction). pF3D uses spectral methods for some physics operators. Due to the paraxial
approximation, these operators result 2D FFTs that span the full x- and y-extent of the simulation.
The large amount of data moved in the course of these FFTs and their non-local character means
that high MPI message rates are required to achieve good performance. pF3D uses custom MPI rank
to torus location mappings on Blue Gene/Q systems to improve performance. pF3D performance
suffers when there is contention with other processes for link bandwidth. We will run scaling studies
on Mira, Titan, and Edison to see how pF3D performs on three very different interconnects and
attempt to identify the source of low or variable performance.

Delivering acceptably quick checkpoint restart times is one of the challenges for future large HPC
systems. The large zone counts in pF3D simulations mean that achieving high checkpoint I/O rates
is required to obtain good efficiency. We plan to measure the checkpoint performance of pF3D on
Mira, Titan, Edison, and Sequoia (an NNSA system at LLNL). The runs on Mira and Sequoia will
provide a direct comparison of GPFS and Lustre. The tests on Titan will use fewer MPI processes
with more zones per process to reflect the I/O challenges of a system with “accelerated nodes”.
Edison, in this case, serves as our “traditional x86 cluster” reference point.

Trilinos We employ Trilinos for our case study. Trilinos is a platform to develop complex multi-
physics engineering and scientific applications. In our case study of modeling the performance of
sparse linear algebra with finite element method (FEM), we generate the sparse matrix input data
using the finite element mesh discretization library, MFEM. We use these matrices for representing
four arbitrarily chosen types of physics problems using 31 mesh geometries at various discretization
order and mesh refinement level. We employ 9 linear solvers and 13 preconditioner choices from
Trilinos. Then, we executes each combination of preconditioner, solver, matrix, and problem to
produce data for empirical modeling.

DEVE DEVE (discrete event viral evolution) simulates the evolution of quasispecies of positive-
sense single strand RNA viruses, especially, Flaviviruses such as Dengue. We use allocation mostly
on modeling and development of the application. This application exhibits behaviors that are
very different from other scientific applications based on linear algebra. The model relies on the
optimistic parallel discrete event simulation paradigm. We have implemented hybrid rollbacks
based on application-level reverse computation in addition to a small amount of state savings. We
leverage the Rensselaer’s Optimistic Simulation System (ROSS), which is based on the Time Warp
mechanism. The model code is implemented in C++ employing many of boost libraries.

DEVE simultaneously simulate the random activity of RNA viruses inside of a cell as well as the dif-
fusion of virions within the cell population. We model cells in a culture medium divided into pixels,
each containing zero or more cells. Each pixel, represented as a logical process (LP), independently
simulates two major types of activities in the location, which are extracellular and intracellular.
Simulation produces the quasispecies evolved from a given initial viral and cell populations as a



result of genotype-specific translation, replication, and mutation rates as well as receptor binding
fitnesses. The results produced are written into files using MPI-IO. A typical production run will
require 10> — —107 processors for an hour.

Kripke Kripke is a proxy app developed at LLNL for Sn deterministic particle transport codes.
Kripke solves for the flux of all particles in a volume of interest at a certain time given some initial
knowledge of the materials, boundary conditions, and any particle-generating sources inside the
domain. It does so by performing parallel sweeps over the domain for every energy group and
direction of interest. We have ported it to run on Charm++ and also Adaptive MPI.

We are using the allocation on Titan to better understand the performance of sweeps at scale,
comparing Charm++s support for asynchrony with the existing MPI reference implementation as
well as that same implementation running on Adaptive MPI, an implementation of MPI on top of
Charm-++.

Code Dense Sparse  Monte FFTs Particles Structured Unstructured AMR
Name Linear  Linear  Carlo Grids Grids
Algebra  Algebra

Kripke
NAMD

OpenAtom _

pF3D

Trilinos _

Table 1: Algorithmic motifs in each of our major production codes
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