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ABSTRACT

In sparse learning, the squared Euclidean distance is a popular
choice for measuring the approximation quality. However, the
use of other forms of parametrized loss functions, including
asymmetric losses, has generated research interest. In this pa-
per, we perform sparse learning using a broad class of smooth
piecewise linear quadratic (PLQ) loss functions, including ro-
bust and asymmetric losses that are adaptable to many real-
world scenarios. The proposed framework also supports het-
erogeneous data modeling by allowing different PLQ penal-
ties for different blocks of residual vectors (split-PLQ). We
demonstrate the impact of the proposed quantile dictionaries
in image recovery, and apply the proposed split-PLQ loss ap-
proach to tag refinement for image annotation and retrieval.

Index Terms— PLQ, regularization, heterogeneous data,
sparse subspace clustering, tag refinement

1. INTRODUCTION

Deriving predictive inference from data requires both mod-
eling the generating process, and estimating model param-
eters from input data. We consider the case of the widely-
used linear model. The high-dimensional observation vector,
y ∈ RM , can be approximated using a linear combination of
representative columns in the dictionary matrix D ∈ RM×K .
The complexity of the linear model can be reduced by shrink-
ing the small entries in a to zero [1]. The sparse code vector
a can be optimized as

min
a
ρ1(y −Da) + λρ2(a) (1)

where ρ1 is the loss function that acts on the residual r := y−
Da, ρ2 is the sparsity regularizer, and λ is the regularization
penalty that controls the trade-off between loss and regular-
ization. The choice of loss function ρ1 affects the measure of
deviation between the observed and predicted data. Further-
more, the dictionary D can be adapted from the observations,
{yi}Ti=1, when T is sufficiently large, by jointly minimizing
the sum of T objectives given by (1) over D and {a}Ti=1.
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Sparse coding and dictionary learning have widespread ap-
plications in speech and audio processing [2], image anal-
ysis and recovery, compressive sampling [3], unsupervised,
supervised, semi-supervised, and transfer learning [4]. How-
ever most existing dictionary learning algorithms [5] are cus-
tomized to the case where ρ1 is the `2 loss function, which is
equivalent to assuming a Gaussian distribution for the resid-
ual between observed and predicted data. When data are con-
taminated by outliers, robust loss functions can significantly
improve performance relative to `2. Common applications of
robust losses include learning econometric models that can
tolerate a small fraction of bad years to the company, and
processing images where a few pixels are corrupted due to
saturation noise from sensors.

In this paper, we develop a flexible dictionary learning
and sparse coding framework, allowing ρ1 to be a member
of a rich class of functions suitable for many real-world chal-
lenges. This class includes penalties that are: (a) robust to
outliers, (b) block-assignable or split, acting differentially on
specified subvectors of r, and (c) asymmetric, allowing differ-
ential treatment of positive and negative elements of r. All of
these goals can be achieved by considering the general class
of piecewise linear quadratic (PLQ) penalties [6, Definition
10.20], which comprise convex penalties whose domain can
be represented as the union of finitely many polyhedral sets,
relative to which the penalty can be expressed as a general
(convex) quadratic. PLQ penalties include robust penalties
such as `1, Huber, and Vapnik, asymmetric penalties such as
quantile [7], and quantile Huber [8], as well as the classical
`2 penalty (Figure 1).

2. ALGORITHMIC FORMULATION

We begin by formulating a generalized batch dictionary learn-
ing problem:

min
A,D

ρ1(Y −DA) + ρ2(A) + ρ3(A)

subject to A ∈ A, D ∈ D.
(2)

where Y = [y1y2 . . . yT ] is the observation matrix, A =
[a1a2 . . . aT ] is the corresponding sparse code matrix, ρ1 is
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Fig. 1: Examples of smooth PLQ penalties for dictionary learning, from left to right: Huber, quantile Huber (0.3) [8], smooth
insensitive loss.

the misfit loss function ρ2 is the sparsity regularization, and
ρ3 encodes other prior information about the codes (for ex-
ample, graph structure). The constraints A ∈ A and D ∈ D
allow us to encode other prior information about the codes
and the dictionary; for example, the columns of the dictionary
may be normalized, and codes may be non-negative.

This problem is nonconvex, and is typically solved using
block-coordinate descent or variants: dictionary D and codes
A are updated in turn, with the other held fixed, using the
dictionary update and code update steps. In this paper, we
propose a modeling framework and optimization scheme to
solve the general dictionary learning problem in (2), with sim-
ple constraints onA andD. Specifically, we allow ρ1 to come
from the class of smooth PLQ penalties, or a mixture of sev-
eral PLQ penalties. A broad subclass of these penalties can be
given a natural statistical interpretation, and their conjugate
representation allows efficient optimization, enabling rapid
prototyping [9], including simple constraints A ∈ A [10].
We use this method to solve the code-update problem.

2.1. Piecewise Linear-Quadratic penalties

We briefly review the PLQ penalties [9]. Every penalty in
this class can be written as a convex conjugate to a quadratic
function on a polyhedral set.

Definition 2.1. A PLQ function is any function ρ(U,M, b,B; ·)
mapping from Rn to R = R ∪∞ having representation

ρ(C, c,M, b,B; y) = sup
Cu≤c

{
uT (b+By)− uTMu

}
, (3)

where M ∈ Sn+ the set of real symmetric positive semidefinite
matrices, c ∈ Rk, b, u ∈ Rm, C ∈ Rk×m, and b + By is an
injective affine transformation in y, with B ∈ Rm×n.

Any PLQ formulation can be optimized using an interior
point method together with the representation in (3), and poly-
hedral constraints on y can also be included [10]. The PLQ
representation allows a calculus that captures key modeling
operations. For example, the sum of two PLQ penalties is
also a PLQ penalty, and PLQ penalties are closed under affine
composition [9]. We present the following simple and practi-
cally useful lemma, showing that PLQ penalties can be easily
defined over a product space.

Lemma 2.2 (Product action). A PLQ ρ(y) = ρ1(y1)+ρ2(y2),
where y1 and y2 are sub-blocks of the vector y, is easily writ-
ten in terms of addition and affine composition; namely

ρ(y) = ρ1(M1y) + ρ2(M2y),

where M1y = y1 and M2y = y2.

2.2. Block coordinate descent

For the full nonconvex problem (2), the natural approach is
to alternate between updating sparse codes A and the dic-
tionary D, which is an instance of block coordinate descent.
When the penalties ρ1, ρ2 and ρ3 are smooth, standard con-
vergence results for block coordinate descent can be obtained
with e.g. [11, Proposition 2.7.1]. However, ρ2 is generally
non-smooth (`1 norm) and we are also interested in a general
theory that applies to the entire PLQ class. Block-coordinate
descent for a class of problems general enough to accommo-
date our framework is studied in [12], but it has a sharp con-
dition for convergence that requires ρ1 to be smooth.

Theorem 2.3. Suppose that ρ1 in (2) is differentiable, ρ2
and ρ3 are convex, and the sets D and A are convex. Then
block coordinate descent (alternating minimization in A and
D) converges to a stationary point of (2).

Proof. By assumption, ρ1 is differentiable on its effective
domain; furthermore, the entire objective is convex in A.
By [12, Lemma 3.1 and Theorem 4.1(b)], every cluster point
of the sequence generated from block-coordinate descent is a
stationary point of (2).

From the application perspective, the requirement that ρ1
be smooth is not particularly limiting, and in fact, in sparse
high dimensional regression the smoothed version of the
quantile penalty called the quantile Huber has been shown to
outperform the standard quantile penalty [8]. Further, since
PLQ penalties are closed under Moreau-Yosida smoothing
[13, Proposition 4.11], any PLQ penalty candidate for ρ1 can
be smoothed and it will still be in the PLQ class.

2.3. Dictionary update problem

In this section, we show how to solve forD, min ρ1(Y −DA),
for a fixed set of sparse codes A, and prove the convergence
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Fig. 2: Robust Image Modeling - Row 1 shows images corrupted by increasing levels of salt and pepper noise. Rows 2 and 3
show the images recovered using sparse models learned with the `2 and Huber penalties, respectively.

of our scheme. In the least squares case, it is straightforward
to implement a block-coordinate optimization scheme on the
columns ofD, obtaining closed-form updates as we loop over
the columns.

In the general case, up pose that we wish to update the
j-th column of Dj . Letting aj denote the jth row of A, dj
denote the jth column of D, and D/j to denote the dictionary
with the jth column deleted, we it is easy to see that

DA−D/jA = dja
T
j .

For penalties ρ which decompose over the columns of the
residual Y −DA, the optimization formulation to dj is given
by

d̄j = min
d
ρ1(Yj − daTj ). (4)

with Yj = Y −D/jA. For the least-squares case, this update
problem has a closed form solution; and in the general case,
the structure of the problem is very simple: the kth entry of
dj,k is determined by solving a scalar optimization problem

dj,k = argmin
dk

ρ1(Yj(k, ·)− dkaj).

Since this is a 1-dimensional optimization problem, the
Barzilai-Borwein [14] line search method is equivalent to
Newton’s method in the quadratic case (after 2 steps). Mo-
tivated by this, we use L-BFGS with Barzilai-Borwein line
search to solve (4). For quadratic ρ2, this method converges
in two iterations per column, as expected, and for general
smooth ρ2, such as the Huber, it is also rapidly convergent.
Since Theorem 2.3 requires ρ1 to be smooth, block-column
coordinate descent converges by [11, Proposition 2.7.1].

3. EXPERIMENTS

3.1. Image Recovery Using Quantile Dictionaries

In this experiment, we consider the problem of recovering
images corrupted by an additive noise. In such scenarios, a
generalizable model should ignore the underlying noise, and
describe only the relevant patterns in the image. When the
noise is Gaussian, the traditional sparse models with `2 loss
function, can be very effective in discovering patterns. How-
ever, when the noise model is non-Gaussian, the sparse model
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Fig. 3: Tag Refinement using `2 (red) and mixed `2−Huber penalties (blue) for: (a) 0%, (b) 5%, and (c) 10% training noise
levels. Using appropriate robust penalties for the tags result in improved recovery performance at all noise levels.

learned using this procedure will no longer be robust. In
our setup, the images are corrupted by salt-and-pepper noise,
which manifests as randomly occurring white and black pix-
els in the image. We propose to use the Huber penalty as the
loss function, since it can learn median patterns in the dictio-
nary, thereby resulting in a robust model.

Given an image I , we extract non-overlapping patches
of size 8 × 8, vectorize these patches into a matrix denoted
X . In this experiment, we vary the level of salt and pepper
noisefrom 1% to 15%. We learn dictionaries using different
penalties, and compare the reconstruction obtained using the
learned sparse model with the original clean image (based on
PSNR). When the model is robust, we expect that the noise
will not be a part of the dictionary elements, and hence the
reconstruction will be of high quality. Note that we do not
perform any explicit denoising, and only evaluate the quality
of the reconstruction from the model. From the results in Fig-
ure 2 the robustness of the Huber penalty is clearly evident.

3.2. Refining Tags for Image Retrieval

Textual descriptors, or tags, are useful meta-data for images
in retrieval applications. The goal of automatic image annota-
tion is to predict new tags, and possibly refine existing noisy
tags, based on information from visually similar images. In
this experiment, we will consider the problem of refining the
noisy tags of a novel image using a set of training images.

Given a set of training images, we use the Gist features
[17] to describe the visual content. The set of visual features
are stored in the matrix X , and their corresponding textual
descriptors are stored in the matrix B. For each image, a tag
vector is typically a binary vector that indicates the relevance
of each semantic topic from a pre-defined vocabulary. Given
a novel image feature y, and its noisy tag vector h, our goal is
to obtain a refined estimate h̄. We propose to exploit the cor-
relations between the features and tags, using sparse coding,

to perform tag refinement. Using the set of training exam-
ples, we construct the dictionary D = [XT γBT ]T , where
γ is the scaling factor used to balance the total energy of
features and tags. Similarly, the test sample is described as
z = [yT γhT ]T . By assuming that the features and tags are
clustered along subspaces, this structure can be discovered
using sparse coding on examples:mina ‖z −Da‖22 + λ ‖a‖1.
The refined tag vector can then be estimated as h̄ = Ba. This
formulation assumes that both features and semantic descrip-
tors can be recovered using the same set of sparse coefficients.
However, the `2 penalty is not robust, and thus unsuitable for
measuring the misfit in the reconstruction of tag vectors. To
improve the recovery, we use different penalties for modeling
visual features and tag vectors:

min
a
ρ
(1)
1 (y −Xa) + ρ

(2)
1 (h−Ba) + λ ‖a‖1, (5)

where ρ(1)1 is the `2 penalty, and ρ(2)1 is the Huber penalty.
For our experiment, we used the Corel-5K data set [18],

which contains 5, 000 images in total, and each image is an-
notated with 1 to 5 keywords. We used 4, 500 images as train-
ing data, and evaluated the performance using the rest. The
total number of keywords in the vocabulary is 260. We var-
ied the level of noise in the test tags, by randomly flipping
{1%, 3%, 5%, 10%, 15%, 20%, 25%} of the entries in each
binary tag vector. We estimated the refined tags, and com-
puted the average noise (%) in the refined tag vectors. Fig-
ure 3(a) plots the performance obtained using the `2 penalty
for the entire residual, and the mixed `2−Huber penalty. As
can be seen, the robust variant using the mixed penalty pro-
vides improved recovery at all noise levels. Furthermore, we
corrupted the tag vectors of the training data also with differ-
ent levels of noise and studied the performance deterioration
(Figures 3(b) and (c)). We found that using mixed penalties
provided superior performance in all cases.
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