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Abstract 39 

Assessing the uncertainties and understanding the deficiencies of climate models is 40 

fundamental to developing adaptation strategies. The objective of this study is to 41 

understand how well Coupled Model Intercomparison-Phase 5 (CMIP5) climate 42 

model simulations replicate ground-based observations of continental drought 43 

areas and their trends. The CMIP5 multi-model ensemble encompasses the Climatic 44 

Research Unit (CRU) ground-based observations of area under drought at all time-45 

steps. However, most model members overestimate the areas under extreme 46 

drought, particularly in the Southern Hemisphere (SH). Furthermore, the results 47 

show that the time series of observations and CMIP5 simulations of areas under 48 

drought exhibit more variability in the SH than in the Northern Hemisphere (NH). 49 

The trend analysis of areas under drought reveals that the observational data 50 

exhibit a significant positive trend at the significance level of 0.05 over all land 51 

areas. The observed trend is reproduced by about three-fourths of the CMIP5 52 

models when considering total land areas in drought. While models are generally 53 

consistent with observations at a global (or hemispheric) scale, most models do not 54 

agree with observed regional drying and wetting trends. Over many regions, at most 55 

40% of the CMIP5 models are in agreement with the trends of CRU observations. 56 

The drying/wetting trend calculated using the 3 months Standardized Precipitation 57 

Index (SPI) values show better agreement with the corresponding CRU values than 58 

with the observed annual mean precipitation rates. Pixel scale evaluation of CMIP5 59 
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models indicates that no single model demonstrates an overall superior 60 

performance relative to the other models.   61 
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1. Introduction62 

Drought is a complex condition that develops more slowly than other extreme 63 

weather and climate phenomena, such as floods, hurricanes, and tornadoes. 64 

Droughts are considered among the most costly natural disasters due to their 65 

impacts on crop yield, infrastructure, industry, and tourism [Wilhite, 2000]. In 66 

recent years, major droughts have affected the United States, East Africa, Russia, and 67 

Brazil with significant adverse impacts across different sectors [Hoerling et al., 2013, 68 

2014; AghaKouchak et al. 2014; Funk, 2011]. For investigation of meteorological 69 

drought, it is necessary to examine the changes in both precipitation and occurrence 70 

frequency. Numerous studies show increases in the frequency and severity of 71 

droughts under prospective climate change scenarios [Wehner, 2012; Sheffield and 72 

Wood, 2008; Dai, 2012]. Alexander and Arblaster [2009] highlighted the importance 73 

of validating climate simulations with respect to historical observations when 74 

attempting to project future dry spells. The ability of a climate model to estimate 75 

present climate and reproducing historical trends leads to higher confidence in 76 

projecting future climate (Reifen and Toumi, 2009; Wuebbles et al., 2014]. 77 

78 

Recently, the Climate Modeling Intercomparison Project has provided the Phase 5 79 

(CMIP5) multi-model simulations of both historical (1850-2005) and prospective 80 

future (21st century) climates corresponding to different greenhouse-gas (GHG) 81 

emissions scenarios [Taylor et al., 2012]. The CMIP5 models represent the most 82 
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recent collective attempt to predict the spatiotemporal evolution of the coupled 83 

ocean-land-atmosphere components of the global climate system on a centennial 84 

time scale.  Several studies have evaluated the CMIP5 precipitation simulations at 85 

regional and global scales [e.g., Sheffield et al., 2013; Joetzjer et al., 2012, Yin et al., 86 

2013; Hao et al., 2013; Schubert et al., 2013; Sillmann et al., 2013; Pascale et al., 87 

2014; Feng et al., 2013]. Mehran et al. (2014) investigated the accuracy and bias of 88 

CMIP5 historical simulations of total precipitation, and of its upper quartile, 89 

compared to the Global Precipitation Climatology Project (GPCP). They showed that 90 

despite good agreement in overall patterns of precipitation between the multimodel 91 

ensemble mean and the observations, the upper quartile of simulated precipitation 92 

amount does not compare well in most parts of the globe. They concluded that, 93 

while in most regions the total precipitation simulated by CMIP5 models are in fair 94 

agreement with GPCP observations, some desert and high latitude regions exhibit 95 

large discrepancies. 96 

 97 

A recent study showed that the pattern of dry-day frequency of the historical CMIP5 98 

simulations ensemble mean is in good agreement with the GPCP data [Polade et al. 99 

2014]. The same study confirmed better results over land in comparison to oceans, 100 

as expected due to more accurate observations over land. On the regional scale, Yin 101 

et al. [2013] highlighted an underestimation of precipitation over Amazonia by most 102 

CMIP5 models. In addition, the CMIP5 historical data in arid and semiarid areas 103 
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were found to underestimate annual precipitation amounts, with large inter-model 104 

variations over arid and semi-arid regions [Zhao et al., 2014]. Liu et al. [2014] 105 

investigated the bias in CMIP5 data over 8 regions with distinct seasonal climates, 106 

and confirmed differences in the regional and seasonal performance of the CMIP5 107 

model simulations. Wuebbles et al., [2013] showed that most CMIP5 model data 108 

underestimate 4-6 month drought in central and western North America, while over 109 

eastern North America the model results are in better agreement with drought 110 

observations of the past 30 years. Ault et al. [2012] noted that the decadal to 111 

multidecadal variability of precipitation was generally too low in CMIP5 112 

simulations, especially over arid to semiarid regions and the Amazon. They 113 

emphasized the importance of understanding model weaknesses in simulating 114 

processes that generate precipitation fluctuations, in order to improve future 115 

models. 116 

 117 

The CMIP5 simulations have been used to analyze droughts in the past and future 118 

climate [e.g., Cai et al., 2014; Fu et al., 2013; Orlowsky and Seneviratne, 2013; 119 

Prudhomme et al., 2014]. In recent years, discrepancies between climate model-120 

based and ground-based precipitation trends were reported [see Sheffield et al., 121 

2012; Damberg and AghaKouchak, 2014; Trenberth et al., 2014]. The objective of the 122 

present study is to investigate how well CMIP5 simulations of historical climate 123 
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replicate observed trends and patterns of drought at a global scale, as represented 124 

by the Climatic Research Unit (CRU) observational data set.   125 

 126 

The focus of this study is on meteorological droughts, defined in terms of 127 

precipitation deficits, as measured by the Standardized Precipitation Index (SPI) 128 

[McKee et al., 1993; Hayes et al., 1999], whose advantages as a drought indicator are 129 

well understood [e.g. Hayes et al., 2011]. Using SPI data derived from CMIP5 climate 130 

simulations and CRU observations, the present study quantitatively addresses the 131 

following research questions: Relative to the CRU observations, how well do CMIP5 132 

climate simulations replicate (a) historical drought areas; (b) significant trends in 133 

the spatial extent of these droughts; (c) associated wetting and drying regions; and 134 

(d) precipitation distribution function. This paper is organized as follows: Section 2 135 

summarizes the features of different data sets used in this study, while Section 3 136 

describes the analysis methodology. Section 4 presents detailed results, with 137 

conclusions provided in Section 5. 138 

2. Data Sets 139 

Historical monthly precipitation simulations by 41 CMIP5 models for the period 140 

1901-2005 are processed for this drought analysis. These represent multi-model 141 

simulations of historical climate conditions that are contributions to the World 142 

Climate Research Programme's CMIP5 data set collections [Meehl and Bony, 2011; 143 
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Taylor et al., 2012]. The CMIP5 simulations of historical climate analyzed in this 144 

study are listed in Table 1. It should be noted that model names including the suffix 145 

“_esm” are coupled earth systems models (ESMs) that have prognostic carbon-cycle 146 

capabilities. For these historical simulations of climate, however, such capabilities 147 

were “switched off”, and the ESMs were forced by prescribed historical time series 148 

of atmospheric greenhouse-gas emissions, as distinct from other CMIP5 models that 149 

were forced by the historical time series of greenhouse-gas concentrations [Taylor et 150 

al., 2012].  151 

 152 

Monthly precipitation observations from the Climatic Research Unit (CRU) [New et 153 

al., 2000; Mitchell and Jones, 2005] are used as reference data. Both CRU 154 

observations and CMIP5 multi-model simulations are re-mapped onto a common 155 

2×2-degree grid for comparison, with the focus on global land areas between 90°N 156 

and 75°S.  We acknowledge that CRU ground-based are subject to uncertainties and 157 

biases that could affect the evaluation, particularly over remote regions in Africa, 158 

South Americas, and Asia where ground-based measurements are limited [New et al. 159 

1999, 2000, Tanarhte et al., 2012; Hao et al., 2013]. For this reason, most of the 160 

results are provided for post 1950 for which more reliable data is available [New et 161 

al. 1999]. 162 

 163 
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It should be noted that while there are several other global drought data records 164 

based on ground-based data or combined satellite and ground-based observations 165 

[e.g., Hao et al., 2014; AghaKouchak and Nakhjiri, 2012], these only provide three to 166 

four decades of observational data. Such records are insufficient for a reliable 167 

evaluation of the CMIP5 simulations, which cannot be expected to reproduce the 168 

details of the time series of historical monthly/annual climate observations. This is 169 

mainly because these details strongly depend on  sea surface temperatures that are 170 

predicted by the coupled models, rather than being prescribed from historical 171 

oceanic observations [Peterson et al, 2012; Kenyon and Hegerl, 2010]. Since the 172 

CMIP5 models can only reproduce the long-term observational statistics, this study 173 

focuses on analyzing the consistency of trends in CMIP5 simulations and ground-174 

based observations at a centennial time scale.  175 

3. Methodology 176 

In this study, we focus on meteorological droughts, defined as deficit in precipitation 177 

[Wilhite, 2000]. The most commonly used indicator of meteorological droughts is 178 

the standardized precipitation index (SPI) recommended by the World 179 

Meteorological Organization for drought assessment [McKee et al., 1993; Hayes et al., 180 

2011]. To avoid any assumption regarding the underlying distribution function of 181 

precipitation, a non-parametric method outlined in Farahmand and AghaKouchak 182 

[2015] is used for deriving SPI [see also Hao et al. 2014]. Then, SPI data, derived 183 
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from both historical CMIP5 simulations and CRU observations, are used to identify 184 

areas under drought for different drought severity thresholds. SPI shows 185 

precipitation for any given period relative to its climatological average in the 186 

standard normal scale. An area under drought is defined as where the 6-month SPI ≤ 187 

-1, which is a commonly used threshold for locating instances of moderate drought 188 

severity [McKee et al., 1993]. To identify extreme droughts, a common threshold of 189 

SPI ≤ -2, which corresponds to exceptional drought severity in the U.S. Drought 190 

Monitor, is used [Svoboda et al., 2002].  191 

 192 

In order to investigate the trends in the areas under drought, the non-parametric 193 

test developed by Mann-Kendall [Mann, 1945; Kendall, 1975] is employed. Having a 194 

vector of precipitation data as x1 … xn, the test evaluates the rank of each value with 195 

all the other observation ranks. The test , which should be performed on statistically 196 

independent samples, relies solely on the ranks of the samples (x1 … xn), and does 197 

not consider their actual values. While annual precipitation data sets can be 198 

considered statistically independent observations, this is not the case on a 199 

subannual scale (e.g., 3-month, 6-month SPI). To address this issue at sub-annual 200 

scales, non-overlapping data are sampled from the entire data record. For example, 201 

when analyzing 6-month SPI, two 6-month observations of January-June and July-202 

December estimates are used for trend analysis.  This approach has been used for 203 
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drought analysis in previous studies [e.g., Golian et al., 2014; Damberg and 204 

AgahKouchak, 2014].  In this test, the so-called S-statistic is defined as:  205 

 206 

S =  ∑ ∑ sgn(xj − xi)n
j=i+1

n−1
i=1        (1) 207 

 208 

where: 209 

 210 

sgn(xj − xi)�
+1,          �xj − xi� > 0 
0,           �xj − xi� = 0
−1,          �xj − xi� < 0

      (2) 211 

where sgn corresponds to the sign function. In Equation 2, for a positive difference 212 

between any two values (e.g., xj and xi), the S-statistic (Equation 1) is increased by 213 

+1. For a negative difference, on the other hand, the S-statistic is decreased by -1. In 214 

the Mann-Kendall test, a large positive S-statistic implies an increasing trend, 215 

whereas a large negative value indicates a decreasing trend. The statistical 216 

significance of the observed trend can be tested using the so-called Z-test approach 217 

[Yue et al. 2002; Fatichi 2009]: 218 

 219 
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Z =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

S−1

�n(n−1)(2n+5)−∑ tj�tj−1��2tj+5�
q
j=1
18

, if S > 0

0,                                                                   if S = 0

S+1

�n(n−1)(2n+5)−∑ tj�tj−1�(2tj+5)q
j=1
18

,        if S < 0

    (3) 220 

 221 

where: 222 

n: sample size;  223 

q: number of ties in the data set;  224 

tj = number of data in the jth tie group.  225 

 226 

The statistical significance of the observed trends has been assessed at the 95% 227 

confidence level, which corresponds to a 5 % significance level (α = 0.05) that is 228 

commonly used in the hydrological sciences. The null-hypothesis (H0) that there is 229 

no significant trend in the data cannot be rejected if the p-value of the test exceeds 230 

the significance level (here,), while a p-value less than the significance level 231 

indicates the presence of a statistically significant trend in the data (see H-values 232 

listed in Table 1).  233 

 234 
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In addition to the trends, the consistency of the precipitation distribution functions 235 

of the CMIP5 simulations and CRU observations are evaluated using the Kullback–236 

Leibler (KL) divergence test [Kullback and Leibler, 1951]. This concept is central to 237 

the information theory and often used as a measure of discrepancy between two 238 

density distributions [Dragalin et al., 2003].   The KL test is based on the principle of 239 

minimum cross entropy, also known as relative entropy, and can potentially be used 240 

for change detection in hydrology and climatology [AghaKouchak, 2014]. The KL test 241 

measures the distance of one distribution to another (here, CMIP5 simulations 242 

relative to the CRU observations) based on the entropy concept. The minimum cross 243 

entropy indicates whether the two distributions are different at a 0.05 significance 244 

level (i.e., 95% confidence level). The KL test has been used in speech and image 245 

recognition, machine learning and neuroscience (Pérez-Cruz 2008). However, its 246 

application to hydroclimatology remains rare. 247 

248 

Assuming 𝐹 and 𝐺 as two distributions with densities 𝑓 and 𝑔, representing CMIP5 249 

model simulations and ground-based observations, the Kullback-Leibler divergence 250 

(DKL) can be described as: 251 

252 

𝐷𝐾𝐾(f, g) =  𝐸flog 
𝑓(𝑋)
𝑔(𝑋)

253 
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where 𝑋 is the variable of interest (here, precipitation); 𝐸𝑓 indicates the expectation 254 

over the distribution 𝑓. For discrete probability distributions 𝑓={𝑓1, ..., 𝑓𝑛} and 255 

𝑔={𝑔1, ..., 𝑔𝑛}, the 𝐷𝐾𝐾 is defined as: 256 

 257 

𝐷𝐾𝐾(𝑓,𝑔) = �𝑓𝑖

𝑛

𝑖

log 
𝑓𝑖
𝑔𝑖

258 

For values of 𝐷𝐾𝐾 , one can obtain the likelihood ratio test to detect significant 259 

divergence (here, test the null hypothesis that the two distributions are statistically 260 

similar at 95% significant level). In this study, 𝐷𝐾𝐾 is the likelihood ratio between 261 

CMIP5 precipitation simulations and the reference CRU observations. 262 

4. Results and Discussion263 

The empirical Cumulative Distribution Functions (CDFs) of the average global 264 

monthly precipitation for the CMIP5 simulations and the CRU observations are 265 

provided in Figure 1. The figure clearly shows that for any given quantile (e.g., 0.1, 266 

0.2) light rain values (e.g., precipitation less than 70 mm/month) in most CMIP5 267 

models are larger than in the observations. This could be because of the model 268 

“drizzle phenomenon” that has been extensively studied by Liu et al., [2014] for 269 

different regions and seasons. On the other hand, for high quantiles (e.g., 0.8, 0.9), 270 
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intense precipitation values in most of the CMIP5 models are smaller than in the 271 

CRU observations (Figure 1). 272 

273 

The areas under drought (6-month SPI ≤ -1) for (a) all land areas, (b) land areas in 274 

the Northern Hemisphere (NH), and (c) land areas in the Southern Hemisphere (SH) 275 

are shown in Figure 2. The gray lines indicate the 41 CMIP5 climate model 276 

simulations and the black line indicates the CRU observations. For reference, the 277 

ensemble mean of all CMIP5 models is indicated by a solid blue line. As shown, the 278 

envelope of climate model simulations encompasses the CRU observations at most 279 

time points. A visual comparison indicates larger variability in SPI values based on 280 

CRU observations in the SH than in the NH, as confirmed by the respective 281 

hemispheric-average standard deviations (STDs) of CRU-based areas under drought 282 

(5.90 versus 3.99 %).  Overall, the CMIP5 climate model simulations reproduce this 283 

hemispheric difference in variability reasonably well. The spatial differences (at 284 

pixel scale) of areas under drought among CMIP5 simulations are discussed later in 285 

this section. 286 

287 

In model simulations, the range of area under drought in the NH varies between 3-288 

36%, while in the SH area under drought exceeds 50% in some of the model 289 

simulations (Figure 2).  This indicates that model simulations exhibit higher 290 

variability in SH (STDs vary between 4.27-8.32) compared to the NH (STDs vary 291 
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between 3.24-5.07). The maximum observed area under drought in CRU 292 

observations are 28% and 37% for NH and SH, respectively. This result implies that 293 

model simulations exhibit substantially higher variability compared to observations, 294 

especially in the SH (compare SH CRU STD of 5.90 with STDs of model simulations 295 

ranging 4.27-8.32). 296 

297 

Figure 3 presents areas under severe drought (SPI ≤ -2) for (a) all land areas, (b) 298 

land areas in the NH, and (c) land areas in the SH. As in Figure 2, the temporal 299 

variability of areas under extreme drought in simulations substantially exceeds 300 

those derived from the CRU observations. One can see that the area observed under 301 

extreme drought has not exceeded 5% in the NH, while the range of variability in 302 

model simulations is 3 times higher (see also the NH STD of CRU observation 0.92 as 303 

opposed to STDs of model simulations ranging 0.95-1.29). In Figure 3, CMIP5 multi-304 

model simulations encompass the observations at most (but not all) time steps 305 

during the period 1901-2005, but they substantially overestimate the area under 306 

extreme drought (SPI≤ -2), especially in the SH where the temporal variability is 307 

generally larger (e.g., compare SH CRU STD of 1.58 with STDs of model simulations 308 

ranging 1.31-2.63). In CMIP5 simulations, the area under extreme droughts in the 309 

NH is never greater than 15%, while in the SH it exceeds 20% at several time steps. 310 

This behavior of model simulations is consistent with the CRU-based observations 311 

of the NH and SH area under drought (i.e., range of observed area under extreme 312 
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drought is nearly twice as high in the SH compared to the NH). To ensure 313 

consistency of the results, the statistics of areas under moderate and extreme 314 

droughts based on the 3-month SPI data are provided in Supplementary Materials 315 

(see Figures S1 and S2). As shown, the results are consistent with those based on 316 

the 6-month SPI. 317 

318 

This study finds that the CRU observational time series of area under drought shows 319 

a significant (α = 0.05) positive trend for all land areas, both NH and SH (see Table 1, 320 

where an H-value of 0 indicates that the null-hypothesis of no trend cannot be 321 

rejected, whereas an H-value of 1 corresponds to a statistically significant trend at a 322 

95% confidence level). This observation is reproduced by 32 (78%) of the 41 CMIP5 323 

simulations. When considering the NH and the SH separately, 32 (78%) and 27 324 

(66%) of the CMIP5 climate simulations confirm the observed significant trends 325 

(see Table 1, columns 3 and 4, respectively). Thus, overall the results indicate that a 326 

large majority of the CMIP5 simulations agree in the sign of both global and 327 

hemispheric precipitation trends derived from the CRU observations. It should also 328 

be noted that the “_esm”  models in which the historical time series of greenhouse 329 

gas emissions are prescribed do not exhibit systematically different patterns from 330 

the rest of the model simulations wherein greenhouse gas concentrations instead 331 

are specified. That is, the ESM simulations of historical climate are not 332 
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systematically better or worse than those of other CMIP5 models in detecting 333 

drought trends. 334 

335 

Regional trend analysis is an important issue in understanding historical changes in 336 

precipitation extremes. Previous studies highlighted regional differences in 337 

precipitation frequency and changes in the CMIP5 model simulations [Liu et al., 338 

2014]. In order to investigate the spatial pattern of droughts, this study investigates 339 

the wetting and drying trends of annual mean precipitation. For a more reliable 340 

trend analysis, only the period 1950-2005 is considered, since there are more 341 

ground-based observations after 1950 [Becker et al., 2013; Vittal et al., 2013; New et 342 

al., 2000]. Figure 4a displays statistically significant drying (red) and wetting (blue) 343 

trends in the CRU observations. Most of the regions with significant positive 344 

(wetting) trend occur in the United States, South America, northern Europe, western 345 

Australia and central Asia. On the other hand, the eastern part of Australia, north-346 

eastern Asia and most of Africa show drying trends, with the largest area of drying 347 

occurring in western, sub-Saharan Africa. 348 

349 

Having identified significant trends in the observations, the same analysis 350 

procedure was applied to 41 CMIP5 climate model simulations. Instead of plotting 351 

individual model results at pixel scale, the number of models that exhibit significant 352 

drying or wetting trend similar to the CRU data are presented in Figure4b which 353 
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plots the percent of CMIP5 simulations that are in agreement with significant 354 

wetting or drying trends in the CRU data set. Overall, the models show weak 355 

agreement with the observed wetting and drying trends. At most, about 35 % (14 356 

out of 41) of the simulations are in agreement with the observed wetting trend over 357 

northern Canada, and most of the CMIP5 models do not display the significant 358 

drying trend in CRU precipitation observed over the western sub-Saharan Africa. 359 

360 

Most parts of the globe do not exhibit any statistically significant precipitation trend 361 

based on post-1950 CRU observations (Figure 5a).  In contrast to those regions with 362 

observed significant trends (Figure 4b), the CMIP5 simulations are in better 363 

agreement with the observed no-trend regions (Figure 5b). Eastern Russia, 364 

northeastern China, central South America and the northern United States, are areas 365 

that almost all climate simulations display the same trend as that of the CRU 366 

precipitation data. In general, the models agree with the observations over more 367 

than 70% of the global land area. When considering observational data over the 368 

entire 1900-2005 observation period, the areas with significant trends change 369 

slightly (not shown, for brevity); however, the overall behavior of models relative to 370 

observations remains similar. 371 

372 

The trend in the mean annual precipitation provides information on slower changes 373 

in precipitation, but it does not provide insights about seasonal changes in the data. 374 
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To address this issue, trends in the 3-month SPI were also analyzed, where the non-375 

overlapping 3-month SPI for the months of January-March, April-June, July-376 

September and Oct-December were considered for trend analysis. Figure 6a 377 

presents the spatial distribution of significant trends in the 3-month SPI for the CRU 378 

data. Overall, the spatial distribution of trend is similar to the annual trend of the 379 

CRU data set. Figure 6b displays the percentage of CMIP5 models that are in 380 

agreement with the significant trend in the CRU data set over each pixel, but greater 381 

agreement is found in higher latitudes. In most locations, the model-observational 382 

agreement is less than 10%; however, a large portion of the land area shows no 383 

significant trend in the CRU data (Figure 7a), and, in this respect, the CMIP5 384 

precipitation simulations are in generally good agreement with the observations 385 

(Figure 7a and 7b). Similar results are also observed in non-overlapping 6-month 386 

SPI data (See Figures S3 and S4 in Supplementary Materials). 387 

388 

The patterns of drying and wetting trends in the CMIP5 simulations also vary 389 

greatly among different models. In general, spatial differences among models are 390 

expected at pixel scale; however, on regional scale the patterns of significant trends 391 

in simulation data sets are expected to display more similarity with the 392 

observations. Figure 8 shows the drying and wetting trends in the CRU data as well 393 

as in a subset of CMIP5 simulations. While some models tend to show wetting 394 

patterns over large areas of high latitudes (e.g. BCC-CSM1_1), others (e.g. CESM1-395 
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BGC_esm) show only a spatially limited wetting pattern over the same region. 396 

Moreover, none of the models presented in Figure 8 show the consistent drought 397 

observed in the northern part of Sub-Saharan Africa that is attributed to the Atlantic 398 

sea surface temperature gradients (Servain et al., 2000). On the contrary, the 399 

HadGEM2-ES_esm and FGOALS-S2 model simulations instead display a significant 400 

wetting trend over this region. The CRU data also show a significant wetting trend 401 

over western Australia that is only partially present in the BCC-CSM1-1_esm and 402 

IPSL-CM5A-LR model simulations. In addition, Figure 8 panels (e) and (f) also 403 

display the extensive differences exhibited by the FGOALS-g2 and FGOALS-s2 404 

climate models, which include similar land and ocean components, but different 405 

atmospheric models. It should be noted, however, that some inter-model differences 406 

are not intrinsically “physical”, but are also stochastic in character: Because 407 

individual CMIP5 simulations are started from somewhat different initial/boundary 408 

conditions of their ocean, land, and atmospheric model components, the 409 

spatiotemporal evolution of each climate simulation will also be somewhat 410 

different. Further details of CMIP5 inter-model precipitation differences are 411 

discussed in Zhou et al., [2013]. 412 

413 

In addition to examining the regional changes of the trend, the latitudinal changes of 414 

the land area under drought are also investigated and presented here. Figure 9 415 

assesses the latitudinal and decadal changes of the land area under moderate 416 
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drought (6-month SPI≤-1) – See also Figure S5 in Supplementary Materials for 3-417 

month SPI≤-1. In most latitudes, the CMIP5 models encompass the temporal 418 

changes in the area under moderate drought. However, the variability of the area 419 

under drought is not well represented in the models, especially over both low and 420 

high latitudes. In general, the model areas under drought vary more smoothly with 421 

latitude than do the CRU observations. While the ground-based observations show 422 

nearly 60 percent of the land under moderate drought on the area of 50S latitude 423 

during 1985-1995, the models (with less than 30% of the land area at this latitude 424 

under drought) could not adequately capture this extensive extreme.   425 

 426 

The last decade of the study period (1995-2005) shows the best agreement between 427 

NH observations and model simulations; however, there are large discrepancies in 428 

the SH between observation and models, with the latter overestimating the area 429 

under drought by a factor of 2. Examining the decadal variability of the area under 430 

moderate drought also shows some interesting variations in the latitudinal patterns 431 

of changes. For example, the changes during the period of 1925-1965 (panels c, d, e, 432 

and f) are very similar, as is the period 1975-1995 (panels h and i). In general, there 433 

is no distinct latitudinal pattern of percent area under drought during the 10 434 

decades considered in this study. The latitudinal and decadal changes of the land 435 

area under moderate drought in both 3-month and 6-month SPI are consistent 436 

(compare Figure 9 with Figure S5 in Supplementary Materials). 437 
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438 

Investigating the regional differences between individual simulations and 439 

observations is very important for selecting a subset of models suitable for studies 440 

of a particular region, where model performance can vary greatly. To find the 441 

relatively “best” overall CMIP5 model considered here, the mean absolute difference 442 

between a model’s monthly precipitation and that of the CRU observations is 443 

calculated at each 2x2-degree grid cell during 1950-2005, with the model displaying 444 

the least difference being selected as the relatively “best “model at that pixel. The 445 

results are presented in Figure 10, which indicates that there is no overall “best” 446 

model on a regional scale. For instance, models INMCM4-esm, MIROC5 and 447 

HadGEM2-CC show the best performance over parts of Greenland, northern Canada 448 

and Australia, respectively. Overall, CNRM-CM5, FGOALS-g2 and MIROC5 showed 449 

the least mean absolute difference with CRU observations when aggregated over all 450 

grid cells, while models CCSM4 and MIROC-ESM-CHEM showed the largest mean 451 

absolute difference. Given that random pattern of the relatively “best” model in 452 

space (Figure 10), we argue that no one model could be selected as relatively “best” 453 

for any specific region. It should be noted that the differences between CMIP5 model 454 

simulations and observations are typically substantial (see for example, CMIP5 455 

biases reported in Liu et al., [2014]). In this paper, the term “best” model is relative 456 

and only refers to the model that leads to the least error among the others. 457 

458 
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As mentioned in Section Methodology, the Kullback-Leibler (KL) divergence test is 459 

used to investigate changes in the distribution of precipitation in the climate models 460 

against the CRU observations. The results presented in Figures 4-8 showed that 461 

when considering the entire distribution of precipitation, limited areas exhibit 462 

significant drying or wetting trends in model simulations and observations. 463 

Similarly, when considering the entire distribution of precipitation, the KL test does 464 

not indicate statistically significant differences between model simulations and 465 

observations (not shown for brevity). However, the distributions of low 466 

precipitation are not re produced very well in climate model simulations. Figure 11 467 

displays discrepancies between the distributions of the CMIP5 model simulations 468 

and that of the CRU observations for different thresholds of precipitation less than 469 

10th (Figure 11a) and 30th (Figure 11b) percentiles. The figure shows percent of the 470 

models in which their low precipitation distributions exhibit statistically significant 471 

(0.05 significance level or 95% confidence) divergence compared to the 472 

corresponding distributions in the CRU precipitation.  This indicates that the 473 

discrepancies between CMIP5 precipitation simulations and observations are more 474 

pronounced in the low thresholds. At a low threshold of precipitation less than 10th 475 

percentile, for example, most models do not agree with the observations. As the 476 

threshold increases, the discrepancies between the distributions of the model 477 

simulations and observations reduce (compare Figure 11a with Figure 11b). It 478 

should be noted that to reduce the effect of biases in model simulations relative to 479 
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the observations, the percentiles are computed for each model and observations 480 

separately.  481 

 482 

Previous studies indicate the drought assessment relies on the choice of drought 483 

indicator, and using different drought indices can lead to different results [Burke 484 

and Brown, 2007]. Given that the focus of this study is on meteorological drought, 485 

we have used SPI. In future studies, other drought indicators can be used to explore 486 

how CMIP5 model simulations represent droughts based on other drought 487 

definitions.  488 

 489 

5. Conclusions and Remarks 490 

The main motivation for efforts to simulate future climate is to provide a better 491 

understanding of anticipated changes to the Earth system. Assessing the 492 

uncertainties and understanding the deficiencies of climate models is fundamental 493 

to developing adaptation strategies for climate change [e.g., Brekke and Barsugli, 494 

2012; AghaKouchak et al., 2013]. The objective of this study is to investigate how 495 

well CMIP5 climate model simulations replicate historical observations of the areas 496 

under drought, as well as significant wetting/drying trends, and their spatial 497 

patterns across the globe.  498 

 499 
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The results show that the CMIP5 multi-model simulation ensemble encompasses the 500 

Climatic Research Unit ground-based observations of areas under drought at all 501 

time-steps. Overall, the CMIP5 global averages of area under drought during the last 502 

century correspond well with both CRU observations and previous studies. 503 

Furthermore, the results show that the time series of observations and CMIP5 504 

simulations of areas under drought exhibit more variability in the Southern 505 

Hemisphere (SH) than in the Northern Hemisphere (NH). However, CMIP5 506 

simulations substantially overestimate the observed variability,  particularly in the 507 

SH. 508 

509 

The trend analysis of areas under drought reveals that the observational data 510 

exhibit a positive trend at a significance level of 0.05 over all land areas, as well as in 511 

the NH and SH. This result is reproduced by 78% of the CMIP5 models when 512 

considering total land areas in drought. Over the NH and SH respectively, 78% and 513 

66% of the CMIP5 climate models are consistent with the drought trends inferred 514 

from the CRU observations. Overall, the results show that most CMIP5 models agree 515 

with the observed global or hemispheric trends of areas under drought. 516 

517 

In addition to the fraction of land under drought, regional changes in the extreme 518 

precipitations were also investigated. The motivation for investigating both drought 519 

and wet conditions was to investigate consistencies and discrepancies in trends 520 
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signals in model simulations and ground-based observations. The regional trends in 521 

the annual mean precipitation and also 3-month SPI (SPI3) data from CMIP5 models 522 

were compared to the trends in CRU data. Overall, CMIP5 simulations of regional 523 

trends are collectively in best agreement with high-latitude observations. However, 524 

the results show that the CMIP5 precipitation simulations do not generally agree 525 

well with observed regional drying and wetting trends. Over many regions, such as 526 

northeastern Asia and parts of central and western Africa, the CMIP5 simulations 527 

are not consistent with one another or with the observed trends. In fact, none of the 528 

CMIP5 models reproduced the significant drying pattern observed over central 529 

Africa and northeastern Asia. The model simulations not only fail to accurately 530 

estimate the spatial patterns of drying and wetting trends, but they often exhibit 531 

trends with opposite signs than those observed. The results also show that many 532 

regions of the world do not exhibit any significant drying or wetting trend (both in 533 

annual and 3-month data). In this respect, most CMIP5 models are in agreement 534 

with the CRU precipitation observations. 535 

536 

The latitudinal and decadal changes of the percent of land area under drought were 537 

also investigated in this study. While there were changes in the models’ collective 538 

ability to capture the moderate drought in different decades and over different 539 

latitudes, a distinct latitudinal pattern in the percentage of areas under drought was 540 

not evident over the past 10 decades.  Grid-scale performance of all models was also 541 
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investigated, and it was found that there is no specific region where one model 542 

simulation can be considered substantially superior to others.  Furthermore, the 543 

results show that there are substantial discrepancies between the distribution 544 

functions of low precipitation data (e.g., below 10th percentile) in CMIP5 model 545 

simulations and CRU observations.   546 

547 

A demonstrated ability to simulate large scale and long-term observed trends and 548 

low precipitation distribution are fundamental for instilling confidence in model-549 

based projections of future climate change.   While it is recognized that the CMIP5 550 

models cannot be expected to reproduce individual extreme events or other 551 

observational details on a monthly-to-annual time scale, they should be able to 552 

reproduce observed long-term precipitation trends, patterns and distributions. This 553 

study demonstrates that current-generation global coupled climate models have 554 

serious deficiencies in this regard, implying that much work in simulating the 555 

intensity and frequency of regional precipitation, as well as its local and remote 556 

moisture sources, still remains to be done. 557 
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Figure 1. Empirical CDF of the average global monthly precipitation rate (in 753 

mm/month) for CRU observations (in black) and for individual CMIP5 simulations 754 

(in gray). 755 

 756 

Figure 2. Percentage of land area (%) under drought (6-month SPI ≤-1) from 1902-757 

2005 for: (a) total land areas, (b) land areas in the Northern Hemisphere, and (c) 758 

land areas in the Southern Hemisphere. Values derived from CRU precipitation 759 

observations are shown in black, the values from the ensemble of 41 CMIP5 760 

simulations is shown in gray, and the red line denotes the ensemble mean of these 761 

simulations. 762 

 763 

Figure 3. Percentage of land area (%) under severe drought conditions (6-month SPI 764 

≤-2) from 1902-2005 for: (a) total land areas, (b) land areas in the NH, and (c) land 765 

areas in the SH. Black lines denote the values derived from the CRU observations, 766 

gray shading the envelope of the 41 CMIP5 simulations considered, and the red line 767 

their ensemble mean. 768 

 769 

Figure 4. (a) Significant positive (bluish colors) or negative (reddish colors) trend in 770 

the CRU observations based on mean annual precipitation for the period 1950-771 

2005. (b) Percent of CMIP5 simulations with wetting or drying trends that are in 772 

statistically significant agreement with the CRU data for this period. 773 
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Figure 5. (a) Spatial distribution of areas without any significant trend in the CRU 774 

precipitation data over the period 1950-2005. (b) Percent of models in agreement 775 

with no significant trend in the observations for the period 1950-2005. 776 

 777 

Figure 6. (a) Significant positive (blue) or negative (red) trend in the CRU 778 

precipitation observations for the period 1950-2005, based on the 3 months SPI.  779 

(b) Percent of model simulations with significant wetting or drying trend in 780 

agreement with the CRU data for the same period. 781 

 782 

Figure 7.(a) Spatial distribution of areas without any significant trend in the CRU 783 

data based on 3 months SPI for period 1950-2005 (b) Percent of models in 784 

agreement with no significant trend in the observations for the same period. 785 

 786 

Figure 8. Significant positive (bluish colors) or negative (reddish colors) trend in the 787 

CRU observations based on mean annual precipitation for the period 1950-2005. (b-788 

h) Subset of CMIP5 simulations with wetting or drying trends for this period. 789 

 790 

Figure 9. Latitudinal dependence of decadal changes of percentage (%) of land area 791 

experiencing moderate drought (6-month SPI ≤ -1). Black lines denote values 792 

derived from the CRU precipitation observations, and gray shading the envelope of 793 

41 CMIP5 simulations. 794 
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 795 

Figure 10. CMIP5 model with the least error (mean absolute difference) relative to 796 

CRU data at each 2x2-degree grid cell. Lack of a consistent spatial pattern indicates 797 

that no single model can be considered as the “best” model for a certain region. The 798 

term “best” model is relative and only refers to the model that leads to the least 799 

error among the others at each pixel.  800 

 801 

 802 

Figure 11 – Percent of the CMIP5 model simulations that their distributions of 803 

precipitation less than 10th (a) and 30th (b) percentiles exhibit statistically 804 

significant (0.05 significance level) divergence compared to the distributions of CRU 805 

precipitation below the same thresholds (i.e., their distribution functions are 806 

significantly different from each other).    807 

 808 
  809 
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Table 1. H-values from the Mann-Kendall statistical significance test for CMIP5 810 

model simulations of areas in drought (6-month SPI ≤ -1) over global land areas 811 

(“Land”), and of those only in the Northern Hemisphere (NH) and in the Southern 812 

Hemisphere (SH). The detection of a significant drying trend is indicated by “1”, and 813 

no significant drying trend by a “0”.  814 

  
p = 0.05 (95% 
confidence level)   

p = 0.05 (95% 
confidence level) 

  Land NH SH   Land NH SH 
CRU 1 1 1 GISS-E2-H 1 1 1 
BCC-CSM1-1-esm 1 1 0 GISS-E2-R 1 1 1 
BCC-CSM1-1 1 1 1 HadGEM2-CC 1 0 1 
CanESM2-esm 0 0 1 HadGEM2-ES-esm 0 1 1 
CanESM2 0 0 1 HadGEM2-ES 1 0 1 
CCSM4 1 1 1 INMCM4-esm 1 1 1 
CESM1-BGC-esm 1 1 0 IPSL-CM5A-LR-esm 1 1 0 
CESM1-BGC 1 1 1 IPSL-CM5A-LR 1 1 0 
CESM1-CAM5 0 0 1 IPSL-CM5A-MR 1 1 0 
CESM1-FASTCHEM 1 1 0 IPSL-CM5B-LR 1 1 1 
CESM1-WACCM 1 1 0 MIROC5 1 1 1 
CNRM-CM5 1 1 1 MIROC-ESM-CHEM 1 1 0 
CSIRO-ACCESS1-0 1 0 1 MIROC-ESM-esm 1 1 0 
CSIRO-ACCESS1-3 0 1 0 MIROC-ESM 1 0 1 
CSIRO-Mk3-6-0 1 1 0 MPI-ESM-LR-esm 1 1 1 
FGOALS-g2 1 1 1 MPI-ESM-LR 1 1 1 
FGOALS-s2 1 1 1 MPI-ESM-P 0 1 1 
GFDL-CM3 1 1 1 MRI-CGCM3 1 1 1 
GFDL-ESM2G-esm 0 0 0 MRI-ESM1-esm 1 1 1 
GFDL-ESM2M-esm 0 1 1 NorESM1-M 1 1 0 
GFDL-ESM2M 1 1 1 NorESM1-ME 1 1 1 
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