
LLNL-CONF-682322

CONSENSUS INFERENCE ON
MOBILE PHONE SENSORS
FOR ACTIVITY RECOGNITION

H. Song, J. J. Thiagarajan, K. N. Ramamurthy, A.
Spanias

February 9, 2016

IEEE ICASSP 2016
Shangai, China
March 20, 2016 through March 25, 2016



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



CONSENSUS INFERENCE ON MOBILE PHONE SENSORS FOR ACTIVITY RECOGNITION

Huan Song†, Jayaraman J. Thiagarajan‡, Karthikeyan Natesan Ramamurthy?,
Andreas Spanias† and Pavan Turaga†

† SenSIP Center, ECEE, Arizona State University, Tempe, AZ
‡ Lawrence Livermore National Labs, 7000 East Avenue, Livermore, CA

? IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY

ABSTRACT
The pervasive use of wearable sensors in activity and health
monitoring presents a huge potential for building novel data
analysis and prediction frameworks. In particular, approaches
that can harness data from a diverse set of low-cost sensors
for recognition are needed. Many of the existing approaches
rely heavily on elaborate feature engineering to build robust
recognition systems, and their performance is often limited by
the inaccuracies in the data. In this paper, we develop a novel
two-stage recognition system that enables a systematic fusion
of complementary information from multiple sensors in a lin-
ear graph embedding setting, while employing an ensemble
classifier phase that leverages the discriminative power of dif-
ferent feature extraction strategies. Experimental results on
a challenging dataset show that our framework greatly im-
proves the recognition performance when compared to using
any single sensor.

Index Terms— Activity recognition, Sensor fusion,
Multi-layer graph, Time-delay embedding, Reference-based
classification

1. INTRODUCTION

The use of mobile devices and wearable sensors for activ-
ity monitoring has become an important research problem in
the recent years. By enabling the design of intelligent sys-
tems, this technology has made big strides in the healthcare
industry. Though the targeted applications can be very dif-
ferent [1, 2], the overarching goal is to analyze the data col-
lected using the inherent sensing modalities and obtain pre-
dictive inferences using low complexity algorithms. Some of
the commonly used sensors include the accelerometer, gyro-
scope, magnetometer and GPS (Global Positioning System),
to name a few. The challenges in building effective predic-
tive algorithms for such mobile devices are twofold. On one
hand, though abundantly available, the data collected from
these cheap sensors are often very noisy and unreliable. Note
that, the noise and inaccuracies can be caused by the sen-
sors themselves or due to arbitrary position/movement of the
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Fig. 1: Proposed two-stage architecture for activity recogni-
tion on mobile devices.

devices during the activities. On the other hand, it can be
prohibitive in terms of both time and resource availability,
to employ complex machine learning techniques to process
this data. While there have been significant advances in ac-
tivity recognition using data from high-performance, stand-
alone sensors attached to human body [3, 4], adapting them
to the case of low-cost, mobile sensors is not straightforward.
However, building effective activity recognition techniques
for such low-cost devices can have a significant impact in ap-
plications ranging from fitness monitoring [5] to elderly care
[6, 7].

Existing approaches for activity recognition often rely on
applying a variety of signal processing methods to collect a
large set of statistics, and using computationally intensive fea-
ture extraction techniques to identify the most relevant fea-
tures [8, 9, 10]. However, common wisdom from machine
learning can show that such elaborate feature-engineering to
limited training data need not generalize well to novel test
data. In spite of the availability of different sensors, activity



recognition is often carried out solely based on accelerome-
ter data [9]. Using data from other sensors can potentially
improve the recognition performance, and make the predictor
highly robust to measurement inaccuracies. For example, in
[11], Zhu et.al. proposed to fuse data from two inertial sen-
sors attached to waist and foot, using a neural network and
hidden Markov model classifiers.

In this paper, we propose a novel two-stage architecture
for activity recognition using multi-modal data obtained from
the same mobile device. Though we describe the proposed
algorithm using two sensors, this can be easily generalized to
other cases. In [4], Zhang et.al., developed an approach to
fuse accelerometer and gyroscope sensors by simply concate-
nating the feature vectors. However, this naive approach is
known not to exploit the inherent geometry of the different
feature domains, and hence not preferred in complex recog-
nition tasks [12, 13]. More recently, a consensus inference
approach for multimodal fusion was developed in [14]. Our
approach supports the use of more than one feature extraction
strategy on data from each sensor. For each of the sensors,
we propose to use a set of simple statistics and a shape fea-
ture that characterizes the periodic structure of the time-series
data. Figure 1 illustrates the proposed algorithm using data
from accelerometer and gyroscope sensors. The first stage of
our architecture performs sensor fusion, for each feature inde-
pendently, using a linearized variant of the multilayer graph
consensus approach in [14]. In the second stage, the two sets
of consensus features are used to build a reference-based en-
semble classifier to make the final prediction. We tested the
proposed approach with real data collected from 32 subjects
performing primitive activities, and results show that the pro-
posed two stage approach can improve the performance sig-
nificantly, when compared to using a single sensor.

2. MULTI-MODAL CONSENSUS FRAMEWORK

As shown in Figure 1, the proposed framework consists of
three steps: (a) extract statistical and shape features from seg-
ments using windowing, (b) perform sensor fusion for each
feature type across all modalities based on multilayer graphs,
and (c) use ensemble reference-based classifier on the differ-
ent types of fused feature for recognition.

2.1. Feature Extraction

We extract statistical features that have proved to be useful for
activity recognition [4, 9, 8], and investigate the time delay
embedding of the activity signals and propose to use a basic
version of shape features.

2.1.1. Statistical Features

The statistical features we extracted are: mean, median, stan-
dard deviation, kurtosis, skewness, total acceleration, mean-
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Fig. 2: Extracting shape features - (a) Raw accelerometer
data, (b) 3-D PCA representation of its delay embedding.

crossing rate, autoregressive (AR) coefficients [15] and dom-
inant frequency. Each activity signal was first windowed into
5 second non-overlapping segments. This length was cho-
sen empirically such that there is sufficient periodic structure
in each segment. The AR coefficients were extracted assum-
ing each segment to be a stationary random signal [16]. The
model order was determined to be 3 based on the Akaike in-
formation criterion [17]. The dominant frequency is defined
as the frequency component having the largest FFT magni-
tude [8]. These statistical features were extracted separately
from signals corresponding to the three axes of each sensor
and then concatenated together. For both the accelerometer
and gyroscope, the overall dimension of the statistical fea-
tures is 31.

2.1.2. Shape Feature From Time-Delay Embedding

Given a short sequence of measurements, time-delay em-
bedding (TDE) [18] is an approach for reconstructing the
underlying system dynamics. Two important parameters
for calculating the TDE are: the dimension of reconstruc-
tion space m and time delay τ . Given a time series o, the
TDE can be represented as a matrix O whose ith column is
[oi, oi+τ , oi+2τ , ..., oi+(m−1)τ ]. Figure 2 visualizes the raw
accelerometer signal for “fast walking” and its corresponding
TDE representation. In Figure 2(b), we cluster the samples
in the 3-D PCA representation of TDE and mark different
clusters with specific colors. The corresponding activity sam-
ples are then marked the same color and illustrated in Figure
2(a). Notice that across the periods of the activity signal, the
clusters map to very similar regions. This shows that TDE
represents the periodic structure of the signal as desired and
we can derive suitable features from it for the classification
task.

We extract a simple shape function based on the geomet-
ric distance property, and use it to derive our feature. The
shape function we consider measures the pair-wise distance
between samples in the TDE space, calculated as Sij = ‖oi−
oj‖2 [19]. A histogram is constructed on these distances with
specified bin size to obtain the feature.



2.2. Sensor Fusion Using Multilayer Graph

The goal of the sensor fusion is to obtain a unified feature for
each activity segment by fusing similar features from the two
modalities (accelerometer and gyroscope). We adapt the mul-
tilayer graph consensus approach in [14], where each layer
represents a single modality containing an intra- and inter-
class graph corresponding to the class relationships of the
activities. We estimate linear local discriminant embeddings
(LDE) instead of kernel embeddings on the graphs to keep the
process computationally simple. Figure 3 shows the overview
of this process for a given feature type. Note that we will ob-
tain separate consensus projections for the two feature types,
namely statistical and shape.

Denote the T modalities in one feature type as {Xt}Tt=1,
where the columns of Xt ∈ RMt×N correspond to the fea-
tures extracted from each activity segment. The label for an
activity segment i is denoted by li. We construct the intra- and
inter-class graphs for modality t and represent the adjacency
matrices as Wt and W′

t, whose elements are defined using
the Gaussian RBF with parameter γ,

wt,ij =

{
e−γ‖xt,i−xt,j‖2 , if li = lj ,

0, otherwise,
(1)

w′t,ij =

{
e−γ‖xt,i−xt,j‖2 , if li 6= lj ,

0, otherwise.
(2)

The idea of linear LDE [20] is to construct the low-
dimensional embedding Vt = UT

t Xt, Ut ∈ RMt×D (D
is the dimension of projection) being the projection matrix,
such that the neighboring points of same class in the ambient
space are still close, whereas the neighboring points from
different classes are distant. Defining the Laplacian matrices
Lt = Dt −Wt, and L′t = D′t −W′

t, where Dt and D
′

t

are the respective diagonal degree matrices, the individual
discriminant projections can be computed as the trace-ratio
maximization [21],

Ut = arg max
Ut:UT

t Ut=I

Tr(UT
t XtL

′
tX

T
t Ut)

Tr(UT
t XtLtXT

t Ut)
. (3)

Since the individual projections belong to the Grassmann
manifold, the consensus projection U can be obtained as ge-
ometric mean of the individual projections with respect to the
chordal distance [22],

d2
proj = D −

T∑
t=1

Tr(UUTUtU
T
t ). (4)

We also require the consensus projection to be discriminative
across all the modalities. Combining this with (4), the final

Fig. 3: Multilayer graph consensus algorithm for fusing fea-
tures from two different sensors.

optimization is

min
U

T∑
t=1

Tr(UTXtLtX
T
t U)− α

T∑
t=1

Tr(UUTUtU
T
t )

s.t.
T∑
t=1

Tr(UTXtL
′
tX

T
t U) = c,UTU = I

where α is the trade-off parameter. This can be posed as the
trace-ratio maximization,

max
U:UTU=I

Tr
(
UT

(∑T
t=1 XtL

′
tX

T
t

)
U
)

Tr
(
UT

(∑T
t=1 Xt

(
Lt − αUtUT

t

)
XT
t

)
U
)

and solved using the decomposed Newton’s or the iterative
trace ratio method [21]. The out-of-sample projection for the
test data {Yt}Tt=1 is obtained as Z =

∑T
t=1 U

TYt.

2.3. Ensemble Reference-Based Classification

Given different types of consensus features, it is important
that the classification mechanism can effectively combine
them. We extend the reference-based classification in [23]
using an ensemble classification approach. Different from
[23], we use the whole training data as the reference set and
we perform inference directly based on the combined similar-
ity matrix between a probe sample and the reference set. This
simplifies the classification and also takes into consideration
characteristics of both features. The detailed steps are:

1. Denote a probe sample as z and the F consensus fea-
tures as {Vf}Ff=1. We construct the similarity vector
sf , where each element s is the similarity between the
probe sample and one sample v in the training feature

Vf [23], s = 1 − γ( k
2 ,

dvz
2 )

Γ( k
2 )

. Here dvz is the Euclidean
distance between the probe sample z and the reference
sample v. Γ is the Gamma function and γ is the lower
incomplete Gamma function with parameter k.



Fig. 4: Average confusion matrix of the proposed recongition
algorithm.

2. Select the topK = 30 closest samples from every class
and form the new similarity vectors {s′

f}Ff=1.

3. Denote the elements containing similarities to class
c as (s

′

f )c. We perform the ensemble for measur-
ing the closeness of the probe sample to class c as,
Sc =

∑
f

∑
n(s

′

f )c. The inference can then be directly
carried out by assigning the label of the class having
largest Sc value.

3. EXPERIMENTS AND RESULTS

3.1. Description of the Data

Human movement in daily activities are complex in nature.
Even for the same activity, the styles can be largely differ-
ent among people. Hence, we collected data from a set of
32 subjects with diversity in gender, age, weight, and height.
The statistics of these demographic factors are shown in Ta-
ble 1. Each subject performed 5 different activities, - slow
walking, fast walking, running, slow biking, and fast biking
- using a treadmill or biking machine. The first three activi-
ties were performed twice with the subjects carrying the mo-
bile phones first in their front pockets and then in their back
pockets, whereas biking activities were performed with mo-
bile phone only in front pockets. As a result, the dataset con-
tains data from 8 classes in total. The labeling also follows
this order. The duration of each activity was 75 seconds and
the speeds were fixed. The Nexus 4 Android phone that we
used had one 3-axis accelerometer, and one 3-axis gyroscope
to measure the amount of rotation. We set the sampling rates
of the sensors at 200Hz through the Android APK interface.

3.2. Results

We performed 5-fold cross-validation on this dataset by a ran-
dom split of data according to subject label. In other words,

Table 1: Demographic statistics of the subjects
that participated in our data collection experiment.

Statistics Mean STD Range
Age 30.5 7.8 20-52

Height (cm) 174.8 9.5 155-191
Weight (kg) 73.9 14.0 42-108

in each validation the training and testing data do not come
from the same subject. This setting increases the challenge of
the task but better simulates real-world applications.

Table 2 compares the recognition rates in each step of
our framework, i.e., using the two sensors independently with
each of the features, consensus of the two sensors for each of
the features, and finally our two stage architecture. We ob-
served that, with both the feature extraction strategies, sensor
fusion performs better than using any sensor alone. However,
using the ensemble classifier improves the performance sig-
nificantly, providing an improvement of around 10% over the
best results obtained with a single sensor. Figure 4 plots the
confusion matrix for the 8 classes, obtained using the pro-
posed algorithm.

Table 2: Activity recognition performance obtained using dif-
ferent combinations of sensors and features, in comparison to
the proposed two stage architecture.

Sensor Feature Recognition
Rate

Accelerometer Shape (LDE) 57.8
Gyroscope Shape (LDE) 51.66

Shape (Consensus) 68.73
Accelerometer Stats (LDE) 70.05

Gyroscope Stats (LDE) 69.95
Stats (Consensus) 73.2

Two Stage Approach 80.14

4. CONCLUSIONS

In this paper, we developed a novel approach for activity
recognition by fusing multiple distinct features from multi-
ple sensors. In particular, we presented a linearized variant
of the multilayer graph consensus technique and effectively
combined the discriminative capabilities of multiple sensors.
Also we adopted a simple, reference-based classifier and
fused the decisions from two distinct feature sets. We ob-
served from our results that the framework can produce high
quality recognition performances. Though we demonstrated
our setup with this particular choice of sensors and features,
the proposed two stage architecture is generally enough to be
adapted to other applications as well.

Prepared by LLNL under Contract DE-AC52-07NA27344.
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