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Abstract

Visualizing key aspects of high-dimensional data remains one of the most intuitive and popular approaches to gain
new insights. In particular, creating a small set of two-dimensional, linear projections has shown to be effective.
Existing techniques either select good projections from a large subset of possible projections, which can result
in redundant views and do not scale to a large number of dimensions; or optimize for diverse views without
considering potential distortions. Furthermore, most recent techniques focus on creating linear projections which

can be difficult to interpret by application scientists.

We propose a two-stage, data driven approach to generate optimal sets of 2D axis-aligned projections. It can
scale well to higher dimensions and produce a compact, yet diverse, set of high quality projections. We show that
despite the restriction to axis-aligned projections our technique recovers the structure of high-dimensional data
well, while being easily interpretable. We illustrate the power of our technique using several high-dimensional

datasets.

1. Introduction

Exploring and analyzing high dimensional, multi-variate
data has become a ubiquitous problem in science and engi-
neering. As the dimension grows, many traditional analysis
approaches either become intractable or their results diffi-
cult to interpret. Instead, techniques from information visu-
alization are used to allow users to explore various aspects
of their data. In particular, 2D linear projections, i.e. scat-
terplots, are widely used as they are comparatively easy to
create and more intuitive than, for example, advanced non-
linear embeddings. However, even exploring all axis-aligned
projections becomes infeasible as the dimension grows and
the space of linear projections is infinitely larger. Further-
more, many of the projections are redundant, producing vir-
tually the same or rigid transformations of a scatterplot, and
typically a large portion heavily distorts the data through
unacceptable projection artifacts. Since ideally, only a very
limited number of projections should be presented to users,
selecting an informative set of projections is crucial.

One popular set of approaches is based on ranking pro-
jections based on various quality measures designed to find
correlations, clusters, or similar features [FT74a, WAGOS5,
WAGO06, Guo03]. In general, such techniques create a large
set of random projections and select the k highest ranked
ones to present to the user. However, as the dimension grows
the candidate set required for an adequate sampling of the
space of projections becomes intractably large. Furthermore,
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some of the resulting projections may be redundant, while
others with complementary information but lower ranking
are ignored. Lehmann and Theisel [LT16] address the latter
problem by iteratively selecting projections as diverse from
an existing set as possible. More specifically, they consider
a new projection to be informative if it cannot be obtained
by a linear combination of affine transformations of the ex-
isting projections. While this technique creates a small set of
diverse projections they do not take the quality of the projec-
tion into account. As such it is possible to create a diverse set
of significantly distorted views. Finally, many approaches
consider linear projections even though scatterplots of an
arbitrary linear projection are often difficult to comprehend
for users. For example, in the physical sciences users are
primarily looking for relationships between attributes, e.g.
the temperature, pressure, etc. and data embedded into non-
intuitive subspaces is unproductive at best and confusing at
worst. While ranking based approach can easily be restricted
to axis-aligned subspaces the problem of an unmanageable
search space and redundant results remains.

To address the challenges discussed above, we propose
a two-stage, data-driven approach to find an optimal set of
axis-aligned projections. In the first stage, we identify a
small set of linear candidate projections considering both
the quality of a projection, i.e. how well it preserves neigh-
borhoods, and its novelty with respect to previously inferred
projections. In the second stage, we exploit the fact that each
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Figure 1: Stage 1 - Finding a set of candidate linear projections using the proposed optimization strategy.

linear projection is equivalent to a basis for the correspond-
ing 2D subspace, and represent each projection as a sparse
linear combination of axis-aligned subspaces of the high-
dimensional data. Finally, we adopt tools from Dempster-
Schafer theory [S*76, LHMBVMO97] to define a measure of
evidence for each axis-aligned subspace that indicates its im-
pact in representing the candidate linear subspaces of the
data. Our contributions in detail are:

o A mathematical framework to find a diverse set of linear
projections by simultaneously maximizing the quality of
the projection and the distance from previously selected
ones;

e A greedy algorithm to represent a linear subspace as a
sparse set of axis-aligned subspaces. In particular, we de-
velop an Orthogonal Matching Pursuit (OMP) technique
in the space of all linear subspaces;

e A novel approach that can reveal axis-aligned subspaces
that have slightly weaker contributions to the representa-
tion of linear subspaces, but are nevertheless important in
visualizing the data;

o A new evidence measure used to sub-select and rank axis-
aligned subspaces by encoding its importance in describ-
ing the candidate projection.

We evaluate the proposed approach using a number of
standard high-dimensional datasets and present two case
studies using a protein homology dataset, and a simulation
ensemble from the National Ignition Campaign.

2. Related Work

Given the challenges in directly visualizing high-
dimensional data, techniques that identify low dimensional
projections are a logical next step. A variety of dimension
reduction techniques have been proposed in the data mining
and machine learning literature, broadly classified into
linear projection [Fuk90] and non-linear projection meth-
ods [SL0OO, BNO1]. However, in many cases the intrinsic
dimension of the data is higher than two in which case
even the best projection will not necessarily reveal the
true structure of the data. Hence, approaches that resort to
creating multiple 2D projections, in lieu of a single reduced
dimensional representation, have become popular.

Optimized 2-Dimensional Projections: Several 2D projec-
tions can be strung together into a sequence using interpola-
tion methods providing the user with an overview of high-
dimensional data. These interpolation methods are called
tours [CBCH95]. In the Grand Tour, we randomly navigate
through 2D projections of the data, and hence it is possible
that we miss the important aspects [Asi85]. In the projection
pursuit guided tour, we seek for 2D projections that expose
the interesting features of the data by optimizing a criterion
function [FT74b]. One example is the Holes criterion which
finds a projection where there is a gap between two clus-
ters of points. However, both these approaches require time-
consuming exploration by the user, and the time spent grows
exponentially with the number of data dimensions. Recently,
in [LT16], the authors propose to provide an optimized tour
of the data by identifying the low-dimensional projections
that are not redundant. In particular, they identify 2D views
of the data that are most dissimilar after accounting for the
rotation and translation of the views.

In contrast to these approaches, we propose to provide a
set of axis-aligned subspaces that are inherently easier to in-
terpret compared to arbitrary linear projections. Further, we
navigate the manifold of linear subspaces of the data in a
principled manner using Grassmann manifold theory. Our
criteria are comprised of both the quality of projection and
maximal separation from the previously selected ones.

Analyzing Axis-Aligned Subspaces: Another class of high-
dimensional analysis techniques is based on the assump-
tion that for any one feature only a small subset of at-
tributes might be relevant. These methods typically examine
all (or a large number of) possible subsets to find the most
interesting ones. Methods such as CLIQUE [AGGRYS],
SUBCLU [KKKO04], PROCLUS [AWY*99], or SURF-
ING [BPR*04] first cluster the subsets by similarity of the
data projected into the subspace [KKZ09]. They then choose
a representative for each cluster based on various filtering
criteria. In high dimensions, the number of possible sub-
spaces can be large and hence it is common to select a small
set of them that are structurally “interesting”. Some com-
monly adopted criteria include density variation of samples
across regular partitions [CFZ99] or distribution of k-nearest
neighbor distances [BPR*04]. Tatu et al. [TMF*12] pro-
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Figure 2: Stage 2 -Determining the set of axis-aligned subspaces that approximates a given candidate projection using the

proposed Grassmannian Sparse Representation algorithm.

posed a novel visualization approach that uses the SURF-
ING algorithm to find interesting subspaces, and then allows
users to navigate through summaries of these subspaces to
detect clusters. In [YRWGI13], the authors augmented this
method with dimension exploration to identify correlation
structures between data as well as between dimensions.

However, while axis-aligned subspaces are comparatively
easy to interpret, the metrics used to rank them can be mis-
leading because of the projection artifacts, and these meth-
ods do not scale well with increasing data dimensions. In-
stead of using quality metrics to measure how well a pro-
jection preserves a global structure, we use principles from
Dempster-Shafer evidence theory [S*76] to identify the sig-
nificance of axis-aligned subspaces in approximating any
candidate linear projection.

3. Overview

In this paper, our goal is to find a set of 2D axis-aligned
projections, i.e., scatter plot with respect to the original data
attributes, to visualize high-dimensional data. We develop a
two stage approach, that first computes projections on a di-
verse set of 2D linear subspaces that can preserve the neigh-
borhood topology of data (Figure 1), and then determines
a small set of axis-aligned subspaces that can approximate
each of these linear subspaces (Figure 2). Since all 2D linear
subspaces are points on the Grassmann manifold (or Grass-
mannian), we can develop a principled mathematical formu-
lation for finding a diverse set of candidate subspaces by
navigating the Grassmannian. The second stage uses sparse
approximation theory to identify a small set of axis-aligned
subspaces to approximate the candidates. Finally, we adopt
ideas from the Dempster-Shafer theory (DST) [S*76, LHM-
BVMO97] to compute a belief measure per axis-aligned sub-
space that indicates how well that subspace approximates
any of the candidate subspaces. By design, some strong at-
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tributes may dominate in the approximation of linear sub-
spaces, thereby drowning out the other attributes that may be
important for analysis. To overcome this problem, we pro-
pose to employ a dropout scheme, a recently popular reg-
ularization strategy in machine learning [SHK* 14], during
the estimation of axis-aligned subspaces.

Clarifying the terminology used in this paper, by the term
subspaces, we refer to the actual data subspaces which are
denoted using their generating orthonormal basis. For exam-
ple, the matrix with orthonormal columns, V € R?*? is the
generating basis for the 2D subspace spanned by it in the d-
dimensional space. The projection of any data point x € R4
onto Vis given by y = vix.

4. Optimizing Candidate Linear Subspaces on the
Grassmann Manifold

Let us denote a high-dimensional (HD) dataset of 7' sam-
ples in d—dimensions by the matrix X = [xy,Xp,...,X7].
Our criteria in obtaining candidate linear projections is that
the local neighborhood of the data points is preserved in
the 2D visualization after the projection. The problem of
obtaining projections that can preserve the local neighbor-
hood structure in the data has been studied extensively in
the machine learning literature. Some approaches that can
be used to achieve this are the locality preserving projec-
tions (LPP) [Niy04] and neighborhood preserving embed-
dings (NPE) [HCYZO05]. These methods require the local
neighborhood is encoded as an affinity graph G with the
data points in X as its nodes. The graph is represented using
the symmetric adjacency matrix W € RT*T | which is typ-
ically sparse. The optimal projection can be obtained using
the eigen spectrum of the graph Laplacian matrix [HeO5].
For example, in LPP, the Laplacian matrix is defined as
L =D — W, where D is the diagonal degree matrix of the
graph with Dj; = };,;W;;. Denoting the low-dimensional
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Figure 3: UCI Ecoli dataset - Diverse set of linear projections identified using the proposed Grassmann optimization technique.
In addition to being diverse, we also notice that each of them preserves the neighborhood structure effectively, as evidenced by
the Average Recall vs Average Precision curves.

projection of the HD dataas Y = V'X, the generating basis Here V; and V; are two points in Gr(d,2) and equivalently
Ve R¥*2js optimized as the orthonormal bases of two 2D subspaces.
V= argmin T r(VTXLXTV). 1) As descr.lbed earl}er,.we sequentlallhy infer a set of di-
VIXDXTV=I verse candidate projections - first using (1) to obtain a
neighborhood-preserving 2D projection for X, and then find-
The orthonormality of V is ensured by enforcing the addi- ing a subspace that provides not only a good fidelity for the
tional constraint V/'V = I. Note that, in the ideal scenario, data but also is far from the subspaces computed so far. As-
the local neighborhood of Y and X will look the same. suming that we need to compute the (j + 1)th subspace, its
. o . . . diversity is measured as the sum of distances between that
However, since the intrinsic dimensionality of data is of- . . . .
subspace and all the previous i = {1,..., j} subspaces, i.e.,

ten greater than 2, any 2D projection will invariably result
in information loss. Hence, it is necessary to consider mul-
tiple 2D projections to obtain a more comprehensive view
of the data. Similar to the approach in [LT16], we incorpo-

e

J
DX (Vi1 V) = jd —Tr (V,T»+1 y (ViViT> Vj+1> .
i=1

i=1

rate diversity (or dissimilarity) as a quality measure to in- Hence, the optimization problem for computing the j + 1t
fer multiple projections. However, instead of comparing two subspace is

2D projections, we propose to directly compare their corre- i

sponding subspaces on the Grassmannian manifold [YL14]. V1= argmin Tr v [ xLx” + o Z <ViViT> V) 7
The Grassmannian manifold Gr(2,d) parameterizes all 2D ' VIXDX! V=I i=1

subspaces of R with a well-defined geodesic distance as- 2)

sociated to it. Since each projection corresponds to a unique
point on the Grassmannian, we can sequentially infer a di-
verse set of projections that are maximally separated with
respect to the Grassmannian distance. We use a particular
version of this distance - the squared chordal distance de-
fined as

where « is the trade-off parameter between the data repre-
sentation fidelity and the dissimilarity between subspaces.
This can be solved efficiently using trace ratio optimiza-
tion approaches such as the Decomposed Newton Method
[INZ09].

5 . For demonstration, let us consider the UCI Ecoli dataset

p (ijvi) =d—||V; VjHF ) [Lic13] of protein localization sites, which contains 336

T T samples in 7 dimensions. We used the optimization in (2)
—d-Te(VIViVIV;). ) , . e

to infer a diverse set of candidate projections, and the results
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are shown in Figure 3. In addition to showing the projec-
tions, we include the Average Recall vs Average Precision
curves of the neighborhood preserved in each of the projec-
tions (details can be found in 5.4).

5. Optimal Set of Axis-Aligned Subspaces

Though the linear projections obtained in the previous sec-
tion are effective in preserving the local neighborhood of
the data, they are not easily interpretable, since each axis
in the 2D scatter plot is a linear combination of the original
attributes. While considering projections directly defined us-
ing the original data attributes can be natural solution to en-
sure interpretability, exploring the space of all axis-aligned
subspaces is very challenging. Hence, we propose to repre-
sent each candidate linear subspace using a sparse subset of
axis-aligned subspaces. The sparse subset is estimated using
the greedy Orthogonal Matching Pursuit (OMP) algorithm
on the Grassmannian (Figure 2) inspired by the sparse ap-
proximation approach proposed in [HSSL13]. The greedy
algorithm avoids the exhaustive search on all possible axis-
aligned subspaces, by computing one axis-aligned subspace
at a time to best represent the linear subspace. This step can
be solved as a feature selection problem. Following this, we
evaluate the coefficient value for that subspace using regular-
ized least squares, and compute the residual, which can be
projected back to the Grassmannian. Another axis-aligned
subspace is chosen using the same procedure to approximate
the residual and this process continues until a stopping crite-
ria on the number of subspaces or the approximation error is
met.

5.1. Sparse Approximation on Grassmann Manifold

Since a single axis-aligned subspace is not sufficient to ap-
proximate the linear subspace represented by V, we com-
pute a sparse representation in terms of the axis-aligned sub-
spaces. We denote the set of all 2D axis-aligned subspaces
by {Z;}ic o, where Q is the index set of size (‘21) The sparse
approximation on the Grassmannian is

Q]
B =argmin||VV" - Y BZ:Z] ||F.
; i=1

i

subject to ||B]lo < L. 3)

Here B € R!9! is the sparse coefficient vector, II-llo denotes
the /¢ norm that counts the total number of non-zero entries
in a vector and L is the maximum number of axis-aligned
subspaces that can be chosen (stopping criterion). The rea-
son for using a greedy algorithm to solve (3) instead of the
¢ relaxation used in [HSSL13] is that the /; minimization
will be computationally expensive since |Q| = (g) The full
algorithm is provided in Algorithm 5.1

Algorithm 5.1 Optimize for B given V and L
1. Initialize Q =2, U=V
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Greedy update of 3 and Q:
2. While Stopping Criterion is not met:

. Identify index ig of Z;, to approximate U using (6)

. Update non-zero support set: Q <— QU ig

. Compute B using (7)

. Residual computation: R = VV7 — Yico ﬁiZiZiT

. Reprojection: Update U with top two principal eigen
vectors of R

3. Output Q and Bg

Choosing a single axis-aligned subspace: We denote the
linear subspace to be represented using the axis aligned sub-
spaces as U. Interestingly, the problem of choosing an axis-
aligned 2D subspace can be viewed as a feature selection
problem. In particular, we use the Isomap-based feature se-
lection strategy proposed in [DD14], which attempts to pre-
serve the neighborhood structure in the subspace UTX. We
begin by defining the pairwise point difference between two
data points x; and X, also known as the secant as

o o0 o

X; —Xj

Sij = ——— 5~ 4)
lIxi —x;l12

Clearly, Y9_, s,-zj(n) = 1. We will define S to be the set of

all possible secants in the data X. Since we are interested in

choosing attributes of X that best preserve the structure in

U”X, we define Sy to contain only the secants with the k

nearest neighbors in that subspace:
Se={sijli=A{1,....T},j e Ni()}. (5)

Here N (i) contain the indices of the k nearest neighbors of
yi. We construct a matrix C € RISH*4 gch that each of its
rows is a secant from the set Sy, squared elementwise. The
expected squared norm of the reduced dimensional secant
vectors, where 2 out of d dimensions were chosen uniformly
at random, is 2/d. Hence the optimization problem for se-

lecting the 2 dimensions can be formulated as [DD14]
N . 2
6 = argmin||Co.— = 1|3
o d

subject to 17 =2, a0 € {0,1}¢, (6)

where o is the masking vector that will have a value of one
at positions corresponding to the two selected dimensions.
This is a computationally intensive binary integer program
which can be solved greedily by selecting one dimension of
the secant at a time. The mask vector & has a one-to-one cor-
respondence with the index set Q, and let us denote the cor-
responding index by ig. The axis-aligned subspace obtained
is denoted by Z;, € RY*2,

Updating coefficients and residual: Following Algorithm
5.1, the support set Q of the chosen axis-aligned subspaces
is updated. The coefficient B, is computed using regularized
least squares:

B = argéninllVVT — Y BZZI|[F+MBgla. (D
ieQ
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The residual R is computed and reprojected to the Grass-
mannian using the steps in Algorithm 5.1. The process of
choosing another axis-aligned subspace and updating the co-
efficients is repeated until a stopping criterion on L or the
approximation error is met.

5.2. Inferring Evidence Measures

Dempster-Shafer theory (DST) is a general framework for
reasoning with uncertainty [S*76], which we will utilize to
understand the degree of belief of each axis-aligned sub-
spaces in approximating the candidate subspaces. Let ® be
the universal set of all hypotheses, i.e., the set of all axis-
aligned subspaces in our case, and 29 be its power set. A
probability mass can be assigned to every hypothesis A € 29
such that,

u(@)=0, Y uA)=1, ®)
A€20
where @ denotes the empty set. This measure provides the
confidence that hypothesis A is true. Using DST, we can
compute the uncertainty of the axis-aligned subspaces in
representing a linear subspace using the belief (bel(.)) func-
tion, which is the confidence on that hypothesis being sup-
ported by strong evidence. The belief function is defined as
bel(A) = ) u(B). )
BCA

Using principles from DST, we can easily combine the evi-
dence from multiple sources. In our case, this corresponds to
combining beliefs of an axis-aligned subspace in describing

multiple candidate subspaces.

For the chosen axis-aligned subspaces given by Q of a
candidate subspace V, the mass corresponding to the axis-
aligned subspace Z;, where i € Q is given as u(Z;). This is
estimated by computing the reconstruction error using Z; as
¢ = |[VVT —B,Z;Z7 || and defining the mass to be

n =mnoexp(—ye'). (10)

Here 1 is a parameter in the interval [0, 1] (chosen closer to
1) that upper bounds the mass of any single hypothesis.

We apply Dempster’s combination rule to combine be-
liefs of Z; from all candidate linear projections. Assuming
that there are P linear subspaces denoted by the orthonormal
bases {V;}£_,, the total mass can be accumulated as

P .
u(Zi) =1—T](1 —noexp(—ve))). (11)
Jj=1
Here e; denotes the reconstruction error obtained for the j[h
candidate projection using the it axis-aligned subspace. The

normalized evidence measure of the axis-aligned subspace
Z,; is given by

H(Z:) Vi=1,---,]Q (12

evid|i] = m

5.3. Random Dropout Regularization

By design, our sparse approximation approach will not
choose two different axis-aligned subspaces with shared
variables if the resulting structures are very similar. How-
ever, from an anyalyst’s viewpoint, it is important to have
both an compact set of projections to look at, and the ability
to easily mine for projections with similar structures. To this
end, we develop a dropout a scheme where a small percent-
age of feature dimensions are randomly dropped when com-
puting the sparse representations. Random dropout schemes
are commonly used to improve the robustness of machine
learning algorithms such as random forests [BreO1] and deep
neural networks [SHK* 14]. We repeat this process multiple
times, R = 100, by choosing a different random subset of
attributes to drop, and generate an ensemble of sparse repre-
sentations. In all experiments reported in this paper, we used
a dropout of 10% and computed the accumulated beliefs for
each of the runs independently using (11). Using the ensem-
ble, we infer the overall belief for each hypothesis using a
max-pooling strategy as follows:

u(2:) = max ({u(ZD} ). (13)

This makes the uncertainty quantification using DST more
robust by providing a number of alternate beliefs for each
hypothesis (axis-aligned subspace).The final evidence mea-
sures are obtained using the normalization in (12).

5.4. Augmenting scatterplot visualization with
precision-recall

The fidelity of 2D projections can be effectively visualized
using a variety of quality measures. In this paper, we con-
sider the use of precision and recall of the preserved neigh-
borhood for each data point. We define the neighborhoods
for a point i in the original data and the visualization domain
as, N (i), and N}, (i) respectively where k and k" denote the
number of points in the neighborhood. The precision and re-
call values are then computed as

N (i) DN (3)]

Precision = o (14)
Recall — Ve N (0)] ZN 10l (15)

For a given k (= k') we estimate fidelity = 0.5 * Precision -+
0.5 = Recall and color each point in the scatterplot using this
measure. We can also generate curves as shown in Figure 3
by showing the average precision/recall values for a fixed k
and varying k’. The larger the area under the curve, better
the fidelity.

For the UCI Ecoli dataset, we used the proposed approach
to infer a compact set of axis-aligned subspaces and evalu-
ated their evidence measures. From the results in Figure 4,
we observe that 9 axis-aligned subspaces were picked in to-
tal and there is a smooth degradation in the evidence mea-
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Figure 5: Left-to-right: We show the optimal LPP projection, the set of axis-aligned subspaces chosen by our algorithm along
with their evidence measures, and the two axis-aligned scatterplots with the highest evidence.
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Figure 6: Protein Homology Dataset Analysis - The first seven axis-aligned subspaces inferred using the proposed algorithm,
along with their evidence measure. Using the ground truth labeled data, we train separate RBF SVM classifier in each axis-
aligned subspace and show the resulting decision surfaces. Especially for the first couple projections, the classifier is able to

separate the classes well, indicating that the projections are well chosen and preserve the main feature of the data.

sure. Since the scatterplots shown to the user are in terms of

the original attributes they are easily interpretable.

6. Experiments
6.1. Standard High-dimensional Datasets

We tested our algorithm on 5 well-known high-dimensional
datasets with different dimensions and sample sizes, and the
results are reported in Figure 4 and 5. We first extract the di-
verse set of candidate subspaces that best describe the data.
The bar charts show the evidence values for all axis-aligned
projections with non-zero evidence for their respective sub-
space. The first observation is that, in all cases, our method
selects a very small number of axis-aligned subspaces and
their evidence measures degrade smoothly. If even fewer
projections are required the k£ with highest evidence can be
chosen. However, the evidence as computed here is a relative
measure for each linear subspace, so global cut-offs would
have to be chosen with care. In Figure 5, we also show the
optimal linear projection for comparison, obtained using the
LPP method described in Section 4. Unless there are some
global structures, such as, well-separated clusters, linear pro-
jections offer little intuition as the axes are difficult to label
and to interpret. On the other hand, analysis with the orig-
inal data attributes can reveal which attributes lead to the
true clusters, and show functional relationships between at-
tributes. We demonstrate this using two case studies.

6.2. Case Study: Protein Homology Dataset

This dataset measures which protein sequences are homol-
ogous to a native sequence, evaluated using a variety of

Table 1: High-Dimensional datasets used for evaluating the
proposed algorithm.

Dataset # Dimensions  # Samples
Iris 4 150
Ecoli 7 336
Yeast 8 1484
Wine Quality 13 1599
Seawater 52 823

scores [pro]. It comprises of 2500 samples out of which 1295
sequences are marked to be homologous, while the rest are
not. Note that, we do not use these labels for our analysis but
only to validate our results. There are 74 attributes for each
sequence which correspond to alignment scores in different
regions of the sequence using a variety of strategies. Our
approach selects 9 axis-aligned projections, with non-zero
evidence values, out of 2701 possible projections. The abil-
ity to provide a compact set of scatterplots for comprehen-
sive analysis is crucial when dealing with high-dimensional
data. To validate the quality of the chosen projections we fit
classifiers (Kernel SVM) in the 2D, projected spaces to the
ground-truth labels. As shown in Figure 6, even though each
classifier is restricted to only two attributes they are still able
to separate the classes well. This indicates that the selected
projections indeed preserve the structure of the data.

6.3. Case Study: NIC Engineering Simulation Dataset

The National Ignition Campaign (NIC), a collaboration be-
tween Lawrence Livermore, Los Alamos, and Sandia Na-
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Figure 7: NIC Simulation Data Analysis - Our proposed approach reveals the presence of two true clusters in the attribute
pv and a strong correlation between the attributes dsf and totrhorba, though the projection artifacts mask the neighborhood

structure.

tional Laboratories as well as The University of Rochester
and General Atomics, is aimed at demonstrating inertial con-
finement fusion (ICF), that is, thermonuclear ignition and
energy gain in a laboratory setting. Fundamentally, the goal
of NIF is to search the parameter space to find the region
that leads to near-optimal performance. The dataset consid-
ered here is a so called engineering or macro-physics sim-
ulation ensemble in which an implosion is simulated using
various different in parameters, such as, laser power, pulse
shape etc.. From these simulations scientists extract a set
of drivers, physical quantities thought to determine the be-
havior of the resulting implosion. These drivers are then
analyzed with respect to the energy yield to better under-
stand how to optimize future experiments. The dataset, we
consider for our analysis, consists of 1304 samples with 6
drivers: (i) down scatter fraction (dsf), (ii) peak velocity (pv),
(iii) entropy (sument), (iv) (totrhorba), (v) pressure at the
centre (prcent), and (vi) hotspot radius (hsrad) and various
quality metrics most notably the resulting yield.

Figure 7 shows the 8 axis-aligned projections, which de-
scribe all candidate linear projections inferred using the
optimization of Section 4. The projection with the high-
est evidence is comprised of the attributes {dsf, totrhorba}
and it reveals a strong linear correlation. Surprisingly, the
precision-recall based fidelity measures show that this pro-
jection contains significant artifacts. However, a closer look
at the related projections {dsf, pv} and {pv, totrhorba}
shows that both of them contain two distinct clusters with
very high fidelity, leading us to the inference that the at-
tributes dsf and frotrhorba are indeed very strongly corre-
lated. Geometrically, there are two different regions in the
HD space where these two attributes are strongly correlated,
and the neighborhood structure is partially lost due to the

submitted to EUROGRAPHICS 2016.

projection. However, our algorithm is able to correctly de-
termine that this relationship is valid and in fact assigns to it
the highest evidence measure. Consulting with the relevant
experts at LLNL, we have found that the presence of two
true clusters in only certain attributes, and the attribute cor-
relation have been very useful to them in understanding this
data. In addition, earlier attempts at this analysis using linear
projections were unsuccessful as the physicists had difficul-
ties interpreting the linear axes, which ultimately led to them
abandoning the approach.

7. Conclusions

In this paper, we presented a data-driven approach to se-
lect relevant axis-aligned subspaces for visualizing high-
dimensional data. While finding a compact, yet diverse, set
of meaningful 2D projections can be valuable in informa-
tion visualization, their interpretability can be significantly
improved by using projections in terms of the original at-
tributes. To this end, we presented a two-stage approach,
which first identifies a diverse set of high-fidelity linear pro-
jections, and then picks axis-aligned subspaces that can ef-
fectively describe the neighborhood topology in the can-
didate subspaces. The proposed approach consistently pro-
vides a compact set of views, while revealing insights about
the true clusters and complex attribute relationships in the
HD data. Our greedy algorithm for finding useful subspaces
is robust and can scale to very high dimensions. Though lin-
ear projections have been commonly adopted in data anal-
ysis, it is not straightforward for an analyst to map the ob-
servations in the projected space back to the original data at-
tributes. We believe that our approach is a first step towards
bridging the gap between automated projection finding tech-
niques and user interpretability.

Prepared by LLNL under Contract DE-AC52-07NA27344.
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