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What Are Earthquake Simulators?

 Computer codes which
* Solve simplified forms of the physical equations
e Typically boundary elements
* Quasi-static with some approximation to inertia

* Group the resulting time histories of slip across the
elements into earthquake events

* Multiple earthquake cycles
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Earthquake Time-dependency: Rate- and State-dependent Friction

T=u(o-p) (1) Modified Coulomb Criterion

Cc

u=u, +aln( V*)+bln(el) (2) Rate- and State-dependent
1% D .
friction

T=(0-p) (3) Constitutive Law
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Rate-term State-term

t,= Nominal coefficient of friction
V*: Reference slip rate

V: Earthquake slip rate

6: State variable

D_: Characteristic slip distance

a and b: Constitutive parameters describing the material
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RSQSim I
(Rate-State earthQuake Simulator)

Developed by Jim Dieterich and Keith Richards-Dinger at UC Riverside

o SRS

e Comprehensive simulation of fault slip phenomena:

— earthquakes, continuous creep, slow slip events, afterslip
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RSQSImM
(Rate-State earthQuake Simulator)

L e,
S

* Implement rate- and state-dependent friction effects

— Earthquake clustering effects (aftershocks and foreshocks)
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RSQSImM
(Rate-State earthQuake Simulator)
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All-California simulation
Aftershocks follow the Omori Law
for aftershock decay with time



RSQSImM
(Rate-State earthQuake Simulator)

s

BT~

e High resolution models of geometrically complex fault systems
— Up to 10° fault elements

— Range of earthquake magnitudes M=3.5 to M=8 (for 1 km? triangular elements)
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RSQSim
(Rate-State earthQuake Slmulator)

Oak Ridge F.
SPE/ - = ' 8




RSQSImM
(Rate-State earthQuake Simulator)

s

e Highly efficient code
— Good statistical characterizations from long simulations of 10° earthquakes

— Repeated simulations to explore parameter space
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What do we need to begin a simulation?

* External stressing history (from a reservoir model)
* Fault geometry

* Constitutive parameters
* Tectonic driving stress (perhaps neglect these in relatively aseismic regions)

* Initial stress conditions:
* In situ stress measurements - regional average (from global stress maps)
* Projection of the regional stress tensor (from global stress maps)
 Randomly generated heterogeneous field (some fractal distribution)
* Final stress from a large event is a previous simulation (from RSQSim)
* Evolved stress from a tectonically driven simulation (from RSQSim)

Modeling Injection-Induced Seismicity with the
Physics-Based Earthquake Simulator RSQSim

by James H. Dieterich, Keith B. Richards-Dinger, and Kayla A. Kroll
Seismological Research Letters Volume 86, Number 4 July/August 2015 1

Space-time characteristics are highly dependent on the pattern and magnitude the of initial stresses
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How do we include effects of fluid injection in RSQSim?

RSQSim itself knows nothing of pore-fluid pressure diffusion,
poroelastic effects, etc.

Must supply external stressing history

 Geomechanical reservoir model
* Changes in effective normal stress

e Poroelastic effects

Not fully coupled — no feedback
* seismic slip does not affect the permeability structure, etc.

* Preliminary experiments use a simple analytic expression for
pore-fluid diffusion (Wang, 2000).
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Fault and “Reservoir” Model
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Along Strike Distance (km)

* Linear diffusion model based on analytical solutions for a point-

Pressure Change (MPa)

source in an semi-infinite, isotropic half-space (Wang, 2000).

* Variable injection parameters:
* Well location(s)
* Injection Rate
 Diffusivity (K=

k
n¢c
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4

); permeability, porosity, compressibility, viscosity

Q =0.01 m¥s; K=0.003 m?3/s

b)

i Begin '
i Injection
1@ 0 years

Shut-in |
@ 20 years |
|
|

Distance from well = 1200m
Distance from well = 1500m
Distance from well = 2000m
Distance from well = 2500m
Distance from well = 3000m
Distance from well = 3500m
Distance from well = 4000m
Distance from well = 4500m
Distance from well = 5000m
Distance from well = 5500m

e Y

40 60

Years

80 100
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Dependency on Rate-State Pargmeters 5
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Spatial Variation due to (b-a)

** Closest point to well
Is 1200 m

22
|

18

Time (years)
Shear Stress (MPa)
14 16
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a)

Spatial Variation due to (b
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Post Shut-in Seismicity Rates

Along Strike Distance (km)

—— @ Events that occur during the injection period

—— @ Events that occur after shut-in, as the pore-fluid
pressure is rising
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- @ Events that occur after shut-in, as the pore-fluid pressure is dropping

Time at which the pore-fluid pressure starts to decrease (projection from
the row of elements at -5500 m depth, even wiht the well)
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Decay Rate with Diffusivity

-1.0

Slope
-1.5

— Post Shut-in Events; Post Shut-in Events;
Pore-fluid pressure rising —_ Pore-fluid pressure falling

-3.0

— Average

| | | |
0.003 0.004 0.005 0.006

Diffusivity (m?/s)
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Comparing Injection Histories

Is seismicity controlled by
changes in peak
overpressure or constant

injection rate?

 Constant injection duration
(70 years)

e Constant injected volume
(1.8°107 m3)

 Variable injection rate
 Constant (0.008 m3/s)
* Periodic (0.014 m3/s)
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Injection Rate (m?/s)

0

0.015

0.006 0.009 0.012

0.003

Periodic Injeciton:
@ Q=0.014 m%s
for 10 year intervals
over 70 years

Constant Injection
@ Q =0.008 m¥/s
for 70 years

|
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Pressure Change in Response to Constant and Periodic Injection Rate

Overpressure on
Element closest
to well

Overpressure (MPa)

O <t

Q =0.014 m?¥/

GL0'0 2L0'0 6000 9000
(S/¢W) 8yrey uonosluj

€000

100

50
Years
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Results: Spatial Distribution with Time

Q, .= 0.008 m%s

Closest fault
element to

well=1.2km €
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Results: Earthquake Magnitude with Time (Constant Injection Rate)

Max magnitudes increase with time
* No large, post shut-in events

4 M> 3.5 events within ~ 20 years

* Relatively constant rate
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Results: Earthquake Magnitude with Time (Periodic Injection Rate)

* Max magnitudes increase with time
 Most large events occur after shut-in
* Large events occur over ~50 years

e Earthquake rate fluctuates

104 )
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Results: Earthquake Magnitude with Time (Periodic Injection Rate)

Event # 3986; M =4.8; di—=-0.09 secs; dt=0; dt+=-0.09 secs

Origin time (yrs): 1032.688 Nucleated on patch 6532 (NA) max slip = 0.041 m

full color scale slip = 0.041 m
-4
L Decreased slip in regions
B surrounding the well, where
-5 . .
= the pore-fluid pressure is
= v We = decreasing during the shut-
= ( in period
0 e
-7 —
-8 |
2 4 6 8 10
Along Strike Distance (km)
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Results: Compare Earthquake Magnitudes with Time

Constant Q: A It : =
* Fewer large events (4 M>3.5) 107 & ,"'; ,." !‘Ap (peHOdIC Q)
 Earliest large events are smaller Q =0.014 m* ;“‘.' i -
and have longer inter-event times " $A . i
sl I o i ...+ iAp (constant Q)
Periodic Q: . A N B 4= B
* More large events (7 M>3.5), o :" : - ' : "-"‘.
especially early in the sequence = : ' /"." ' : \ ’:' '-.'.‘
* Earliest large events are biggerand o 61 | ’-,/" : Vool Vo ".
have shorter inter-event times 2 ! m ; ; o \
* Longer inter-event time after first 3 i v o . : \ 5 S
injection period §- 4 L hE B 5| y ! W
©  : R ? v L} 4
3 F © |Q=0.008 m¥s".,
.; Y 3
2
1
0 50 100
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Results: Number of Events with Time (Constant Q)

* Most events occur shortly following
injection
* Event rate decays with time

Number of Events
100 200 300 400 500 600 700
|

0
|

0 20 40
Years After Injection
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60

80
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Results: Number of Events with Time (Periodic Q)

* Early events occur mostly during first
injection period
e Later events primarily occur during the
time shut-in cycle
* Aftershocks following post shut-in
large events
* Event rate fluctuates with time, but
decreases overall

Q=0.014 m%s

Number of Events
100 200 300 400 500 600 700

0

|

0 20 40 60 80
Years After Injection
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Results: Compare Number of Events with Time

* Relatively similar history during the first
15 years

Constant Q:
* Event rates decay with time
e Highest rates within the first 25
years

Periodic Q:
* Highly variable earthquake rate
* Several periods of increased rate

Number of Events
100 200 300 400 500 600 700

0
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Q =0.014 mi/s

Q =0.008 m¥/s

20 40 60
Years After Injection

80
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Results: Compare Cumulative Number of Events with Time

S1Q=0.014 m%s
o
Lo
Constant Q: =
* Three distinct periods of events: 4 =
e 1000 - 1025: highest rate ..L; =3
 1025-1075: moderate rate =
e 1075+: quiescence -g =
* More events total e =
o (ap]
= Q =0.008 m¥/s
©
S 3.
Periodic Q: g e
* Highly variable earthquake rate & :

e Apparent increased rate leading up
to large events
* Fewer events total

1000

0

Years
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Summary: Constant vs. Periodic Injection Rates

Average Overpressure (MPa)
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B 4]
O_ AR _

B Periodic Injection Rate
A Constant Injection Rate

)

A
]
A
[ ]
Element closest to well

o Average for all fault

(7] L
Ea -
[ -

Element farthest from well
m A m

I I I I I
0.005 0.006 0.007 0.008 0.009

Average Injection Rate (m?3/s)

T
0.004

Overpressure is greater for period
injection

Average overpressure increases with
increasing injection rate

Cumulative Number of Events

4000 4500 5000 5500

3500

-| ® Periodic Injection Rate A A
A Constant Injection Rate
|
N |
A A
_ |
A |
|
I I I I I I
0.004 0.005 0.006 0.007 0.008 0.009

Average Injection Rate (m?%/s)

Constant injection rates lead to large
total number of events
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Summary: Constant vs. Periodic Injection Rates

3 -| @ Periodic Injection Rate ©-| ® Periodic Injection Rate
A Constant Injection Rate A Constant Injection Rate
o) 0 +
S 2- “
g i .
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Average Injection Rate (m?®/s) Average Injection Rate (m?3/s)

* M, increases with increased injection * More events M>3.5 with periodic
rate injection history

* M., is not systematically larger by
injection rate.

* Slopeis larger than M__, scaling by
injected volume.
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Inter-event times are inversely
related in constant average
injection rates

Relatively unaffected by periodic
injection rates
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Conclusions

e Rate-state constitutive parameters highly influence induced sequences
Injection Methods (with roughly equivalent average overpressures over time):

1. Low constant injection rates

 More events overall

* Fewer large events

* Larger events have longer inter-event times
2. Periodically injecting at high rates

* Fewer events

* More large events

e Shorter inter-event times
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