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ABSTRACT
Current large scale systems show increasing power demands,
to the point that it has become a huge strain on facilities
and budgets. Researchers in academia, labs and industry
are focusing on dealing with this “power wall”, striving to
find a balance between performance and power consump-
tion. Some commodity processors enable power capping,
which opens up new opportunities for applications to di-
rectly manage their power behavior at user level. However,
while power capping ensures a system will never exceed a
given power limit, it also leads to a new form of heterogene-
ity: natural manufacturing variability, which was previously
hidden by varying power to achieve homogeneous perfor-
mance, now results in heterogeneous performance caused by
different CPU frequencies, potentially for each core, to en-
force the power limit.

In this work we show how a parallel runtime system can
be used to effectively deal with this new kind of performance
heterogeneity by compensating the uneven effects of power
capping. In the context of a NUMA node composed of sev-
eral multi-core sockets, our system is able to optimize the
energy and concurrency levels assigned to each socket to
maximize performance. Applied transparently within the
parallel runtime system, it does not require any program-
mer interaction like changing the application source code or
manually reconfiguring the parallel system. We compare our
novel runtime analysis with an offline approach and demon-
strate that it can achieve equal performance at a fraction of
the cost.
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•Computer systems organization→Multicore archi-
tectures; •Hardware → Power and energy;
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1. INTRODUCTION
One major constraint of future High-Performance Com-

puting (HPC) systems is their power consumption. Agen-
cies have set strict targets for building an exascale machine
— e.g., the US Department of Energy has set the limit to
20MW [28] — while others, like the European Union, are
investing in novel approaches leveraging mobile technologies
to build low-power HPC infrastructures [25]. The resulting
need for reducing hardware power consumption has started
to force computer architects and vendors to include power
capping capabilities in their hardware designs. This allows
applications to more efficiently exploit their entire power
envelope of a system, while guarding the system against in-
termediate power spikes. Prior work has shown that this
can lead to significant performance benefits [24, 23].

Manufacturing variability, however, causes processors and
DRAM memories to react inhomogeneously to power con-
straints enforced by the system. While already present in
current systems, such variability has so far been hidden by
varying power consumption to achieve homogeneous per-
formance. In fact, existing studies show a variation of up
to 10% in power consumption to deliver the same perfor-
mance [27]. With the ability to vary power removed by
imposing a particular power limit, this variation becomes
visible in realized performance [18]. Further, this uneven
distribution of delivered performance is specific to each sin-
gle hardware component, since two nominally identical pro-
cessors can suffer from different degrees of manufacturing
issues. From the HPC applications perspective, this can
cause load imbalances, even if the workload is perfectly bal-
anced, resulting in significantly degraded performance. To
make this problem even worse, since such degradations are



hardware specific, it is not possible to design static or hard-
ware agnostic techniques to mitigate this induced new type
of load imbalance.

In this paper, we present a runtime guided hardware/soft-
ware reconfiguration approach that effectively mitigates the
effects of inhomogeneous hardware behavior in low power
environments. Further, we demonstrate that classical work
stealing and load balancing techniques [4, 3, 26, 36] are in-
sufficient to mitigate this performance issue. In the context
of a NUMA node composed of several multi-core sockets,
our technique is able to efficiently distribute a total node
power budget among the node’s different sockets, while also
adjusting their corresponding concurrency levels. In order
to enable this, our approach dynamically selects the best
power/concurrency level for each socket involved in the com-
putation by performing a light weight initial training phase.
This initial training phase selects the optimal power/con-
currency level to be assigned to each socket to reduce ap-
plications’ load imbalance induced by power/performance
inhomogeneity and thus increase performance.

The contributions of our paper are as follows:

• We provide a precise description of the limitations of
current, state of the art load balancing techniques when
dealing with inhomogeneous hardware behavior under
node-level power limits.

• We demonstrate how uneven power and thread as-
signments to sockets can mitigate the inhomogeneous
hardware behavior in dual socket NUMA nodes, re-
sulting in up to 30% increased performance for some
applications.

• We describe a dynamic runtime technique to discover
the optimal power/concurrency assignment for each
application on a given parallel machine that provides
up to 22% performance improvements for some appli-
cations.

This paper is organized in the following way: Section 2 de-
scribes the irregular behavior that multi-core architectures
exhibit when operating under restricted power budgets and
discusses ways to mitigate it. Section 5 shows a system-
atic runtime solution to mitigate this behavior. Section 6
displays a comprehensive evaluation of the techniques intro-
duced in this work. Section 8 summarizes the contributions
of this paper.

2. HOMOGENEOUS MACHINES ARE IN
FACT HETEROGENEOUS

HPC systems are becoming increasingly power hungry, as
we keep pushing the boundaries of performance on the road
to exascale and beyond. While significant advances have
been made in increasing the power efficiency of each single
hardware component, i. e., flop/watt ratios continue to de-
crease driven by significant architecture advances, these sav-
ings are not enough to compensate for the growth in terms of
computational elements required to realize the needed per-
formance advances. Consequently, we need to build systems
that use power more efficiently and ensure that any power
provisioned for a system is also used and turned into real-
ized performance, i.e., we need systems that can dynamically
manage their power budgets among the available hardware
components to direct power where it is needed.

Figure 1: Performance obtained when the freqmine appli-
cation is run on 64 different 12-core Intel Xeon E5-2695v2
sockets under different power budgets.

Current machines are “worst-case provisioned”, i.e., all
components of a system can be powered at the same time
without reaching the system’s power limit. Since appli-
cations rarely keep all components occupied1, this conser-
vative approach leads to “wasted power”, i.e., provisioned
power that is not used. Prior studies show that this wasted
power can be up to 30% of a system’s power rating [24, 23].
One solution is to reduce the provisioned power to the ex-
pected average power consumption, or even lower, allowing
systems to exploit all available power, and, consequentially,
allowing for larger systems at the same total provisioned
power. In such systems, which we refer to as “overprovi-
sioned systems”, though, we must cap power to avoid power
spikes caused by intermittent phases to exceed the provi-
sioned power and with that endanger the operation of the
entire system.

Many current architectures either already provide such
power capping mechanisms or have them on their near term
road map. However, such capping doesn’t come for free: it
impacts performance, as show by the results of some ini-
tial experiments in Figure 1. The graph shows timing and
power consumption of multiple runs of the freqmine code
from the PARSEC benchmark suite [2] on 64 nodes of the
Lawrence Livermore National Laboratory (LLNL) Catalyst
cluster [22], using 12 threads per execution. Freqmine has
been adapted to use OpenMP-like task-based parallelism [9]
and runs in the top of the Nanos++ (v0.7a) parallel run-
time system [6]. Since each node is composed of two 12-core
Intel Xeon E5-2695v2 sockets, our experiments involve 128
different 12-core sockets and each run is limited to one of
these 128 sockets. We consider five different power bounds:
40, 50, 60, 70W and unlimited per socket2 The x-axis shows
the measured power consumption for each execution of the
Freqmine benchmark while in the y-axis we show the corre-
sponding execution time. We can see that running without
a power bound results in almost no performance variation,
but exhibits a wide spread of power consumption. Under
a power bound, this power variation is no longer possible
and we can see a drastic impact on performance variation
instead. Further, we can see that lower bounds result in

1It’s a well known fact that many applications only run at
a fraction of peak performance — often way below 10%
2The TDP for each socket was 115W.



higher variations.
This behavior can be explained by natural manufactur-

ing variability, which causes different processors to exhibit
different efficiencies. The consequence of this phenomena
is, though, that nominally homogeneous NUMA turn into
heterogeneous systems when operated under a power cap
equally applied to each socket.

3. DEALING WITH MANUFACTURING VA-
RIABILITY

In order to mitigate this performance inhomogeneity caused
by manufacturing variability, current static load balancing
and scheduling mechanisms are insufficient, since they are
only based on workloads and do not take into account dy-
namic variability. Classical dynamic work stealing and load
balancing techniques may mitigate [4, 3, 26, 36] this prob-
lem under certain circumstances, but they are not enough
when dealing with complex codes with frequent synchro-
nization points. In the following, we illustrate the limita-
tions of dynamic load balancing techniques on power lim-
ited scenarios by means of two examples: one considering
a code with no barriers (Section 3.1) and another one with
many (Section 3.2). In both examples, the considered appli-
cations belong to the PARSEC benchmark suite, but have
been adapted to use OpenMP task-based parallelism [9] and
executed on top of the Nanos++ (v0.7a) runtime system [6].

3.1 Example with no Barrier or Synchroniza-
tions

Figure 2 compares two executions of the swaptions bench-
mark [9] on a NUMA node composed of two 12-core Intel
Xeon E5-2695v2 sockets, each run with 24 threads and with
power capped at 40W. The x-axis of the figures show time
and the y-axis the activity of each of the 24 threads involved
in the parallel execution. When the activity of a particular
thread i appears in red on time t, the thread is doing useful
work; if it appears in white, the thread is idling. The scale of
the x-axis is the same in both figures and covers 0s to 52.8s.
In the run shown in Figure 2a the load is evenly distributed
among all threads statically using a naive distribution. The
reaction of the two sockets involved in the parallel run is dif-
ferent, which makes the threads running on the faster socket
(Threads 1-8) finish much earlier than the threads mapped
to the slow socket (Threads 9-15). As a result, threads from
1 to 8 are idle for 26% of the execution time.

In Figure 2b we show a second parallel execution of the
same code, performed in the same NUMA node as above, but
with dynamic scheduling. For this, we have over-decomposed
the parallel execution into more tasks than cores and let the
parallel runtime system assign tasks to cores once they were
idle. In this way, the cores on the fast socket executed some
of the tasks that were assigned to cores on the slower socket
in the static case, which allows the whole parallel execution
to achieve a 1.13x speedup over static scheduling. This dy-
namic task assignment technique is equivalent to the numer-
ous work stealing approaches described in the literature [4,
3, 26, 36]: it is able to deal with uneven hardware responses
under restricted power budgets in the absence of barriers
or synchronization points. Note however, that in order for
conventional work stealing to be effective, finer grain paral-
lelism is prefered. Introducing synchronization and coarser
parallel work unit limit the effectiveness of this method.

3.2 Example with Barrier Operations
Figure 3 compares the behavior of two parallel executions

of the blackscholes benchmark [9] on the same NUMA
node as the one used above, again limited to 40W per socket.
In this case we show the behavior of the parallel run around a
barrier operation instead of the whole execution. The x-axis
represents time and the y-axis shows the threads involved
in the parallel execution. Green flags mark the separation
between the different pieces of sequential work in which the
parallel execution is split or, in other words, the tasks.

Figure 3a shows the behavior of the dynamic task schedul-
ing using the same policy as above, with idle time shown in
white. While in the absence of barriers this technique prop-
erly balances the load between the two 12-core sockets, the
results in this case clearly show that they fail in case of
barriers: the green flags show that the same tasks exhibit
differences in execution time depending on the socket they
run on: around 74µs on average when run on the slow socket
and 58 when run on the fast one, despite each task executing
the same computational workload.

Figure 3b shows a second execution with the number of
threads per socket reduced to 10, i.e., 2 cores per socket or
4 cores total are left unused during the execution. In this
example power is evenly distributed with 40W per socket.
The average execution time of the tasks mapped to the slow
socket gets reduced to 54µs, while the average time of those
mapped to the fast socket takes 48µs to run. This im-
proved execution time is caused by the fact that the socket
power budget is now distributed among 10 cores instead of
12. More importantly, the heterogeneous character of the
socket’s response to the imposed power limit seems to be re-
duced by leaving 2 cores idle. This better balance between
the two sockets significantly reduces the impact of barriers
and, therefore, their idle time. Clearly, this is a much more
balanced execution than the one shown in Figure 3a. Over-
all, the parallel run considering 10 cores per socket and dy-
namic task assignment shows a 1.21x speedup with respect
to the execution with 12 cores per socket combined with a
dynamic assignment.

This last example clearly shows that, under restricted
power budgets and uneven hardware reactions, operating
with the maximum possible concurrency while dynamically
balancing load is insufficient since barrier points can intro-
duce significant idling effects. In this cases, it can be better
to restrict concurrency levels in order to homogenize the
hardware reaction to low power budgets. Alternatively, it
can also be helpful to unevenly distribute the total power
budget assigned to the multi-core sockets of a NUMA node
in order to compensate for varying processor efficiency, as
we demonstrate in Section 4.

4. MITIGATING HETEROGENEITY
Following Sections 3.1 and 3.2, which illustrate the nega-

tive impact of heterogeneity introduced by power capping,
we now provide a general evaluation of the benefits of het-
erogeneity mitigation. We consider a wide range of parallel
applications coming from many areas and we test their per-
formance considering a large range of power and concurrency
configurations. For each application and power bound, we
select the best configuration and compare its performance
with the performance obtained by deploying the naive even
configuration — assign half the power to each thread and



(a) Static scheduling and 12 cores enabled. (b) Dynamic scheduling and 12 cores enabled.

Figure 2: Executions of swaptions under 40 W power capping.

(a) Dynamic Scheduling and 12 cores enabled. (b) Dynamic Scheduling and 10 cores enabled.

Figure 3: Executions of blackscholes near a synchronization point under 40 W.

use all the available cores — combined with traditional task
scheduler and balancer.

4.1 Experimental Setup
Applications: we utilize nine OpenMP codes: six of

them come from the PARSEC benchmark suite [2, 9] (black-
scholes, ferret, fluidanimate, freqmine, streamcluster
and swaptions). Two of them are dense linear algebra rou-
tines (a cholesky matrix factorization, cholesky, and a QR
communication-avoiding code, qrca [12]) and another one
builds a histogram from a set of data points (inthist). All
of these codes exploit task-based parallelism.

Hardware and System Software: NUMA nodes of the
Catalyst supercomputer [22] are composed of two 12-core In-
tel Xeon E5-2695v2 sockets each. The applications run in
top of the Nanos++ (v0.7a) parallel runtime system [6]. We
map one thread per active core. To set power constraints
and measure power consumption on each socket, we use In-
tel’s RAPL [19] . These registers are accessed by our mod-
ified version of the Nanos++ runtime using the libMSR li-
brary [31].

Configurations: We consider power bounds of 80W,
100W and 120W for total node power. If we allow a power
limit of 80W, we consider 5 different ways of distributing the
power among the two sockets of the NUMA node: 30W:50W,
35W:45W, 40W:40W, 45W:35W and 50W:30W as well as 36
ways of specifying the maximum concurrency allowed in each
2-socket NUMA node: 2-2, 4-2, 6-2, 8-2, 10-2, 12-2, 2-4, etc.
up to 12-12. In total, this leads to a total of 180 combina-
tions. Similarly, when allowing a power limit of 100W there
are 8 ways of distributing it, which combined with the 36
possible ways of distributing the concurrency, leads us to a
total of 324 combinations. Similarly, when the total power
budget reaches 120W, the total number of combinations is
468. Overall, for each particular application we have 972
different combinations.

Other Considerations: The results of these experi-
ments are machine dependent since each particular 12-core

socket reacts in a different way when a power limit is set.
Ideally, all 972 configurations per application should be exe-
cuted on many NUMA nodes to really account for many pos-
sible hardware reactions when a power limit is set. However,
due to the size of our experimental campaign, we randomly
chose a single 2-socket NUMA node for each considered ap-
plication and run all 972 combinations on it. Although this
random choice can slightly influence the relative results be-
tween the benchmarks, the general conclusions we extract
from them remain unchanged.

4.2 Evaluation
In Figure 4 we show our experimental results. On the

x-axis we represent all the considered applications and the
three power bounds we consider: 80W, 100W and 120W. In
the y-axis we represent, for each particular application, the
speedup achieved over evenly distributing 80W among two
sockets (40W per socket) and keeping 12 active cores per
socket. On average, the optimal configurations outperforms
the totally even distribution (50% of the power and 12 cores
per socket) by 11.8% (80W), 7.3% (100W) and 7.6% (120W).

Not surprisingly, the more restrictive the power capping
is, the more beneficial the optimal configuration becomes
in terms of performance. The uneven hardware reaction
gets exacerbated by restrictive power bounds, which gives
more room for improvement when the hardware is rebal-
anced by changing the power and concurrency assignation
per socket. Application-wise, the benefits are much larger
for applications composed of several execution phases sep-
arated by barriers, like fluidanimate (24% improvement)
or cholesky (30%). On the other side, swaptions does not
get any benefit from our power rebalancing techniques since
its lack of barriers enables simple load balancing schemes to
mitigate the hardware heterogeneous response, as described
in Section 3.1.

In Table 1 we list the optimal configuration for each appli-
cation and power bound. As expected, for applications with-
out barriers (swaptions and inthist) the most balanced



Figure 4: Comparison between the even and the best configuration observed by application profiling. The speedup is computed
over the execution of the even resource distribution for 80 W.

Table 1: Optimal configurations per application and power bound in terms or Watts and active cores per socket

80 W 100 W 120 W
blackscholes 40-40 W, 10-10 cores 55-45 W, 10-12 cores 70-50 W, 12-10 cores
cholesky 30-50 W, 2-12 cores 35-65 W, 2-12 cores 30-90 W, 10-10 cores
ferret 40-40 W, 10-10 cores 50-50 W, 12-12 cores 60-60 W, 12-12 cores
fluidanimate 45-35 W, 10-6 cores 55-45 W, 10-6 cores 65-35 W, 10-6 cores
freqmine 45-35 W, 12-6 cores 55-45 W, 10-12 cores 65-55 W, 12-12 cores
inthist 40-40 W, 10-10 cores 45-55 W, 12-12 cores 60-60 W, 12-12 cores
qrca 45-35 W, 12-6 cores 50-50 W, 12-12 cores 60-60 W, 12-12 cores
streamcluster 35-45 W, 2-12 cores 60-40 W, 12-12 cores 65-55 W, 12-12 cores
swaptions 40-40 W, 12-12 cores 50-50 W, 12-12 cores 60-60 W, 12-12 cores

configurations (40W:40W and 12-12 active cores, 40W:40W
and 10-10 cores respectively) are optimal. Since for these ap-
plications the parallel runtime system successfully manages
the load, there is no need for system balancing by means
of power or concurrency reassignment among the involved
threads. On the other side, applications like cholesky or
fluidanimate do really benefit from leaving significant parts
of the cores idle and rebalancing the power accordingly.
Clearly, the hardware heterogeneity induced by setting a
power bound is not compensated by load balancing schemes
delivered at the parallel runtime system side and some con-
currency and power rebalancing must be done to maximize
the performance of these applications.

This evaluation demonstrates that classical work stealing
and load balancing techniques are not able to compensate
the heterogeneity induced by power capping, except for triv-
ial situations where a parallel code has no global barriers
or synchronization points and the size of the parallel work
unit is small enough to allows versatile alternative scheduling
scenarios. Since the potential benefits of power and concur-
rency rebalancing is up to 30%, there is a need for develop-
ing techniques able to figure out the optimal configuration
within a single execution run.

5. RUNTIME APPROACH
While the previous experiments demonstrate the potential

benefits of unevenly setting up the power caps and the num-
ber of active cores per socket in a power-constrained NUMA
node, these benefits are obtained under the huge cost of run-
ning each application multiple times in the targeted NUMA
node, each time with a particular power and active cores
limit. Further, the results obtained using extensive search
on a particular NUMA node are not applicable to another
one since the hardware response to low power bounds are
driven by manufacturing variability and cannot be known
in advance. Also, deriving a particular performance ratio
per power bound among the sockets contained in a NUMA
node is not enough as different applications react in a differ-
ent way to such variability. It is thus necessary to develop
techniques able to quickly determine the optimal power-# of
cores distribution for a particular software component and
NUMA node.

We implement our method at the runtime level, since such
systems offer load-balancing and can be easily extended with
additional functionality. They are also widely used and ex-
pected to play a significant role in future parallel architec-
tures [35, 8].



5.1 Exploiting Application Structure
Parallel codes often decompose loops or segments of serial

code into multiple work units that run in parallel. While
(at least to date) many codes follow a simple Single Pro-
gram Multiple Data (SPMD) approach where multiple cores
execute the same code several times, even more complex pat-
terns, different repetitions of loops that iterate over similar
sets of data several times produce similar execution patterns.
As a consequence, codes almost always exhibit a certain de-
gree of repetitive behavior that can be observed either over
time or by considering the logical execution structure, which
is composed of event sequences [20, 33, 7]. This iterative na-
ture of parallel applications allows us to effectively guide the
whole application behavior by observing only small but sig-
nificant portions of the parallel execution. Our approach
considers execution segments and associates each with a
particular power and number of active core assignation per
socket. This makes it possible to explore many different con-
figurations on representatives code sections in a single run,
which can the be used in an online search.

5.2 Search Algorithm
The search algorithm aims to find the optimal power and

total number of active cores balance among the different
sockets of a NUMA node. It starts with evenly distributing
power and activating all cores and then progressively iter-
ates over a set of power/#cores configurations and selects
the best one. Per each configuration, the targeted appli-
cation runs for a certain amount of time. The particular
amount of time each configuration runs for is a parameter
we call monitoring window. The smaller this parameter, the
shorter the exploration, but the more chances of getting a
non-optimal configuration since the amount of time it has
been trained for may not be representative of the whole ex-
ecution. On the other hand, large window sizes significantly
increase the chance of finding the right configuration, but
make the algorithmic search phase larger.

To characterize the performance achieved by each config-
uration we use a throughput metric defined as the number
of tasks executed during the monitoring window each con-
figuration runs for. This metric is well defined for all ap-
plications we consider in this paper (see Section 4.1) and is
particularly well-suited since it also implicitly captures the
amount of idle time spent by the active cores. Further, it
does not imply a significant amount of measurement over-
head if the task granularity is kept over the tens of µs thresh-
old. Although this metric is specific for task-based codes,
any other light-weight metric able to capture the amount of
time spent doing useful work would provide similar results
for other kinds of applications or programming models.

During the first monitoring window, the runtime system
measures the throughput of evenly distributing power among
the sockets and using all the available cores. This is consid-
ered the best candidate until a configuration providing larger
throughput is observed. After each iteration we then com-
pare the throughput for the current profile with the best
one. If the current one is better, it becomes the new best
and is used for the subsequent comparisons. This analysis
continues until the search space is exhausted, which may re-
quire more than one application run. At the end of each run,
if we have not yet exhausted the search space, the runtime
saves a checkpoint of the analysis state and resumes it in a
succeeding run.

Special care must be taken to make sure that we are con-
sidering monitoring windows that constitute representative
execution segments. If two windows capture different task
types comparing them is not fair since different tasks have
different execution times. To address this issue, we keep a
set of task types for each different window. If the task sets
collected during the best and current windows are not equal,
it could mean that the two configurations were run at a dif-
ferent stages of the application’s execution. We call these in-
compatible profile results mismatching windows. When this
occurs, we ignore the current configuration without compar-
ing it to the best and continue by checking another configu-
ration over the next monitoring window. Special care need
to be taken for the first monitoring window. If the first and
second windows mismatch, we discard both and retrain the
first configuration. This will continue until we capture a
representative segment of the application, meaning that two
consecutive windows will be matching.

Note that different alternatives are available when deal-
ing with mismatching windows. However, for this work we
employ the simplest case, which is to discard it.

The search algorithm looks for the best configuration af-
ter trying several ones and measuring their throughput over
their corresponding monitoring windows. As explained, the
monitoring windows size is an input parameter of our search
algorithm. The algorithm’s sensitivity to the windows size
and its optimal value are explored in detail in Section 6.1.
Also, the set of configurations the search algorithm iterates
over is a key choice. Large sets increase the chances of get-
ting the optimal power/#active cores balance per socket,
but also increases the cost of running the search. Alterna-
tively, reduced sets may produce cheaper searches but also
be unable to find configurations that significantly improve
performance.

5.3 Training Sets
We have implemented four variations of our analysis, based

on the size of the configurations sets:
Exhaustive Search: We use the different configurations

defined in Section 4.1. As discussed above, in case we target
a 80W power bound, the exhaustive search considers 180 dif-
ferent configurations. This is a conservative, but expensive
analysis.

Naive Scoped Search: The scoped search does not con-
sider extremely unbalanced configurations since they rarely
produce the most optimal results. As a general rule we fo-
cus the search on a small area around the default balanced
configuration. The reasoning here is that just slightly pro-
viding more power or reducing the concurrency in the slower
socket will mitigate the imbalance between the sockets. The
scoped search considers 80 different configurations for the
80W bound. They are composed of five different power con-
figurations (30W:50W, 35W:45W, 40W:40W, 45W:35W and
50W:30W) deployed for each one of the 16 active core dis-
tributions: 6-6, 6-8, 6-10, 6-12, 8-6, ... , 12-12.

Scoped Search 1: This training set aims to further re-
duce the search space, but considers both balanced and un-
balanced configurations. It avoids irrational distributions
like assigning more than half of the power but less than half
of the active cores to one of the sockets. This training set
considers the even power configuration (40W:40W) and 9
different active cores distributions for it: 8-8, 8-10, 8-12, 8-
10, 10-10, 12-10, 8-12, 10-12 and 12-12. It also takes into



Figure 5: Comparison of best configuration found by exhaustive and scoped online analyses for different monitoring window
size, when running under a 80W power constraint. The size of the monitoring window can influence the precision of the
analysis.

account assigning 35W to the first socket and 45W to the
second one with active core counts 6-10, 6-12, 8-10 and 8-
12 and its counterpart, that is, 45W to the first socket and
35W to the second with active cores counts of 10-6, 12-6,
10-8 and 12-8. Finally, this training set considers two un-
balanced configurations: 30W:50W assigned to the sockets
and 2-12 active core counts per socket, and 50W:30W with
12-2 active cores. This leaves us with 19 configurations when
operating under the 80W power bound.

Scoped Search 2: This training set contains the same
distributions as Scoped Search 1 except the two unbalanced
configurations 50W:30W and 30W:50W, reducing the set to
17 configurations. Very unbalanced configurations can pro-
duce large performance improvements, but also increase the
search costs since they significantly slowdown the execution
in certain cases. This training set avoids the dangers of such
unbalanced configurations by not considering them.

6. EVALUATION
This section shows the results in applying our optimiza-

tion technique. The experimental setup in terms of appli-
cations, system software and hardware is the same as in
section 4.1.

6.1 Monitoring Window Sensitivity
This first section shows how an optimal windows size is

obtained by optaining a detailed sensitivity study. This op-
timal size is leveraged in the following general evaluation
of the search algorithm in terms of its costs and benefits
depending on the training set.

Figure 5 shows how window sizes of 0.5, 1, 2 and 5 seconds
influence the effectiveness of the algorithmic search under an

80W power constraint. The x-axis represents the considered
windows sizes for each application, while the y-axis shows
the speedups obtained over the trivially balanced configu-
ration (40W and 12 active cores per socket), represented in
the figure with red horizontal lines. The blue horizontal line
represents the speedups achieved by the optimal configura-
tion found using the multi-execution analysis presented in
Section 4 . Purple and green lines show results considering
the exhaustive and scoped naive search spaces described in
section 5.3, while the blue and the orange lines represent
the scoped1 and scoped2 search spaces. These results do
not consider the cost of the search algorithm, just the bene-
fit of the optimal configurations found when using different
windows sizes and training sets.

Results shown in Figure 5 clearly show that a windows
size of 0.5 seconds on average does not provide any gain
when using the scoped naive training set and only marginal
gains when using the exhaustive search. Indeed, the ex-
haustive and scope naive searches bring significant perfor-
mance degradations in cases like ferret and qrca and fail
in providing a configuration that delivers the potential per-
formance gains in case of fluidanimate. When considering
the scoped1 and scoped2 training sets, 0.5 seconds window
sizes do not provide significant benefits in case of ferret

and qrca. On average, 0.5 seconds large windows provide
average speedups of 1.02x, 0.98x, 1.07x and 1.06x when ex-
haustive, naive scope, scope1 and scope2 training sets are
used.

Increasing the windows size from 0.5 to 1 second improves
the quality of the configurations selected. Indeed, it provides
speedups of 1.27x, 1.22x, 1.30x and 1.17x for cholesky or
1.24x, 1.24x, 1.24x and 1.24x for fluidanimate when ex-



(a) Performance benefits of the selected configurations without
accounting for the cost of the search.

(b) Performance benefits of the selected configurations taking into
account the cost of the search.

Figure 6: Performance benefits using monitoring windows of 1 second under 80 W power limit.

haustive, trivial scoped, scoped1 and scoped1 searches are
used, respectively. On average, the 1 second window size
provides benefits of 1.08x when exhaustive search is used
and 1.07x when the trivial scope set is considered, 1.08x
when the scope1 is considered and 1.07x for the scope2. As
a reference, when running a whole execution per each config-
uration we get optimum power and active core distribution
that bring average speedups of 1.12x. Increasing the win-
dows sizes to 2 and 5 seconds does not significantly improve
the results quality although they asymptotically get closer
to the ones obtained using the multi-execution analysis. In
conclusion, the 1 second window size is the optimal one since
it provides similar benefits for all the considered training sets
as the 2 and 5 second window sizes under a lower cost.

The search algorithm works very well for applications with
regular computations separated by barriers (blackscholes,
fluidanimate or cholesky) since each monitoring window
can capture different iterations of the same behavior. In case
of ferret or qrca the scarcity of barriers or synchronization
points reduces the potential gains of our techniques. When
computations are more irregular, it is more challenging to
have consistent monitoring windows, which reduces the ef-
fectiveness of our scheme. In the particular case of freqmine
the task type that accounts for more than 90% of the execu-
tion is input dependent and actually a single instance of this
task type can take up to half of the total execution time. As
a result the vast majority of the considered configurations
are dismissed since their corresponding monitoring windows
either mismatch or fail to capture any information.

6.2 Performance Improvements of the Selected
Configurations

In Figure 6a we show in detail the performance benefits
provided by the optimal configurations found by each one of
the four training sets considering a 80W power bound and 1
second long monitoring windows. The results are expressed
in terms of speedup with respect to the execution time when

using the naive even distribution (40W:40W and 12-12 ac-
tive cores). The static technique consists of entirely running
the applications for each one of the 180 configurations de-
fined in Section 4.1. The results of the static technique have
already been presented in Section 4.2. This technique, while
prohibitively expensive in practice as it requires 180 runs per
application, always finds the best possible configuration and
hence provides an upper bound of the speedup possible. We
represent its results in Figure 6a.

In case of blackscholes and fluidanimate, all the train-
ing sets (exhaustive, naive scoped, scoped 1 and scoped 2)
find configurations that provide the same speedup as the
static technique, 1.17x and 1.24x respectively. In case of
cholesky, the exhaustive and scoped 1 training sets allow
the system to find configurations that provide speedups very
close to 1.3x, the best possible one. The naive scope and
scoped 2 techniques provide speedups close to 1.2x. Al-
though these benefits are significant, they are far from the
ones achieved by the other techniques. The reason is that the
cholesky application benefits a lot from unbalanced distri-
butions (Table 1), which are neither considered by the naive
scope nor by the scoped 2 training sets. In case of freqmine,
although the optimal configuration identified by the static
analysis does provide significant benefits, the 4 training sets
considered by the searching algorithm fail in finding this op-
timal configuration, since tasks are input dependent and can
take up to half of the execution time, as a result most win-
dows fail to capture task throughput since not tasks finish
execution. In case of ferret, inthist, qrca and swaptions,
the potential benefits of power and active cores balancing are
very limited, since these applications do not have a signif-
icant number of barrier synchronizations. As we have ex-
plained in Section 3.1, when the overall number of barriers
is not significant, classical load balancing mechanisms are
enough to maximize performance under low power scenar-
ios.

On average, all training sets provide benefits of around



1.07x, while the static technique provides an average speedup
of 1.11x. The training costs of the five approaches are not
considered in Figure 6a.

6.3 Performance Improvements Taking into Ac-
count Analysis Costs

All considered techniques require an analysis to find a
power/active cores balance that optimally improves the triv-
ially balanced distribution. This analysis starts once the ex-
ecution of the parallel code begins and finishes when all the
considered configurations have been tested. If a single ap-
plication run is not sufficent to test all the configurations of
the training set, the application is run again and again until
the training is complete.

Figure 6b shows the speedups achieved by all considered
techniques including the training phase costs. In case of the
static analysis it is required to run the application multi-
ple times, one per each of the 180 different power/active
cores distributions. Consequently, the overall speedup is
0.003x, much smaller than 1x. The exhaustive training set
considered 180 distributions and checks their performance
over monitoring windows that are 1 second long. Therefore,
more than one run is required to test all the configurations
for those applications with execution times smaller than 180
seconds. Since this is the case of all the considered par-
allel codes, the average speedup achieved by the exhaustive
training set is 0.21x. Similarly, the trivial scoped training set
obtains a speedup of 0.44x. These three techniques do not
improve the trivial approach which consists in just evenly
distributing the total available 80W power budget and us-
ing all the cores available in the 2-socket NUMA node.

The scoped 1 and 2 training sets consider much fewer
configurations than all previously mention approaches and,
therefore, their training costs are significantly smaller. In-
deed, they are able to test all configurations for 1 second,
select the best one and then run the rest of the application
using this optimal configuration. Of course, the cost of the
training phase can reduce the overall benefits of the optimal
configuration, as it is the case of blackscholes, where the
benefits of the scoped 1 and 2 training sets are reduced from
1.17x to 1.08x and 1.09x respectively. Cholesky and flu-

idanimate have larger execution times than blackscholes,
which allows them to compensate the cost of the training
phase when scoped 1 and 2 training sets are considered and
to keep almost the same performance gains as if the training
costs were not considered (1.15x and 1.22x, respectively).

Finally, Figure 6b reports marginal performance benefits
for some applications for which the search algorithm does
not find any distribution significantly better than the triv-
ial. For example, in case of qrca there are speedups of ex-
actly 1x in Figure 6a, but of 1.05x and 1.06x for scoped1
and scoped2 in Figure6b. The explanation of this behav-
ior is that, although the search algorithm fails to find any
configuration that is significantly better than the evenly dis-
tributed, there are indeed many configurations that perform
slightly faster than the even one, which accelerate the exe-
cution as they are used during the training phase.

Overall, the static technique and the exhaustive and triv-
ial scope training sets produce an overall performance slow-
down, which makes these approaches useless in practice. On
the other hand, the scoped 1 and 2 training sets provide im-
portant performance benefits even when the search phase
is taken into consideration, which makes these approaches

very useful to maximize performance in power constrained
scenarios.

6.4 Energy Consumption Reductions
Figure 7a shows the energy consumption reductions achieved

when using configurations found by the five different tech-
niques if training costs are not considered. The baseline is
the energy spent by the trivially balanced configuration (12
active cores and a maximum of 40W per socket) and all
results are normalized to this baseline. The configurations
selected by the static analysis provide energy reductions of
11% with respect to the even distribution since the normal-
ized energy gets reduced from 1 to 0.89. The reductions
provided by the search algorithm are between 7% and 8%,
depending on the training set.

Once the cost of the exploration phase is considered, the
energy consumed by the static analysis, the exhaustive and
the scope naive training sets are 295, 3.7 and 1.8 times larger
than the energy consumed by a single run with the even
configuration. In Figure 7b we just represent normalized
energy consumptions below 1.1 for readability purposes. As
observed before, the scoped 1 and 2 training sets are able
to compensate the cost of the training set and deliver im-
provements over the even configurations. The energy con-
sumption reductions are 0.94 and 0.93 for the scoped 1 and
2 training sets respectively.

7. RELATED WORK
The ability to set up power bounds in many-core systems

is becoming a common feature. For example, Intel intro-
duced a set of machine-specific registers (MSRs) [31] on their
Sandy/Ivy Bridge processors to explicitly constrain on-chip
power consumption. Since the release of commodity chips
with such capabilities, several studies have shown the impact
power capping can have. In particular, work by Rountree
et al. [27] motivates the research presented in this paper on
how processor performance variability due to power capping
can be addressed.

Inadomi et al. [18] also study the performance variability
on a number production clusters and propose a variation-
aware power budgeting framework. Their approach requires
specific single core executions for profiling the HPC appli-
cations plus a once-per-system profiling to build a reference
table containing performance variability information for all
nodes. This table and the single core profiling is used to
make decisions using a model. Compared to their method,
our method does not require dedicated profiling runs or sys-
tem wide reference tables containing performance variations.
Instead, we use profiling information obtained at runtime to
adjust power distribution and concurrency levels, which re-
duces the analysis costs and increases its benefits.

Bailey et al. [1] propose a linear programming formulation
for MPI+OpenMP programs for maximizing performance
under job-level power constraints. While this approach pro-
vides a good approximation of the upper bound of possi-
ble performance in dynamic runtime systems, the use of a
linear programming solver is too slow to be practical for
optimizing applications at runtime. The same group also
introduced Conductor [23], a dynamic runtime system that
directs power to the critical path of the computation to min-
imize overall execution time under a power cap. Conductor,
however, does not deal with the hardware manufacturing
variability we describe in this paper. As such, our approach



(a) Energy reductions of the selected configurations without ac-
counting for the cost of the search.

(b) Energy reductions of the selected configurations taking into
account the cost of the search.

Figure 7: Energy consumption reduction using 1 second monitoring windows under a 80 W power bound.

is orthogonal and can be combined to maximize parallel ap-
plications performance.

On a single node, Cochran et al. [10] classify the PAR-
SEC benchmark suite applications for their power, temper-
ature and performance characteristics. Using these results,
they maximize performance while meeting power constraints
by using thread packing and DVFS. In contrast to our ap-
proach, though, they rely on their priori characterization,
while our approach can work without prior information.

There is a significant body of work focused on job schedul-
ing for power constrained systems. Etinski et al. [14] pro-
pose an LP-based job scheduling policy; Sarood et al. [30]
use performance modeling to make job scheduling decisions
in power constraint system to improve job throughput; and
Ellsworth et al. [13] discuss a dynamic job scheduling al-
gorithm, which when running under a system-wide power
limit, detects unused power and redistributes it to nodes
that can make use of it.

The impact of manufacturing quality on power consump-
tion variability of processor chips has been studied in a sig-
nificant number of works as well. The power leakage of pro-
cessors is directly connected to our work, since by setting
a power limit on the socket, we impair its ability to adjust
power consumption to maintain the proper frequency level.
Davis et al. [11] study the effect of inter-node variability
on power model characterization, in the context of homoge-
neous clusters. Herbert et al. [16] show that exposing the
power leakage variability of processors to the DVFS control
algorithm to shift work to the less leaky processors, can re-
duce overall system power consumption. Further, several
projects study the on-die power variation to improve DVFS
scheduling [21, 32, 17]. As an additional concern, modern
processors require transistors to shrink to a level that in-
troduces significant power and reliability variations among
processors, a phenomena explored in detail by a variety of
groups [5, 15, 34]. Overall, most studies conclude that power
variation is expected to become worse in the future [29, 15].

8. CONCLUSIONS
In this work we studied how state-of-the-art parallel run-

time systems can mitigate the performance imbalance be-
tween sockets on the same node when operating under strict
power constraints. We establish that load-balancing, al-
though improving performance, is not sufficient for a wide
set of applications. In our study we use six applications from
the PARSEC benchmark suite and three additional applica-
tions, all implemented with OpenMP 4.0 tasks. By perform-
ing profiling runs of the applications with different power
distributions and active number of cores on each socket we
demonstrate that it is possible to achieve speedups up to
1.30x over naively spreading the power budget and using all
possible cores. We also propose and implement an online
analysis that monitors only a segment of the application’s
execution and is able to switch between different power and
concurrency configurations at runtime, reducing the over-
head of profiling. Our evaluation shows that it is possible
to carefully compose the configuration search space by elim-
inating candidates that are unlikely to give a good result
(such as reducing power but increasing concurrency). The
online analysis achieves speedups up to 1.22x over the naive
case.

This work focused on figuring out the optimal power-
concurrency balance on machines with 2 sockets per NUMA
node, which is a common setup in current systems. Fu-
ture configurations will have many more sockets on a sin-
gle node. In respect to our method this trend will likely
require increasing the training set sizes, thus the cost and
its complexity. However, the benefits of our technique will
also increase: more sockets imply an even more varied re-
sponse to low power scenarios within the same NUMA node.
Adding accelerators will further increase the number of fre-
quency/power capping domains. By restricting our searches
to well-balanced configurations, as shown in this work, we
can avoid a combinatorial explosion in the training set sizes,
which keeps training costs within reasonable margins and



enables larger performance improvements on multi-socket
NUMA nodes. The results on 2 a socket system, as described
in the paper, therefore cover the worst case scenario.
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