‘ ! ! . LLNL-CONF-685300

LAWRENCE
LIVERM ORE
NATIONAL

wowron | POWeEr Balancing in an Emulated
Exascale Environment

M. Maiterth, M. Schulz, D. Kranzlmueller, B.
Rountree

March 8, 2016

HPPAC 2016
Chicago, IL, United States
May 27, 2016 through May 27, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Power Balancing in an Emulated Exascale Environment

Matthias Maiterth
Ludwig-Maximilians
Universitat Minchen
MNM-Team
Oettingenstr. 67
D-80538 Munich, Germany

maiterth@nm.ifi.Imu.de

Martin Schulz
Lawrence Livermore National
Laboratory
7000 East Avenue
Livermore, CA 94550, USA
schulzm@linl.gov

Dieter Kranzimaller
Leibniz Supercomputing
Centre (LRZ)
MNM-Team
BoltzmanstraB3e 1
D-85748 Garching, Germany
kranzimueller@lrz.de

Barry Rountree
Lawrence Livermore National
Laboratory
7000 East Avenue
Livermore, CA 94550, USA
rountree4@lInl.gov

ABSTRACT

Optimal utilization of power is a major concern for HPC,
and is one of the focus points on the path towards exas-
cale and approaches range from chip level to facility wide
solutions. In order to evaluate the implications of these
approaches and their impact on future system design, we
need to understand their interaction with applications as
well as their performance impact. In this work we describe
the GREMLIN framework, a general framework to emulate
system changes on existing platforms by resource restriction
or event injection. We use this framework to understand the
behavior of applications executed on power limited systems
and to evaluate a solution for one of the problems result-
ing from operating under a power limit: the translation of
manufacturing variability into heterogeneous performance,
as observed in power limited HPC environments. We show
that in a power limited environment manufacturing vari-
ability is a key source of performance imbalances and thus
non-optimal execution. We propose a Power Balancer for
redistribution of unused power and show performance gains
of up to 1.5% at small to medium node counts.

CCS Concepts

eHardware — Platform power issues; On-chip resource
management; Hardware reliability; Process, voltage and tem-
perature variations; Chip-level power issues; Simulation and
emulation; eGeneral and reference — Measurement;

Keywords

Exascale Emulation, Power Balancing, Power-Constrained
HPC, RAPL, System Software, Tools

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

HPPAC’16 May 27, 2016, Chicago, Illinois USA
© 2016 ACM. ISBN XXX-XXXX-XX-XXX/XX/XX...$XX.XX
DOL XX. XXX /XXX X

1. MOTIVATION

Power has become the critically limited resource as we
move towards exascale, driven by political and economical
targets of maximal power consumption. For example, the
Department of Energy (DOE) has set a 20MW limit and
other countries have imposed similar targets, requiring sig-
nificant advances in power reduction. While this area was
traditionally left to architectural optimization, the current
pace of architectural evolution is insufficient for reaching ex-
ascale performance while meeting these power targets within
the anticipated timeframe. We therefore need to comple-
ment hardware advances with software techniques at the
runtime and application level.

A prerequisite for this is, though, a deep understanding
of how power optimization techniques as well as the impact
of power limits influence application performance. Simula-
tion and modeling cover important aspects of this and have
been successfully used for this task, but come with their own
limitations. While simulations are highly accurate, they are
limited in the size of code they can run; models can provide
useful trends, but can be hard to construct and often lack
the accuracy to provide a deep understanding. We there-
fore must complement these techniques with additional ap-
proaches. In particular, we propose to use system emulation,
i.e., manipulating the properties of existing systems to emu-
late characteristics of future platforms. While the number of
characteristics that we can emulate are limited and depend
on the target platform, the ones we can do allow for a realis-
tic evaluation of full codes. Emulation therefore provides a
helpful additional tool in the performance evaluation arena.

In this work we rely on the GREMLIN framework [15,17],
which implements system emulation by implementing re-
source restrictions or event injection to emulate the prop-
erties of future machines. We introduce the power compo-
nents of the GREMLIN framework in detail and use their
ability to emulate the impact of power limits of future node
architectures to study the performance impact of power lim-
its. We execute our experiments on up to 256 nodes of the
Cab system, a production Linux cluster at Lawrence Liv-
ermore National Laboratory (LLNL). Our results highlight
the problem of manufacturing variability and the resulting

performance variations.

Based on the results of our study, we propose an initial ap-
proach to counter this effect at runtime using a novel power
balancing method that can mitigate the impact seen. We
then evaluate its improvements, again using the GREM-
LIN’s system emulation approach.

In summary, the contributions of this work are:

e A brief introduction to the GREMLIN framework and
a detailed description of the power GREMLINS, their
implementation, and usage.

e A study of power/performance impact on applications
in power limited environments using the GREMLIN
framework at scale.

e The development of a power balancing method as a
response to the lessons learned and and an evaluation
of our power balancer.

Section 2 gives some background and motivates why power
is the critical limiter for exascale computing. Section 3 gives
an overview of the GREMLIN framework used in this work
and introduces the Power GREMLINSs in detail. Section 4
describes our power studies using the GREMLINs and dis-
cusses their results and Section 5 introduces our power bal-
ancing approach along with its evaluation. The work con-
cludes with related work in Section 6 and the summary in
Section 7.

2. THE ROAD TO POWER LIMITED SYS-
TEMS

When projecting the power consumption of systems reach-
ing exaFLOPS or 10'® FLOPS (floating point operations per
second) based on today’s most efficient system, Shoubu at
RIKEN AICS with 7,031.58 MFLOPS/watt [7], the power
consumption would still exceed 142 MW. With an assumed
price of 0.15 Euro/kWh or about 0.16 US$/kWh' this pro-
jection reaches energy costs as high as 187 million Euro
per year or about 202.5 million US$, which would lead to
prohibitive operational costs. Consequently, RIKEN, with
30MW [19], and the U.S. Department of Energy (DOE),
with 20MW [1], have set limits for maximum allowable power
consumption for their future systems, which can only be
achieved with a dramatically increased efficiency alongside
of architectural advances in power reduction.

Today’s centers often waste significant amounts of power,
as all components are provisioned with sufficient power to
run all components at full power all the time, yet this rarely
happens. Instead, we should consider provisioning at ex-
pected or average power, or even below that, to allow sys-
tems to fully exploit their power budgets, while introducing
hard power caps to guard against spikes that would exceed
the provisioned power.

However, while allowing for significantly higher power effi-
ciency, this leads to new challenges: the use of power capping
exposes performance reductions caused by processor manu-
facturing variability. While these were previously masked
by the ability to adjust the power consumption to compen-
sate for less efficient hardware, adding a power cap removes

We use the current industry energy prices in Germany,
which apply to the LRZ, one of the largest compute centers
in Europe and home of some of the co-authors as a typical
example.

this ability and forces processors to expose their varying ef-
ficiency in terms of performance variability. This introduces
a new source of performance heterogeneity to systems, mak-
ing optimizations harder and impeding load balance efforts.
We therefore require new techniques to mitigate these effects
and to provide users a predicable and performance portable
platform, even in power limited environments.

3. THE GREMLIN FRAMEWORK

A wide range of techniques exist to explore the perfor-
mance of future systems. They range from abstract models
to detailed architectural simulation. However, both of these
extremes have their pros and cons: abstract models enable
the fast evaluation of a wide range of parameters to un-
derstand basic tradeoffs, but often lack details for accurate
absolute estimates; simulation toolkits provide excellent de-
tails, while being complex, slow and often unable to cover
realistic codes.

3.1 The Role of System Emulation

Emulation seeks to cover these gaps and to provide an
additional and complementary technique: the basic idea is
to alter the characteristics of components, resources or ratios
of resources in existing large scale systems, so that they
match the expacted characteristics of future systems. This
enables us to emulate future generation machines, such as
for example an exascale like execution environment, for the
individual resource of interest, and allows to apply this on
current machines at scale, running complete and realistic
codes at native speed.

3.2 GREMLIN Concept and Implementation

The GREMLIN framework, developed as part of the DOE
Co-Design center ExMatEx, is designed to provide a flexible
emulation environment targeted a wide range of character-
istics. It relies on techniques like resource restriction (in
hardware or software) or event injection (including but not
limited to fault injection) to change the properties of the
targeted components or resources. Further, it allows each
aspect of the hardware emulation and its concomitant re-
source restriction to be controlled separately by design, us-
ing a highly modular approach of the GREMLINs — each
technique used to impact a component or resource is imple-
mented as its own module, i.e., its own GREMLIN, and the
system then allows users to compose independent GREM-
LINs as needed.

For instrumentation and startup, the GREMLIN frame-
work relies on the MPI profiling interface, PMPI, to inject
itself transparently into the execution of a target application
and uses the P"MPI tool [18] to compose as many indepen-
dent GREMLINs as needed for a particular study. Each
GREMLIN is itself implemented as an independent PMPI
tool and is linkable statically at compile time or dynami-
cally using the LD_PRELOAD mechanism. The concept of the
Framework is shown in Figure 1, which also shows the abil-
ity to control key parameters of each GREMLIN, enabling
the control of different degrees of interference or injection.

3.3 Categories of GREMLINSs

Existing GREMLINs can be grouped into three different
categories: Power, memory, and resilience. While we focus
on power GREMLINSs in this work, we first briefly describe
the other two categories:

Multinode job (e.g, MPI) .

Applications Applications Applications
"~ Measurement Measurement | . Measurement |
[e]
GREMLIN Env. GREMLIN Env. g GREMLIN Env.
“Power GREMLIN | S
2
Architecture Architecture % Architecture
Rank 0 Rank 1 © Rank i / Clone 0
S —— .
) —
g Applications
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr) S Measurement ~
GREMLIN Env.
ST " Fault GREMLIN |

Control Architecture

Rank i / Clone M

. y,

Front end node

Figure 1: The architecture of the GREMLIN frame-
work.

Memory GREMLINs emulate properties of future mem-
ory systems by artificially limiting resources in the memory
system, such as available memory or memory bandwidth.
They are typically implemented by some form of resource
stealing, i.e., the consumption of a targeted resources by
a separate thread contending with the application. By in-
ducing these restrictions increased memory pressure, e.g.,
caused by increased numbers of cores per node or NUMA-
domains can be emulated, as increased on-node parallelism
combined with a slower increase in memory size and memory
bandwidth the per node bandwidth will decrease. Details of
a set of possible memory GREMLINs addressing these ques-
tions are described by Casas et al. [4].

Resiliency GREMLINs are used to study the impact of
failures in the overall system. With an increase in number
of total components the likelihood of failure in the overall
system will also increase, and this increase can be emulated
by introducing artificial faults using fault injection. This can
also serve as a testbed for resiliency models to be introduced
in next generation communication models, for example as
planned for MPI 4.0 [16]. The method of fault injection
used by the resilience GREMLINS is described in Schulz et
al. [17].

3.4 Power GREMLINs

Power GREMLINs can be used to study the impact of
power limited systems. In contrast to the two categories
above, which rely on software techniques for their implemen-
tation, power GREMLINs are typically implemented using
hardware features limiting processor frequencies, e.g., using
DVEFS, or setting hardware power caps, e.g., using mecha-
nisms like Intel’s RAPL (Running Average Power Limit).
In the following we use the latter for the GREMLINS, since
RAPL allows us to emulate power limited systems in a highly
realistic way and enable us to study the performance impact
of power limits on real applications.

The power GREMLINS use Intel’s MSRs [10] to read and
write power settings. Using the RAPL functionality, indi-
vidual package power limits or power caps can be set by the

- | ®0W B 8W oOllI5W
© 7 m65W o 5SW .
l
I
1
< 4
o
) |
g 1
5 i 1
v
N
|
1
1
, i
j=3 O
N
T T T T T
4 8 16 32 64

#Nodes

Figure 2: CoMD weak scaling study. Average per-
formance over five measurements. Adaption of using
violin plots [11].

MSRs to implement application wide power management.
The MSRs can also be used to read power consumption as
well. There are different kinds of power GREMLINs, some
to simply record power data to give simple power analy-
sis functionality, others to actively change and limit power
availability at different scales. Using the power GREMLINs
it is possible to emulate a globally power bound systems and
also change power settings for individual cores and pack-
ages. This gives the possibility to study power and CPU
over-provisioned systems. The power GREMLINs are used
in the power analysis in the following sections.

4. POWER ANALYSIS USING GREMLINS

Using the power GREMLINs, we emulate an execution
environment that enforces power limitations. Example use-
cases for this are to understand the application behavior in
a CPU over-provisioned system [13] and to develop opti-
mizations for these environments. A CPU over-provisioned
system, compared to a regular system, provisions less power
to each node than the node could draw at worst case, al-
lowing it in most cases to completely utilize the provisioned
power, while guarding against power spikes using power cap-
ping. This either allows to reduce and lower power budget
for a system, or more interestingly, the utilization of more
nodes at the same power budget. This can lead to bet-
ter execution times and overall resource use as shown by
Rountree et al. [14]. In the following, we investigate such
environments at scale and their performance impact using
the power GREMLIN infrastructure described above.

4.1 Experimental Setup

For our work, we use up to 256 nodes of Cab, a 500
TFlop/s production Linux cluster at LLNL. Each node has
two Intel Xeon E5-2670 CPUs with eight cores each. This

“Sandy Bridge EP” 32nm processor is specified with a clock
rate of 2.6 GHz when turbo mode is disabled. The avail-
able memory is 32 GB per node with a peak CPU memory
bandwidth of 51.2 GB/s. The interconnect used is QLogic’s
InfiniBand QDR. The TDP (Thermal Design Power) speci-
fied by Intel for the Xeon E5-2670 is 115 W, while operating
at base frequency [9]. In general, regular workloads do not
achieve this high power demand. The application studied in
the following shows a power draw of ~ 85 W [11]. Since the
system is homogeneous with the same hardware present at
each node, the same performance should be expected. How-
ever each processor shows different performance output and
power consumption as we will elaborate below.

The default and maximum power cap for the processor
used in this study is 115 W, which is equal to the TDP, which
is is the average power in watts drawn by the processor under
a Intel defined high-complexity workload, measured while
operating at base frequency with all cores active [9]. The
TDP also acts as a failsafe to guarantee optimal operation
without running into issues regarding heat generation. All
measurements have been taken with turbo boost deactivated
for better reproducibility.

4.2 Application Setup

The GREMLINs were used to analyze the behavior of
different proxy applications, namely AMG2013, CoMD and

NEKBONE for scalability studies under different power bounds.

The full analysis of the scaling studies is available in [11].
In the following we will briefly discuss the main results, by
example of CoMD, leading to the decisions important for
the work at hand.

The CoMD proxy application is a classical molecular dy-
namics code, developed for the ExMatEx Co-design cen-
ter [6]. The observed power consumption on a single node
using 16 MPI processes for CoMD is ~ 85 W.

4.3 CoMD Results

Figure 2 shows the results of weak scaling tests, i.e., con-
stant workload per process as we scale. To increase compa-
rability, we allocate a single 256 node partition, which allows
us to control node placement. To utilize all nodes allocated,
the results using fewer nodes were repeated to have full uti-
lization of the allocated processors. This is reflected in the
different widths in the violin plot. In total 64 4 node runs, 32
8 node runs, 16 16 node runs, 8 32 node runs, and 4 64 node
runs are presented, all using the full 256 nodes allocated. All
times reported are averaged over 5 runs. These runs were
repeated using different per core power limits, which allows
us to compare scaling behavior at 115 W, 95 W, 80 W, 65 W
and 50 W.

The 115 W base case as well as the 95 W case show similar
behavior and are placed beneath each other. Both experi-
ence no slowdown introduced by the power cap since the
power consumption of the application is ~ 85 W and hence
below the two power caps. Starting at a power cap of 80 W
all nodes experience a slowdown introduced by the power
limit, which is strongest at 50 W.

The result shows similar scaling behavior at all power caps
and thus indicate that power capping affects overall applica-
tion speed, but has only minor impact on scaling behavior.

As expected, though, the individual nodes experience an
increase in variance as well as performance variation with
stricter power caps. This impact can be seen in the single

node measurements of the same nodes shown in Figure 3.
This figure shows all 256 nodes ordered according to their
single node performance at 50 W. The line colored according
to the set power cap shows the slowest node of the respective
power setting. Noticeably, the order established for the 50 W
setting is not fully maintained when changing power caps,
however the overall performance trend of the nodes is still
visible.

The translation of uniform power consumption to varying-
performance output is only visible while operating under a
power limit. When running at TDP, this slowdown is trans-
lated into different power consumption, while providing the
same performance [14]. It should be noted, that observed
performance is not linear to the chosen power cap, and also
different for each individual processor. This performance
curve also changes dependent on the application character-
istics and its usage of the chip.

When running applications on multiple nodes under a
power cap, the node allocation will always contain nodes
of different quality, thus varying power consumption and
speed. When using these nodes for multi node runs the per-
formance is affected by the slowest node as shown in [11].
This also means that the nodes faster than the colored line at
their respective power level of Figure 3 can be slowed down.
Only under the assumption of no communication this does
not affect the time to completion for applications executed
on multiple nodes.

S. ACTIVE POWER BALANCING

Based on the prior results, applying a homogeneous power
cap is ill suited for running multi node jobs under a power
bound. In the following we will introduce a simple approach
that slows down more efficient processors by reducing their
power budget and instead moving it to less efficient proces-
sors to aid them with catching up with the overall compu-
tation. We call this approach Power Balancing (PB).

5.1 Approach for Power Balancing

The key idea of power balancing is at follows: since the
slowest processor at a particular power cap is limiting the
overall performance of a multi node application run, the
power of all other faster processors can be reduced to be at
an equivalent speed. For this we look for the individual pro-
cessors that are still faster than the slowest processor with
power cap applied. Their power is reduced until the next
power reduction would make them slower than the slowest
processor.

The initial idea is illustrated in Figure 4. For our tests,
we select 65 W as the desired power level, since 50 W is the
vendor’s minimal recommended power setting for the E5-
2670 processor and we need a large enough room for changes
in prescribed power caps towards the minimal recommended
setting of 50 W. Figure 4 shows a small example running
on 4 nodes. Since Intel’s RAPL allows power limit control
for individual packages, and the performance differences are
already visible at package level, we use package granularity
for the power balancer.

Initially we run the target application at the desired power
level and determine the slowest package. In the example of
Figure 4 this is processor 7, or the first processor on the
4th node. The next step is to find the individual minimal
power settings for each package, where the performance is
still better than the slowest processor.

S1®5W =8W o l115W
m65W O 95W &

0 |
o oo cc o anl

o
o
N

g
g
< 006 [}
S ! ®an o @O ©
0 490 a0 SR PO T X
- Rep 9P SR QD P AR %, B T B, TR, G oo
OG%G@CDO QQQ)O%OOW&%W&J@O OOOQO&D "“‘ o Q%) Q%%o G%G °© ° o
®, A

&)(519
N
Q-
S
N

T T T T T T T T

1 32 64 96 160 192 224 256

cab Nodes (Ordered by Speed [1,2,...,n—1,n] according to SOW single node performance)

Figure 3: CoMD single-node performance variation. Average performance over five measurements. [11]

For this we reduce the power levels step by step, and stop
once the slowdown limit (red line) is exceeded. This is a sim-
ple linear search approach since the difference in response
to power changes is different for each processor. It should
also be mentioned that RAPL and the used library allows
changes in 1/8 W steps, which would allow better fine tun-
ing. This was not used since 1 W steps suffice for exploring
the possibilities of this solution.

Figure 4 shows a dashed purple line connecting the 65 W
processor performance. The dashed blue line shows the
power settings selected with each individual processor per-
formance at equal or better performance than the slowest
processor while requiring less overall power.

Using these power balanced settings the results of a multi
node run should show the same performance while requiring
less power. The slowest node is unchanged while the faster
nodes require less power. A caveat here is that the individual
power settings are measured individually and no communi-

N

[65W
_ 64w

= B 63W

S B 62W

—

time [s]

11.6
|

11.2

1 2 3 4 5 6 7 8
8 Packages (on 4 Nodes)

Figure 4: Harmonizing the package performance by
reducing the individual power settings to match the
slowest package’s performance.

cation behavior of the application is considered. Using these
power settings in a multi node run actually results in a slow-
down of the application, which is not the desired outcome
of this technique.

This negative outcome can be overcome by reintroducing
the saved power in a uniform way. The individual processors
now show equalized performance while using different power
settings. When reintroducing the saved power in a uniform
manner, the harmonized performance stays equal and the
overall application is sped up since all processors run at a
higher power limit. The global power limit is still respected
since only the saved power is used.

To visualize the potential power saving and capabilities of
this method, Figure 5 shows the same analysis as Figure 4
with 32 nodes.

Again, the red line marks the slowest processor at 65 W.
The dashed purple line shows the performance of the indi-
vidual processors at 65 W, while the dashed blue line shows
the power balanced package settings. The power savings of
this measurement sums up to a total of 129 W. Already at a
scale of 32 nodes the potentially saved power equals to being
able to power the processors of two additional packages or
one additional node, equaling a power consumption of 130 W
at the power limit of 65 W. The easier and more promising
option is to reintroduce the power to the already available
nodes. The power limit of every node can be increased by
2W, equal to 128 W for the entire system. This speeds up
the overall computation and still requires one Watt less than
the flat power limit of 65 W. This is achieved while respect-
ing the global power limit. In this case the global power
limit is 64 * 65W = 4160. After power balancing the nodes
runs at a total of 4159 W.

All processors are sped up by reintroducing the reclaimed
power from the faster processors. If the power would not
have been reclaimed from these processors, they would idle

12.0
L

= 65W
+ " 64W
L B 63W
62w

time [s]
11.8
1

11.6
1

11.4

11.2

o 61w
o 60W
o 59w

123 4 8 16 24

40 48 56 64

64 Packages (on 32 Nodes)

Figure 5: Applying power balancing of as seen in Figure 5 to 32 Nodes with a total of 129 W reclaimed.

and wait for the slow nodes to reach barriers, synchroniza-
tion points or their termination. In the following section we
evaluate the effects of our proposed power balancing method
while scaling the application.

5.2 Power Balancing at Scale

To evaluate our power balancing approach, we apply our
technique of migrating power with a goal of maintaining a
global power bound of 65 W times the number of nodes. We
run our proxy application CoMD at different scales from 4 to
64 nodes. As described above, initially we run all processors
at 66 W and then apply our power balancing method to ob-
tained individual package power settings. In order to avoid
system noise, we run the application 50 times at each node
count. The results are shown in Figure 6: the lines connect
the median values of the 50 runs at each node count. We
can see that the median of the purple 65 W runs is always
slower than the first quartiles of the blue power balanced
runs.

The scaling behavior in both cases is similar to the results
at 65 W of Figure 2. The only difference is that we inreased
the problem size for the measurement to obtain longer runs.

Using the proposed power balancing method, we gain a
mean speedup of 0.5% to 1.3% using this simple power bal-
ancing approach. This might seem like a minor improve-
ment, however this is achieved at application runtime for
free, just by removing power from places where it cannot
be used to achieve uniform speedup of all processors, once
performance is made heterogeneous.

Further, for calibration we execute short single node runs
running for a few seconds. In our case, a small problem size
takes approximately 10 seconds of execution time, which
leads to a fixed startup time that has to and can be amor-
tized at higher node counts. Our initial single node calibra-
tion detect performance variability of 5.8% at 4 nodes up
to 8.0% at 64 nodes, as the single node details in Table 1
show. The performance difference measured at 65 W for
single node performance is highly dependent on the node
allocation returned from the job scheduler, which then also
limits the maximum speedup. If running an application us-
ing a full system, the worst and the best node are by defi-
nition always present in the node allocation, leading to the
maximum potential of such a power balancing method. For

B 65SW
o PB

53
1

51

time [s]

50
1

4 4 8 8 16 16 32 32 64 64
@65 PB @65 PB @65 PB @65 PB @65 PB

#Nodes using 65 W Limit(@65) or PowerBalancing(PB)

Figure 6: Scaling study of CoMD from 4 to 64 nodes
as violin plots using flat power limit and power bal-
ancing.

a general job submission, however, this is not the case and
only subsets of the system are available. Our results were
obtained while using a normal job scheduler returning dif-
ferent node allocations for each set of measurements.

Not all of the power reclaimed can be used for power bal-

ancing. The amount Power reclaimed—Total Power shifted

can be freed and used in different parts of the system or in a
power scheduler as proposed by Ellsworth et al. [5]. The re-
ported PB Mean speedup reported in Table 1 is the speedup
obtained from applying the method at the respective node
counts. The power that can not be reapplied for speeding
up processors is always smaller than the amount of packages
available to the application.

Table 1: Additional Performance Values regarding
Figure 6

Perfor- Power

mance Power | imp. per | Total PB

difference | re- Pack- Power | Mean
Nodes | @ 65 W claimed | age shifted | speedup
4 5.75% 14 W 1w 8 W 1.15%
8 6.60% 23 W 1W 16 W 0.70%
16 6.71% 68W | 2W 64 W | 1.32%
32 7.63% 189 W | 2 W 128 W | 0.46%
64 8.05% 428 W | 3 W 384 W | 0.97%

6. RELATED WORK

With the announcement of the 20MW power constraint
the interest in power limited execution found its way to the
HPC community.

Rountree et al. [14] examine the impacts regarding man-
ufacturing variability and discusses some of the associated
implications. Chips have different power consumption, while
providing the same performance. The non uniform power
consumption translates to non uniform performance when
faced with a power limit. The power limit, however, results
in uniform power consumption. This variability differs from
chip to chip and the results elaborated in the work build a
basis for the work at hand.

When and how power limits come into play is pointed out
by a novel power scheduling approach discussed by Ellsworth
et al. [5]. The work discusses how schedulers are combined
with power management using a system wide view. Using
the novel power scheduler as proposed in the work results
in higher system utilization, but might require jobs to run
power bound. The power scheduler optimizes system wide
power management resulting in higher overall system uti-
lization. Combined with the power balancer proposed in
the work at hand, both system utilization and application
performance can be improved, since both approaches can
work together if application level power bounds are commu-
nicated. In addition to that, both approaches comply with
safely running over-provisioned systems, since both always
respect the dictated power limits.

The work of Inadomi et al. [8] on manufacturing variabil-
ity aware power budgeting takes a similar approach to power
limited supercomputing as the work at hand. Their pre-
requisite for using the framework also includes single mod-
ule test runs, however they run at minimal and maximum
CPU frequency for these measurements and assume a linear
model which are used to develop an application-dependent
variation-aware power model table. Using models and tables
the individual optimal power and frequency settings are de-
termined. The work at hand does add a flat configuration
overhead to each application run, refraining from extensive
table updates. This seems more suitable for the dynamic na-
ture of applications developed for HPC, also regarding the
changing characteristics for different input sets. Inadomi et
al., use the complete HA8K system showing the maximum
capabilities of such approaches. The work at hand shows
capabilities for realistic job allocations as seen in a normal
production system, also taking the different quality of node
allocations into account, as provided by the job scheduler.

Marathe et al. [12] propose Conductor a runtime sys-
tem combining DVFS and RAPL for power optimization
with focus on critical path analysis. Conductor has a con-
figuration step setting the optimal number of threads per
NUMA domain and setting DVFS to minimize idle dynami-
cally. RAPL is used as failsafe to prevent overstepping global
power bounds. The work at hand refrains from combining
DVFS and RAPL. Using only RAPL simplifies the redistri-
bution of power since the impact can be directly attributed
to RAPL resulting in a simpler and more controllable sys-
tem. This results in positive results even when running in
the power envelope of 50 to 115 W, as recommended by the
manufacturer.

Barker et al. [3] propose a dynamic power allocation al-
gorithm using power steering. The power steering approach
uses p-States for controlling power consumption. This does
not enforce a maximum consumption and could lead to com-
plications in systems power supply regarding large systems.
Their main contribution shows that power steering is feasi-
ble to effectively counter load imbalances.

Bailey et al. [2] show how power limited systems can be
optimized using Integer Linear Programming. The method
proposed gives a theoretical upper limit to performance im-
provements for power constrained applications.

7. SUMMARY AND FUTURE WORK

In this work we covered the GREMLIN framework, a
framework to emulate the characteristics of future machine
on current platforms. In particular, we introduced power
GREMULINs, which build on techniques like RAPL to em-
ulate future power limited systems. As our experiments
using the GREMLINs show, such systems exhibit a new
form of performance heterogeneity caused by manufactur-
ing variability, which must be mitigated using active power
balancing. We show that this can improve performance by
removing power from nodes that cannot use it and reapply-
ing the surplus to the remaining nodes in a uniform way.
The GREMLINSs are used to emulate such an environment,
which is a possible scenario for future systems. We show that
already a simple approach to redistributing power using a
power balancer is feasible at small to medium node counts
and obtain a mean speedup of up to 1.5% at runtime.

Currently, our approach requires single node measure-
ments prior to starting the application run. Performing the
power balancing process in the first seconds of the computa-
tional intensive phase is ongoing work. This requires phase
identification as well as a reliable way of measuring perfor-
mance other than end to end measurements. This is not a
trivial task since it should not be dependent on the applica-
tion, but be provided by independent system functionality.

As mentioned in Section 5, RAPL and the used library
allows power steps of as little as 1/8W. This allows for better
fine tuning of the approach and will improve power reuse.
To improve startup time, other algorithms than linear search
can reduce the time needed for node configuration. Solutions
using better search algorithms require some prior knowledge
regarding the CPU, which was not taken into account in the
initial approach.

This method of power balancing is only possible since
processors are subject to manufacturing variability, which
makes efficient search hard. The proposed method does not
rely on linear models but on actual measurements to obtain
an optimal power setting, with flat overhead. As shown in

the related work, power limited execution could very well
become the norm. Not using power balancing would then
waste resources that can be reallocated efficiently and with
a low static overhead. The method presented in this work
is applicable to current schedulers and does not make as-
sumptions about the CPU distribution or the node alloca-
tion returned from the scheduler. It can therefore easily be
integrated into any software stack and help optimize power
utilization.

8. REFERENCES
[1] Scientific Grand Challenges: Cross-Cutting

Technologies for Computing at the Fxascale Workshop,
San Diego, CA, 2009. Department of Energy Office of
Science.

P. E. Bailey, A. Marathe, D. K. Lowenthal,

B. Rountree, and M. Schulz. Finding the limits of
power-constrained application performance. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 15, pages 79:1-79:12, New York, NY,
USA, 2015. ACM.

K. J. Barker, D. J. Kerbyson, and E. Anger. On the
feasibility of dynamic power steering. In Proceedings of
the 2Nd International Workshop on Energy Efficient
Supercomputing, E2SC 14, pages 60-69, Piscataway,
NJ, USA, 2014. IEEE Press.

M. Casas and G. Bronevetsky. Active measurement of
memory resource consumption. In Proceedings of the
2014 IEEE 28th International Parallel and Distributed
Processing Symposium, IPDPS ’14, pages 995-1004,
Washington, DC, USA, 2014. IEEE Computer Society.
D. A. Ellsworth, A. D. Malony, B. Rountree, and

M. Schulz. POW: system-wide dynamic reallocation of
limited power in HPC. In T. Kielmann,

D. Hildebrand, and M. Taufer, editors, Proceedings of
the 24th International Symposium on
High-Performance Parallel and Distributed
Computing, HPDC 2015, Portland, OR, USA, June
15-19, 2015, pages 145-148. ACM, 2015.

ExMatEx Team at Los Alamos National Laboratory
and Lawrence Livermore National Laboratory.
ExMatEx — DoE exascale co-design center for
materials in extreme environments, 2014.
www.exmatex.org (Accessed on 2015-10-01).
Green500. The green500 list - june 2015, 2015.
www.green500.org/lists/green201506 (Accessed on
2015-09-30).

Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi,

B. Rountree, M. Schulz, D. Lowenthal, Y. Wada,

K. Fukazawa, M. Ueda, M. Kondo, and I. Miyoshi.
Analyzing and mitigating the impact of manufacturing
variability in power-constrained supercomputing. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 15, pages 78:1-78:12, New York, NY,
USA, 2015. ACM.

Intel Corporation. Intel xeon processor e5-2670
specifications, 2012. http://ark.intel.com/products/
64595 /Intel- Xeon- Processor-E5-2670-20M-Cache-2_
60- GHz-8_00-GTs-Intel-QPI (Accessed on
2015-11-27).

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, volume 3B, 14-32. Intel
Corporation, Sept. 2015.

M. Maiterth. Scalability under a Power Bound using
the GREMLINs Framework. Master’s thesis,
Ludwig-Maximilians Universtitdt Miinchen, Feb. 2015.
A. Marathe, P. E. Bailey, D. K. Lowenthal,

B. Rountree, M. Schulz, and B. R. Supinski. High
Performance Computing: 30th International
Conference, ISC High Performance 2015, Frankfurt,
Germany, July 12-16, 2015, Proceedings, chapter A
Run-Time System for Power-Constrained HPC
Applications, pages 394-408. Springer International
Publishing, Cham, 2015.

T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz,
and B. R. de Supinski. Exploring hardware
overprovisioning in power-constrained, high
performance computing. In Proceedings of the 27th
International ACM Conference on International
Conference on Supercomputing, ICS '13, pages
173-182, New York, NY, USA, 2013. ACM.

B. Rountree, D. H. Ahn, B. R. de Supinski, D. K.
Lowenthal, and M. Schulz. Beyond DVFS: A first look
at performance under a hardware-enforced power
bound. In 26th IEEE International Parallel and
Distributed Processing Symposium Workshops € PhD
Forum, IPDPS 2012, Shanghai, China, May 21-25,
2012, pages 947-953. IEEE Computer Society, 2012.
M. Schulz. GREMLINSs: emulating exascale conditions
on today’s platforms.
https://computation.llnl.gov/project/gremlins/
(Accessed on 2015-10-01).

M. Schulz. The Message Passing Interface: MPI 3.1
Released, Next Stop MPI 4.0. [Presentation Slides]
MPI Forum BoF at SC15,
http://meetings.mpi-forum.org/2015-11-scbof.pdf,
Nov. 2015.

M. Schulz, J. Belak, A. Bhatele, P. Bremer,

G. Bronevetsky, M. Casas, T. Gamblin, K. E. Isaacs,
I. Laguna, J. A. Levine, V. Pascucci, D. F. Richards,
and B. Rountree. Performance analysis techniques for
the exascale co-design process. In Parallel Computing:
Accelerating Computational Science and Engineering
(CSE), Proceedings of the International Conference on
Parallel Computing, ParCo 2013, 10-13 September
2013, Garching (near Munich), Germany, pages
19-32, 2013.

M. Schulz and B. R. de Supinski. Pnmpi tools: A
whole lot greater than the sum of their parts. In
Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, SC ’07, pages 30:1-30:10, New York,
NY, USA, 2007. ACM.

H. Tomita, M. Sato, and Y. Ishikawa. Report from
japan, Feb. 2014.
http://www.exascale.org/bdec/sites/www.exascale.
org.bdec/files/Talk12-tomita-sato-ishikawa.pdf
(Accessed on 2015-09-30).

Prepared by LLNL under Contract DE-AC52-07NA27344.

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text
 Prepared by LLNL under Contract DE-AC52-07NA27344.

